
Decentralized Planning for Non-Dedicated Agent Teams with Submodular
Rewards in Uncertain Environments

Pritee Agrawal
Singapore Management University

Singapore 188065
priteea.2013@phdis.smu.edu.sg

Pradeep Varakantham
Singapore Management University

Singapore 188065
pradeepv@smu.edu.sg

William Yeoh
Washington University in St. Louis

St. Louis, MO 63130, USA
wyeoh@wustl.edu

Abstract

Decentralized planning under uncertainty for
agent teams is a problem of interest in many
domains including (but not limited to) disas-
ter rescue, sensor networks and security pa-
trolling. Decentralized MDPs, Dec-MDPs have
traditionally been used to represent such decen-
tralized planning under uncertainty problems.
However, in many domains, agents may not
be dedicated to the team for the entire time
horizon. For instance, due to limited availabil-
ity of resources, it is quite common for police
personnel leaving patrolling teams to attend to
accidents. Such non-dedication can arise due
to the emergence of higher priority tasks or
damage to existing agents. However, there is
very limited literature dealing with handling
of non-dedication in decentralized settings. To
that end, we provide a general model to rep-
resent problems dealing with cooperative and
decentralized planning for non-dedicated agent
teams. We also provide two greedy approaches
(an offline one and an offline-online one) that
are able to deal with agents leaving the team
in an effective and efficient way by exploiting
the submodularity property. Finally, we demon-
strate that our approaches are able to obtain
more than 90% of optimal solution quality on
benchmark problems from the literature.

1 INTRODUCTION

Decentralized planning for a team of agents is required
in a wide variety of problems such as target tracking by
a team of sensors [Nair et al., 2005; Kumar and Zilber-
stein, 2011; Chapman and Varakantham, 2014], securing
targets from unknown attackers using a team of defend-
ers [Brown et al., 2014; Shieh et al., 2014; Varakantham

et al., 2013], rescuing of victims by a team of robots dur-
ing disaster [Melo and Veloso, 2011; Varakantham et al.,
2009, 2014; Velagapudi et al., 2011] and analysing under-
water samples using a team of underwater vehicles [Yin
and Tambe, 2011], etc.

These domains have the following common characteris-
tics: (a) A decentralized team of agents (sensors, ambu-
lances, fire-trucks, etc.) that coordinate plans to achieve
a goal; (b) There is transition uncertainty in planning
problems of individual agents, either due to travelling
on roads (due to traffic) or due to physical constraints
(sensors, robots, etc.) (c) The agents are independent and
collaborate through a global reward (save victims, prevent
attacks, etc.); and most importantly (d) The individual
agents have a chance of leaving the team at any time step
to address a higher priority task. For example, in the case
of patrolling, agents (e.g., coast guard boats, traffic police)
can be forced to leave their assignment to attend to an
accident or incident (e.g., incursion, smuggling, accident).

We are interested in application problems with the above
mentioned characteristics and specifically teams in which
agents are non-dedicated and may leave the team due to
higher priority tasks or damage to agents. Non-dedication
has been explored by Agrawal and Varakantham [2017]
for centralized planning. Further, Shieh et al. [2014] con-
sidered non-dedicated teams in decentralized settings, but
they provide an exhaustive offline approach that is not
scalable. Our contributions differ in providing quick so-
lutions by exploiting reward submodularity for decentral-
ized planning such that remaining agents can reconfigure
their policies to attend to tasks of leaving agents.

Submodularity has been exploited by Kumar and Zilber-
stein [2009]; Satsangi et al. [2015] for centralized plan-
ning model while Kumar et al. [2017] focus on decen-
tralized planning in cooperative teams. Our contributions
differ from this line of work in considering non dedicated
agent teams with multiple agent exits from the team while
still considering joint submodular reward functions for



decentralized planning. Another closely related thread
of research is on adaptive submodularity [Golovin and
Krause, 2011], where a sequence of decisions are taken
by accounting for the observations of past decisions. Our
work differs from this thread because we consider a multi-
stage submodular problem (which introduces a partition
matroid constraint) where at every decision epoch, we
have a new submodular problem1 with fewer number of
agents.

To that end, we provide a general model to represent the
class of problems dealing with a team of independently
collaborating non-dedicated agents. A key contribution
of our work lies in establishing connections between non-
dedicated agent teams and submodularity. We show that
with monotone submodular reward functions subject to
the matroid constraint, greedy solutions computed at every
decision epoch are still submodular with fewer number of
agents and provide an a priori guarantee of at least 50%
from the optimal and much better posterior guarantees.
Another main contribution includes our two greedy ap-
proaches to efficiently deal with agent exits before the end
of horizon. In our first approach, we exploit lazy greedy to
obtain a unique offline policy for every agent irrespective
of the agent exits from the team. The second approach is
an offline-online approach where the offline phase creates
a fixed number of joint policies to be used in the online
phase. Finally, our experiments demonstrate the improved
performance of our approaches on benchmark problems
from literature.

2 BACKGROUND

2.1 Monotone Submodularity and Matroids

Definition 1 Given a finite set, Π, a submodular func-
tion is a set function, g : 2Π → R, where 2Π is the power
set corresponding to Π. More importantly, ∀X,Y ⊆ Π
with X ⊆ Y and for every i ∈ Π \ Y , we have:

g(X ∪ i)− g(X) ≥ g(Y ∪ i)− g(Y )

A submodular function g is monotone if g(Y ) ≥ g(X)
for X ⊆ Y .

Monotone submodular functions are interesting because
maximizing a submodular function to pick a fixed number
of elements (say k) from the finite set (Π) while difficult
can be approximated efficiently with a strong quality guar-
antee. Specifically, a greedy algorithm that incrementally
generates the solution set by maximizing marginal utility
provides solutions that are at least 63% (1 − 1

e ) of the
optimal solution.

1This is unlike in adaptive submodularity, where there is one
submodular problem with updated information on sensor state.

If we have a submodular function under a specific con-
straint on the finite set (Π) and the elements that are
picked, the constraint is specified using a partition ma-
troid. In this paper, we are also interested in maximizing a
submodular function, however, under a specific constraint
on the finite set (Π) and the elements that are picked.
Specifically, the constraint is specified using a partition
matroid. We provide the formal definitions below:

Definition 2 For a finite ground set Π, let P be a non-
empty collection of subsets of Π. The system Γ = (Π,P)
is a matroid if it satisfies the following two properties:

• The hereditary property: P1 ∈ P ∧ P2 ⊂ P1 =⇒
P2 ∈ P . In other words, all the subsets of P1 must be
in P .

• The exchange property: ∀P1,P2 ∈ P : |P1| <
|P2| =⇒ ∃x ∈ P2 \ P1;P1 ∪ x ∈ P .

We are specifically interested in a ground set that is parti-
tioned as Π = Π1∪Π2∪ . . .∪Πk. The family of subsets,
P = {P ⊆ Π : ∀i, |P ∩Πi| ≤ 1} forms a matroid called
a partition matroid. This family of subsets denotes that
any solution can include at most one element from each
ground set partition where the ground set partitions repre-
sent the policy space of each agent and exactly one policy
must be picked for each agent.

2.2 Submodular TI-Dec-MDP

Submodular Transition Independent Decentralized
Markov Decision Process (TI-Dec-MDP) model [Ku-
mar et al., 2017] is characterized by the tuple:〈
Ag, S,A, {Pi}i∈Ag, R,H, α

〉
, where

• Ag is the set of agents.
• S is the factored joint state space. S = S1 ×
S2 . . . S|Ag|, where Si is the state space correspond-
ing to each individual agent i. We can also have a
global unaffected state feature Su.

• A is the joint action space. A = ×i∈AgAi, where Ai
is the action space corresponding to each agent i.

• Pi is the individual agent transition function.
Pi(s

′
i|si, ai) indicates the transition probability of

moving from si to s′i on taking action ai.
• R is the monotone submodular joint reward, with
R(s, a) representing the reward for taking joint action
a in joint state s. In security domains [Shieh et al.,
2014], reward is both monotonically increasing and
submodular. It is defined as follows:

R(s, a) =
∑
τ

yτ · fτ (σ(s, a, τ)) (1)

yτ indicates the value of target τ and hence is a non-



negative number. fτ (.) is a monotone submodular
function referred to as the effectiveness of patrolling
a target τ . Effectiveness of patrols at a target τ de-
pends on the number of agents patrolling the target.
σ(s, a, τ) counts the number of agents at target τ if
the current joint state is s and joint action is a. Let ε
(0 < ε ≤ 1) represent the effectiveness of one agent
visiting a target. Then, the effectiveness of σ agents
visiting the same target τ in the joint state s is given by
the usual definition of f(.) for effectiveness parameter
ε is f(σ) = 1− (1− ε)σ.

• H is the time horizon and α is the starting state distri-
bution.

The goal is to obtain a joint policy π∗ = 〈π1, π2, . . . , 〉
(with one policy, πi for each agent i) that maximizes
expected reward or value defined as follows:

V (π) =
∑
s

α(s) · V H(s, π) (2)

V t(s, π) = R
(
s,
〈
πt1(s1), . . . , π

t
|Ag|(s|Ag|)

〉 )
+∑

s′

[ ∏
i∈Ag

Pi
(
s′i|πti(si), si

)]
· V t−1(s′, π) (3)

3 SUBMODULAR ND-TI-Dec-MDP

We extend Submodular TI-Dec-MDPs to Non-Dedicated
TI-Dec-MDPs (ND-TI-Dec-MDPs) in order to model non-
dedicated teams. The model is characterised by the fol-
lowing tuple:

〈Ag, {∆i}i∈Ag, S,A, {Pi}i∈Ag, R,H, α〉

The main change to the Submodular TI-Dec-MDP is ∆i.
∆i is the vector of probabilities for agent i leaving the
system at different times. Specifically, ∆t

i represents
the probability of agent i leaving the team at time t and∑
t ∆t

i = 1. We use the global state Su to represent
the dead state (i.e., the state that agents enter when they
move out of the system ). The individual agent transition
function P ti (s′i|si, ai) is modified to P ti (s′i|si, ai,∆i) and
is described as following:

P ti (s′i|si, ai,∆i) = P ti (s′i|si, ai) · (1−∆t
i) (4)

P ti (Su|si, ai,∆i) = ∆t
i (5)

If ∆t
i = 0, it implies that the agent transitions to

the expected state according to its transition probabil-
ity P ti (s′i|si, ai). Otherwise, if ∆t

i 6= 0, the transitions
depend on the agent’s probability of staying in the system
(i.e., 1−∆t

i). Furthermore, an agent transitions to the dead
state from any other state with probability ∆t

i. Note that
once an agent transitions to the dead state Su, it stays there

until the end of horizon (i.e., P ti (Su|Su, ai,∆i) = 1) ir-
respective of the action taken. The joint reward function
R(s, a) however remains unchanged since the computa-
tion of reward only requires the count of agents present
in the joint state s. In addition, there is no reward as-
sociated with agents present in Su and we simply have
R(Su, a) = 0. The goal of submodular ND-TI-Dec-MDP
is to obtain a joint policy π that maximizes the expected
value V t(s, π) over all agents with an additional con-
straint that the agents may leave the team.

3.1 Properties of ND-TI-Dec-MDP

We now describe the important properties of ND-TI-Dec-
MDPs with a joint reward function that is monotonically
increasing and submodular. Let us first consider the case
of a dedicated team where no agent leaves the system
(represented as ∆H

i = 1 for all agents). In this case, the
state of the system is fixed (i.e., no agents leaving) and al-
ready known to the decision maker, and hence, the policy
of every agent can be determined in advance. However,
in a non-dedicated agent team, agents may leave the team
midway requiring reconfiguration of the remaining agent
policies. The timestep at which an agent leaves the team
is referred to as observation timestep, t′ and the set of
agents leaving the system at t′ represent the observation
ψ. All the agents that have left until t′ constitute the ob-
servation set ψt′ . The joint policy for a ND-TI-Dec-MDP
is a concatenated policy which is formally defined for one
observation timestep as following.

Definition 3 Policy Concatenation: Let πψ0
be the joint

policy over all agents until the first observation at time t′

and πψt′ be the joint policy with observation set ψt′ . The
concatenated policy π̂ is represented as:

π̂ = [πψ0
]
t<t′

t=0 +
[
πψt′

]t=H
t=t′

Proposition 1 [Kumar et al., 2017]: For a TI-Dec-MDP,
V H(s, π) is monotonically increasing and submodular
if the joint reward, R is monotonically increasing and
submodular.

At t = 0, ND-TI-Dec-MDP is similar to TI-Dec-MDP
and is solved for |Ag| agents and H timesteps. The value
function, V H(s, π) is a monotone and submodular being
the case of dedicated agent team. Similarly, for every
observation timestep t′, ND-TI-Dec-MDP is solved as
a new TI-Dec-MDP problem with Ag \ ψt′ agents and
H−t′ timesteps where ψt′ represents the set of agents that
have left until t′. The value function, V H−t

′
(s, π) at t′

is also monotonically increasing and submodular. Hence,
for a single observation ψt′ , the joint policy comprises of
two components (as per definition 3) where the second



component is guaranteed to be submodular but not the first
component. This is because submodularity of the value
function V H(π) holds for [t]

H
0 but for ND-TI-Dec-MDP,

we consider only timesteps [t]
t′

0 for the first component.
Hence, the value function V H(π̂) for ND-TI-Dec-MDP
is not guaranteed to be submodular for π̂, however, it is
submodular for every TI-Dec-MDP sub-problem.

The goal in ND-TI-Dec-MDPs is to maximize the ex-
pected value by obtaining a correct joint policy (i.e.,
exactly one policy per agent). Formally, the goal is
to maximize V H(π) for every individual TI-Dec-MDP
problem given the partition matroid Γ = (Π, I) where
I = {X ⊆ Π : |X ∩ Πi| = 1}. Intuitively, the partition
matroid enforces that we can only have one policy for
each agent.

Proposition 2 [Fisher et al., 1978]: Greedy algorithm
for maximizing a monotone submodular function subject
to a partition matroid yields solutions that are at least
50% of the optimal solution.

For a non-dedicated agent team, the a priori bounds for
every TI-Dec-MDP sub-problem at any t′ is guaranteed
to be at least 50% of optimal in the worst case. However,
these bounds are quite loose since the solution provided
by greedy is much better in most cases. Therefore, we
compute online bounds by adding the marginal value
of the best policy for every agent in the solution set to
provide a tighter upper bound on the optimum. The online
bound for a monotonically increasing and submodular
value function is represented as below:

Proposition 3 [Kumar et al., 2017]: For any joint policy,
π:

V (π∗) ≤ V (π) +
∑
i∈Ag

δi(π)

where δi(π) = maxπi∈Πi V (π ∪ πi)− V (π)

Here, π∗ is the optimal joint policy with optimal individ-
ual policies for every agent. For any joint policy π, we
get an upper bound on the value of the optimal policy by
adding the individual policies, πi that yield best marginal
values for each agent. In the context of ND-TI-Dec-MDP,
at every observation timestep t′, we solve a new TI-Dec-
MDP problem with Ag \ψt′ agents and H − t′ timesteps
where any policy πψt′ provides an upper bound on the
optimal policy π∗ψt′

. However, any concatenated policy
π̂ is not guaranteed to provide an upper bound on the
optimal concatenated policy π̂∗ since submodularity may
not hold for πψ0

. We still compute the online bound for
the concatenated policy as following.

V (π̂∗) ≤

[
V (πψ0) +

∑
i∈Ag

δi(πψ0)

]t<t′
t=0

+ (6)

V (πψt′ ) +
∑

i∈Ag\ψt′

δi(πψt′ )

t=H
t=t′

Algorithm 1 ND-GREEDY (Ag, S,A, P,R,H −
t′, α, ψt′ )

1: Z ← ∅
2: π∗i ← ∅,∀i ∈ Ag \ ψt′
3: repeat
4: for all i ∈ Ag \ {ψt′ ∪ Z} do
5: π∗i ← maxπi

Vi(πi, α
t′

i |π∗Z)

6: 〈i∗, Vi∗〉 ← maxi∈Ag\ψt′∪Z Vi(π
∗
i , α

t′

i |π∗Z)
7: Z ← Z ∪ {i∗}
8: until Ag \ {ψt′ ∪ Z} = ∅
9: return {Z, π∗ ← {π∗i }i∈Ag\ψt′

}

where δi(πψt) = max
πi∈Πi

V (πψt ∪ πi)− V (πψt), t ∈ {0, t
′}

The expression in the first square bracket bounds the
value of the optimal concatenated policy V H(π̂∗) from
t = 0 to t ≤ t′ for the policy πψ0

(however, it is not a
guaranteed online bound), while the second expression
provides a guaranteed online bound on the value of the
optimal concatenated policy from t ≥ t′ to t = H . For
our experiments, we compute online bounds for ND-TI-
Dec-MDP using Equation 6.

4 APPROACHES

In this section, we provide enhancements to the exist-
ing approaches in literature along with an offline and an
offline-online approach for solving ND-TI-Dec-MDPs.
We extend the existing lazy greedy algorithm for TI-Dec-
MDPs to provide solutions for non-dedicated agent teams.
We further provide a lazy greedy extension for the bench-
mark heuristics in non-dedicated teams [Agrawal and
Varakantham, 2017] to provide bounds on the solution
quality of ND-TI-Dec-MDPs.

4.1 Greedy and Lazy Greedy

For dedicated agent teams, greedy has been well explored
in the context of Dec-MDPs [Shieh et al., 2014; Agrawal
et al., 2016; Kumar et al., 2017] while for non-dedicated
agent teams, it has been explored only in centralized set-
tings [Agrawal and Varakantham, 2017]. Therefore, we
extend the previous work by [Kumar et al., 2017] to pro-
vide a lazy greedy extension for non-dedicated teams in
decentralized settings.

Algorithm 1 provides the pseudocode for a non-dedicated
greedy algorithm that is solved at every observation
timestep, t′ where |ψt′ | agents leave the team and H − t′
timesteps are remaining. The algorithm is initially in-
voked at the starting timestep (i.e., t = t′ = 0 and
ψt′=0 = ∅) after which it is invoked only for timesteps
where ψt′ 6= ∅. ND-Greedy builds the solution set by
incrementally adding a policy for every agent that has not



been assigned a policy. Initially, we start with an empty
solution set Z (line 1). At every iteration, for each agent
in the set of remaining agents, Ag \ ψt′ that has not been
assigned a policy (line 4), we compute a policy with the
highest marginal value given the current solution set (line
5) by constructing and solving an MDP (similar to the
TI-Dec-MDP. Among those highest marginal value poli-
cies, we choose the one with the highest value and add
it to the solution set (lines 6-7). This process is repeated
until all Ag \ ψt′ agents have been assigned a policy to
collectively provide the joint policy π∗ (Every agent is
assigned exactly one policy with the help of partition ma-
troid constraint). Finally, the agents in Z are present in
decreasing order of their marginal values. We refer this
solution set Z as selection order of the agents.

ND-Greedy evaluates the marginal value for all the agents
at every iteration, thereby affecting the scalability of the
algorithm with increasing agents. Interestingly, submod-
ularity of the value function V H() can be exploited to
implement an accelerated version of classical greedy algo-
rithm, otherwise known as Lazy Greedy [Minoux, 1978].
Instead of computing the marginal gain for all agents, lazy
greedy allows a lazy evaluation of marginal benefits by
storing the upper bounds µ(i) on the marginal gain for all
agents i ∈ Ag sorted in descending order. This reduces
the marginal gain computation as the submodularity of
value/objective function guarantees that the marginal gain
for an agent is always equal to or lower than the previous
iteration. Intuitively, for each iteration, lazy greedy evalu-
ates the agent on the top of the list, say i, and updates its
upper bound, µ(i). If µ(i) ≥ µ(i′),∀i′ 6= i, submodular-
ity guarantees that agent i has the highest marginal gain.
Therefore, lazy greedy leads to significant reduction in
running times compared to the classical greedy.

Why is the new policy recomputation needed: The
recomputation of a new joint policy at every observation
timestep t′ is important because the contribution of re-
wards by agents at every timestep may vary. This means
that an agent may have higher rewards at earlier timesteps
compared to later timesteps. In security games, if the
remaining agents continue with their initial policies even
after few agents leave, the coverage of important targets
may be missed, making the system vulnerable to attacks.
This creates an urgency for policy recomputation and
therefore, we use lazy greedy to obtain a new selection
order for agents by considering the reward contributions
from the current timestep to the end of planning horizon.
For example, let the selection order of agents at t = 0 be
[A2(555), A3(545), A1(500), A4(490)] with the reward
values for agents specified alongside. Let a1 leave the
system at t = 1. The total value for agents at t = 1
could be [A2(500), A3(505), A4(490)] on recomputation
of reward for the remaining agents. This creates a change

in order of selection of the agents because the contribu-
tion at t = 0 dominated the contribution over remaining
timesteps for agents A2 and A3. Hence, the change in
order contributes to the change in marginal gain, and
therefore, agents must rearrange their policies to adapt to
the change in system.

4.2 Benchmarking Heuristics

The existing benchmark heuristics for non dedicated agent
teams [Agrawal and Varakantham, 2017] are centralized
approaches and incapable of computing joint policy and
joint reward for the agent team. Hence, we provide a lazy
greedy extension for the existing benchmarks to be able
to solve ND-TI-Dec-MDPs.

Ignore the leaving agent, Dec-ILA: We start with a lazy
greedy solution for the dedicated team and whenever
agents leave the team, the remaining agents continue with
the execution of their existing policies. However, due to
the presence of joint reward for the system, we recom-
pute the joint reward over the remaining agents whenever
agents leave. This provides a good lower bound on so-
lution quality that has to be achieved. For example, in
security games domain, ignoring the targets covered by
leaving defender agent is not the best choice since the
leaving agent may be protecting a target of high impor-
tance. Hence, it is important for the remaining agents to
modify their policies to provide an improved coverage
to the targets that would become vulnerable to attacks.
Similarly, in sensor domain, the sensors in the vicinity of
a spoilt sensor should be able to change their policies and
sense the target locations assigned to the spolit sensor for
better observation of any spatial phenomenon.

Offline Optimal, Dec-OPT: This heuristic assumes that
the sample information (details of agents leaving the sys-
tem) is received beforehand. Mixed integer program pro-
vides an optimal solution, but is not a suitable approach
for finding the joint policy and the joint reward compu-
tation for a decentralized team of heterogeneous agents.
Hence, we use lazy greedy for finding the agent policies
where the agents are selected sequentially in the decreas-
ing order of their values. Since the agents leaving the
system have a shorter timespan compared to non-leaving
agents, the marginal gain for such agents will be lowest.
Hence, non-leaving agents are provided least preference
in the selection process by greedy. Although not an ex-
actly optimal approach, this heuristic provides a good
upper bound on the solution quality.

Online Revamp, Dec-O-Rev: Similar to Dec-ILA, for
this heuristic, we start with the initial lazy greedy solu-
tion until one or more agents leave the system. At the
observation timestep t′, the problem is solved again for



Algorithm 2 OFFLINE-GREEDY (ξ,Ag,W )
1: Z ← ∅, O ← ∅
2: Vi ← 0,∀i ∈ Ag
3: for all ξk ∈ ξ do
4: V k ← Dec-OPT(Ag, S,A, P,R,H, α, ξk)
5: Vi ← Vi +W k · V ki
6: for all i ∈ Ag do
7: Vi∗ ← maxi∈Ag\O Vi
8: O ← O ∪ i∗
9: for all o ∈ O do

10: 〈π∗o , V ∗o 〉 ← Vo(π
∗
o , α

0
o|π∗Z)

11: Z ← Z ∪ {o}
12: π∗ ← {π∗o}o∈O
13: return 〈π∗, O〉

the remaining agents Ag \ ψt′ and remaining timesteps
H − t′. The starting distribution of the remaining agents
is recomputed at t′ and is input to the lazy greedy algo-
rithm along with the information of leaving agents, ψt′ .
The new joint policy obtained for the remaining agents
is executed by the agent team until there is a change in
the system (i.e., an agent leaves the system). Dec-O-Rev
provides a good upper bound on the desired performance
for our proposed approaches but suffers from some limi-
tations. Although the running time reduction due to lazy
greedy is significant compared to classical greedy, the
total number of function evaluations with lazy greedy can-
not be predicted beforehand to provide the exact running
cost. This makes the complete recomputation of selec-
tion order at observation timesteps time consuming and
difficult to be evaluated on the fly. Secondly, if there is a
requirement of recomputation at every timestep t, revamp
would become infeasible since at least Ag \ ψt rounds of
sequential computation for agents will be required.

4.3 Offline-Greedy Approach

Offline-Greedy is a sampling-based approach that com-
putes an offline selection order,O and a single joint policy
π∗ over multiple scenarios of agent availability. Since it
is impossible to consider all the samples of agent avail-
ability on larger problems, we choose a smaller training
set for the joint policy computation. The sample set is
represented as ξ and has |K| samples. Due to repeti-
tion of samples, we assign frequency-specific weights
W k,∀k ∈ K and select 20 best samples in decreasing
order of weights. Every sample of agent availability, ξk is
generated by sampling from a biased coin with probabil-
ity pi independently for every agent i. At every timestep
t, the coin is tossed to decide whether agent i leaves or
stays in the team depending on the value of associated
probability in ∆i. Hence, for every sample ξk, we know
the available horizon ξk(i) for every agent i.

Algorithm 2 provides the pseudocode for Offline-Greedy

Algorithm 3 OFFLINE-ONLINE (Ag,N )
1: for all n ∈ N do
2: Z ← ∅
3: πni ← ∅,∀i ∈ Ag
4: repeat
5: ri ← Random(Ag \ Z)
6: πnri ← V nri (πri , α

0
ri |π

n
Z)

7: Z ← Z ∪ {ri}
8: until Ag \ Z = ∅
9: πn ← {πni }i∈Ag

10: Π← Π ∪ {πn}
11: return Π

with the training set ξ, the agent set Ag and the vector
of frequency weights over all samples W as inputs. The
agent selection set, Z and the selection order O are initial-
ized as empty sets and the total value of every agent over
all samples Vi is set to 0 (line 1-2). For every sample ξk

in the training set, the available horizon of every agent is
already known, and therefore, we use Dec-OPT heuristic
to obtain the total value, V k for every ξk ∈ ξ (line 4). The
total value for every agent Vi is computed as the weighted
sum of values over the sample set (i.e., W k · V ki ) (line 5).
The selection orderO is computed by sorting the agents in
decreasing order of their values Vi (line 6-9) such that the
agents with higher probability of staying in the system are
added before the agents with higher probability of leaving.
For all the agents in the selection order, highest marginal
value policy for an agent given the current solution set
(line 10) is computed by constructing and solving an MDP
(similar to TI-Dec-MDP) and the computed agent is then
added to the solution set (line 11). Finally, we return the
best selection order O and the offline joint policy π∗ over
all agents and all training samples.

For every test sample, the agents are assigned their indi-
vidual policies from the offline joint policy π∗. However,
irrespective of the observations obtained at different ob-
servation timesteps, the agents continue with their pre-
assigned policies while the joint reward is recomputed
for the remaining agents. This approach saves the online
recomputation of policy at observation timesteps but with
a compromise in the solution quality.

4.4 Offline-Online Approach

In this section, we present our Offline-Online algorithm
which is a randomized greedy algorithm with an offline
and an online phase. The offline phase focuses on the
generation of multiple agent(s) selection orders to handle
the different possibilities of scenarios, while the online
phase focuses on choosing the best selection order for
remaining agents depending on the current observation
(availability of agents). We note that having multiple se-
lection orders is better than having one fixed selection



order for all scenarios (as present in Offline-Greedy) be-
cause the total value of a selection order can change at
different observation timesteps due to the dominance of
rewards in previous timesteps (explained in details in sec-
tion 4.1). We generate a fixed number of selection orders
for the agent set since the total number of orderings pos-
sible with |Ag| agents is |Ag|! orders which is difficult to
maintain with increasing agents. At every decision stage,
we choose the best/closest selection order such that the
position of the leaving agent is towards the end of the se-
lection order, thereby, avoiding the recomputations. The
time complexity of the offline phase is linear in the num-
ber of agents (or O(|Ag|)) while it takes constant time for
the online phase. The main difference with respect to lazy
greedy (used in all the above approaches) is that instead
of choosing the agent with highest marginal gain at every
iteration, we randomly pick an agent and add it to the se-
lection set. However, due to the joint reward computation
and the presence of submodular rewards, the total utility
always improves with addition of agents iteratively.

Algorithm 3 shows the offline phase of Offline-Online
algorithm where the input to the algorithm is the agent
count |Ag|, and the number of selection orders to be
generated (N). For computing every order n, we start with
an empty agent selection set Z and add one agent at a time
by randomly selecting agents from the set of remaining
agents Ag \ Z. The policy and value of every agent is
obtained by solving an MDP and is stored in πn. Finally,
we return Π that represents the set of policies for all the
N selection orders.

The online phase of our algorithm does not require any
computation and only reacts to a situation by choosing the
best order from the set of offline orders for the remaining
agents and providing a new policy for every agent from
the observation timestep t′ until the end of horizon. The
selection criteria for choosing the best order for the de-
fender team whenever any agent leaves the team depends
on the number of exact matching and closest matching se-
lection orders. For example, let us assume that there are 4
agents in the system {a1, a2, a3, a4} and the available set
of selection order contains three orders,O1 = {3, 2, 1, 4},
O2 = {4, 2, 3, 1} and O3 = {3, 2, 4, 1} with total utility
of {200, 150, 100} for the orders respectively. Let us
consider two case studies:

• Agent a1 leaves the system: In this case, O2

and O3 are the best suitable orders since they
require no re-evaluation but the order with high-
est utility is given preference and hence,O2 is chosen.

• Agent a3 leaves the system: In this case, none of the
matches are exact and therefore, we find the closest
match. We choose O2 to assign policies to the remain-

5 10 20 30 40
No. of Agents

4000

8000

12000

16000

20000

24000

28000

A
v

er
a

g
e 

T
ea

m
 U

ti
li

ty Dec-ILA
Offline-Greedy
Offline-Online
Dec-O-Rev
Dec-OPT

(a) τ = 40, H = 20, ε = 0.7

20 30 40 50 60 70 80
No. of Targets

10000

12000

14000

16000

18000

20000

A
v
er

a
g
e 

T
ea

m
 U

ti
li

ty Dec-ILA Offline-Greedy
Offline-Online Dec-O-Rev
Dec-OPT

(b) |Ag| = 20, H = 20, ε = 0.7

Figure 1: Quality Comparison w.r.t. (a) Agents and (b) Targets

ing agents since it requires minimal updates to agent
policies. At the observation timestep, the previous
policy of a1 is replaced by the existing policy of a3,
but after considering the change in state distribution
of the agents since a1 and a3 are not guaranteed to be
in the same state at the considered timestep. However,
due to the replacement of agent policies, a1 would
now become the third agent in the system, assuming
the presence of two agents. Policy recomputation
is not required because the offline joint policy (of
every selection order) computes the V t(s, π) values
for all states at all intermediate timesteps (i.e., joint
value after selection of every agent in the selection
order). Furthermore, no reward recomputation is re-
quired since the joint reward considers only the count
of agents (and not the identity of agents) at any state
due to the monotone submodular reward structure for
the joint reward.

In this manner, the online phase improves the value of
solution roughly the same as Dec-O-Rev, but very quickly.

5 EXPERIMENTS

We evaluate2 the performance of our greedy approaches
and compare them with the benchmark approaches men-
tioned in section 4.2 on the security games domain pro-
vided by Shieh et al. [2014] and the sensor network do-
main provided by Kumar et al. [2017]. The performance
is evaluated on the following metrics: (a) solution quality;
(b) runtime; (c) quality of online bounds. We generate
1500 samples of agent availability (defenders in security
domain and sensors in sensor domain) and divide it into
training and testing sets of 1000 and 500 samples, respec-
tively. To obtain a fair comparison over all approaches,
we compare the solutions on the same test set.

5.1 Security Games Domain

In this domain, there are a set of targets (train stations) on
the metro rail network which must be defended by a set of
decentralized (yet cooperative) defenders in the presence

2All our optimization problems are run on CPLEX v12.7



(a) H = 10, ε = 0.5 (b) H = 10, ε = 0.7 (c) H = 10, ε = 0.9

Figure 2: Comparison of Online Bound w.r.t. Effectiveness

of transition uncertainty. We constructed the metro rail
graphs by connecting the stations together in lines of
length 5 and then randomly adding |τ |/2 edges between
targets, to resemble train systems in the real world with
complex loops. The reward is a joint reward which is a
function of the number of active defenders and the targets
for a joint state s (see Section 2.2 for details). The test
results were averaged over 15 randomly generated metro-
based graph networks and the rewards were generated
randomly in the range of [0,100]. We run the scenarios
with a probability delay of .2 and a maximum of 5 agents
(varies from 10% to 25% across scenarios) with an ability
to leave the system, defined by probability vector ∆. The
defender agents are homogeneous (due to same reward
and transition function) but differ from each other in their
starting states (generated randomly for every agent) and
their capability to leave the system.

Solution Quality: We compare different approaches with
respect to average team utility in Figure 1(a) as the num-
ber of defenders |Ag| is increased. Specifically, we con-
sider a metro network with targets τ = 40, horizon
H = 20 and effectiveness parameter ε = 0.7. Similarly,
in Figure 1(b), we vary the targets, τ for a fixed number
of agents |Ag| = 20, horizon H = 10 and effectiveness
parameter ε = 0.7. The key observations are summarized
as following:
(1) The average team utility increases with increasing
defenders for a fixed number of targets and planning hori-
zon due to the submodular reward structure. Similarly,
the team utility increases with increasing targets due to
increased number of choices for obtaining better rewards.
(2) Dec-ILA provides low team utility solutions since the
remaining agents continue with existing policies even af-
ter agents leave. This impacts the scope of improvement
in rewards and is a cause of serious concern in security
domain since it allows easy access to an adversary to plan
an attack in unprotected areas.
(3) Offline-Greedy provides similar or better solutions
than Dec-ILA. We observe that with fewer agents and
targets, and smaller planning horizon, Offline-Greedy per-
forms almost similar to Dec-O-Rev as agent exits are
given due importance during the offline policy design but

the performance degrades quickly with increasing count
of agents and the planning horizon. In the worst case, the
solution quality was seen to be even lower than Dec-ILA.
(4) Offline-Online provides a steady performance, almost
at par with the upper bound benchmarks (Dec-O-Rev and
Dec-OPT) even with increasing problem sizes. Due to the
random selection of agents at different observation times
and the presence of submodular reward function, in the
best case, Offline-Online could provide better team utility
than Dec-O-Rev (uses lazy Greedy).
(5) Dec-OPT provides a good upper bound but is not
always guaranteed to provide better utility compared to
Dec-O-Rev due to the dominance of rewards in earlier
timesteps explained in the section 4.1. However, on av-
erage, Dec-OPT provides slightly better solution quality
compared to Dec-O-Rev after having the knowledge of
samples before-hand.

Solution Runtime: With respect to runtime, we com-
pare only online runtime since the offline runtimes do
not matter. Due to decentralized planning of agents, in-
dividual agent planning time varies from 100 ms to 5000
ms from the smallest problem instance (20 targets and
10 timesteps) to the largest instance (40 targets and 20
timesteps). For Dec-O-Rev, due to the use of lazy greedy
approach at every timestep of revamp, the revamp time
varies from 15 seconds to 1700 seconds depending on the
number of defenders and the problem size per defender.
Further, there can be multiple revamps for one planning
scenario making Dec-O-Rev infeasible for providing new
policies quickly. However, our Offline-Online approach
uses a proactive offline planning which reduces the online
execution time to milliseconds, even in the worst case
(although it requires offline training time). Similarly, the
online runtime is minimal for Dec-ILA, Dec-OPT and
Offline-Greedy.

Online Bound Comparison: For the online bound com-
parison, we use a consistent reward structure for every
randomly generated metro network. For every metro
network, we generate various scenarios of agents avail-
abilities for different number of defenders and varying
effectiveness of defenders. We compute the online bound
for every scenario using Equation 6 and average the online



Grid-Size Sensors,Targets
Global States

ε
.3 .5 .7

5× 5 5, 1, 10 58.3 64.5 71.5
5× 5 5, 2, 6*6 58.6 65 71.5
10× 5 6, 3, 14*10*10 57.4 61.2 64.2
10× 5 6, 4, 5*5*5*5 57.3 61.6 63.7
10× 5 6, 5, 6*5*5*5*5 55.7 61.3 65.3
10× 5 10, 3, 14*10*10 58.5 63.5 69
10× 5 10, 4, 5*5*5*5 55.5 58.5 61.7
10× 5 10, 5, 6*5*5*5*5 55.9 61.5 67.7
10× 10 10, 4, 6*5*5*5 58.7 64.5 71.2
10× 10 15, 4, 6*5*5*5 58.5 63.8 72.2
10× 10 20, 4, 6*5*5*5 58.9 65.5 72.7
10× 10 10, 5, 5*5*5*5*5 55.5 61.2 67.3

Table 1: Online Bound Comparison for Sensor Domain

bounds over all test samples and all randomly generated
graphs. This leads to the inference that the online guar-
antees are significantly better than the a priori guarantees
(of 50% from optimal), with the best case of atleast 90%
from optimal for different values of effectiveness param-
eter. Figure 2 compares the online (or posterior) quality
guarantees obtained by Dec-O-Rev for different values of
agents (Ag), targets (τ ) and effectiveness parameter (ε). It
shows that the online guarantees improve with increasing
agents and decreasing targets over varying effectiveness,
with highest guarantee being reported for 10 targets and
40 agents. Further, with increasing effectiveness of agents,
the optimal bound increases with highest quality guaran-
tees (up to 99%) observed for ε = 0.9. To avoid clutter,
we do not plot the quality guarantees provided by policies
generated using Offline-Online in the same graph. How-
ever, Offline-Online fared slightly lower than Dec-O-Rev
in terms of guarantees and provided a guarantee that was
0.7% lower than Dec-O-Rev in the best case, while in the
worst case, it was 2 % lower than Dec-O-Rev.

5.2 Sensor Network Domain

We use the similar settings as Kumar et al. [2017] for this
domain. The environment is modelled as a grid and a
submodular reward function with n-ary interactions (any
number of sensors can track a target) is used where the
reward of tracking a target is dependent on the number of
sensors tracking it. The sensors are randomly placed at
junctions of cells on the grid and can track four target cells
surrounding the sensor. However, due to wear and tear
or due to unforeseen conditions, some sensors may get
spoilt and the neighbouring sensors must track the targets
of damaged sensors to maximize the reward. Therefore,
reconfiguration of sensors after one or more sensors are
spoilt is important. The targets move stochastically (ac-
cording to some fixed distribution) in the grid and follow
a path of fixed length for movement. The product of path

lengths of all available targets defines the total number of
global states for the sensor domain.

Online Bound Comparison: Table 1 shows the online
guarantees obtained for offline-online by varying the grid-
size, number of sensors and their effectiveness, number
of targets and the number of global states. We vary the ef-
fectiveness parameter from 0.3 to 0.7 and observe that the
online bounds vary from 55% to 73% for Offline-Online,
while the guarantees provided by Dec-O-Rev were 4%
and 1.8% better than Offline-Online in the worst case
and best case, respectively. An important observation is
that with increasing targets, the number of global states
increases exponentially, leading to memory issues. We
note that 5 targets for a 10 × 10 grid with every target
having a path-length of 5 was very difficult instance to
solve with 55 or 3125 global states. However, increasing
the number of sensors with a fixed number of targets was
comparatively easier to solve since every sensor agent
problem was solved independent of other agents due to
the decentralized settings. With respect to runtime, the
time taken by any sensor agent for individual planning
varies from few milliseconds to 10 seconds with increas-
ing number of targets and the global states. Due to lazy
greedy evaluations for Dec-O-Rev, every revamp may
take time ranging from less than a minute to 40 minutes
depending on the complexity of the problem being solved.
This makes the usage of Dec-O-Rev infeasible in online
settings. Further, there can be multiple revamps for every
scenario to worsen the situation. Similar to the security
domain, the performance of Offline-Greedy is very simi-
lar to Dec-ILA while Dec-OPT provides results similar
to Dec-O-Rev. More interestingly, our Offline-Online
approach continues to perform gracefully with increasing
number of sensors, targets and the grid size, while tak-
ing minimal time (in milliseconds) for solving the largest
problem. Finally, we conclude from the experiments that
Offline-Online is the best choice considering the trade-off
of running time and compromise in solution quality.

6 CONCLUSION

In this work, we focussed on cooperative decentralized
stochastic planning for non-dedicated agent teams. We
provided a general model for decentralized non dedicated
agent teams. Our offline greedy based approach provided
good results in small instances while our Offline-Online
approach provided the best results even in large instances
in an effective manner. Finally, our extensive experiments
on benchmark problems demonstrate that our Offline-
Online approach provides the best solutions that are on
par with benchmarks that provide an upper bound on
the performance while taking negligible online runtime
making it effective even for taking decisions at every step.



References
Pritee Agrawal and Pradeep Varakantham. Proactive and

reactive coordination of non-dedicated agent teams op-
erating in uncertain environments. In Proceedings of
the International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 28–34, 2017.

Pritee Agrawal, Pradeep Varakantham, and William
Yeoh. Scalable greedy algorithms for task/resource
constrained multi-agent stochastic planning. In Pro-
ceedings of the International Joint Conference on Arti-
ficial Intelligence (IJCAI), 2016.

Matthew Brown, Sandhya Saisubramanian, Pradeep
Varakantham, and Milind Tambe. STREETS: game-
theoretic traffic patrolling with exploration and ex-
ploitation. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), pages 2966–2971, 2014.

Archie Chapman and Pradeep Varakantham. Marginal
contribution stochastic games for dynamic resource
allocation. In Proceedings of the International Confer-
ence on Principles and Practice of Multi-Agent Systems
(PRIMA), pages 333–340, 2014.

Marshall L Fisher, George L Nemhauser, and Laurence A
Wolsey. An analysis of approximations for maximizing
submodular set functions- ii. In Polyhedral combina-
torics, pages 73–87. Springer, 1978.

Daniel Golovin and Andreas Krause. Adaptive submodu-
larity: Theory and applications in active learning and
stochastic optimization. Journal of Artificial Intelli-
gence Research, 42:427–486, 2011.

Akshat Kumar and Shlomo Zilberstein. Event-detecting
multi-agent MDPs: Complexity and constant-factor ap-
proximation. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages
201–207, 2009.

Akshat Kumar and Shlomo Zilberstein. Message-passing
algorithms for large structured decentralized POMDPs.
In Proceedings of the Tenth International Conference
on Autonomous Agents and Multiagent Systems, pages
1087–1088, Taipei, Taiwan, 2011.

Rajiv Ranjan Kumar, Pradeep Varakantham, and Akshat
Kumar. Decentralized planning in stochastic environ-
ments with submodular rewards. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI),
pages 3021–3028, 2017.

Francisco S Melo and Manuela Veloso. Decentralized
mdps with sparse interactions. Artificial Intelligence,
175(11):1757–1789, 2011.

Michel Minoux. Accelerated greedy algorithms for max-
imizing submodular set functions. In Optimization
Techniques, pages 234–243. Springer, 1978.

Ranjit Nair, Pradeep Varakantham, Milind Tambe, and
Makoto Yokoo. Networked distributed pomdps: A
synthesis of distributed constraint optimization and
pomdps. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), volume 5, pages 133–
139, 2005.

Yash Satsangi, Shimon Whiteson, Frans A Oliehoek, et al.
Exploiting submodular value functions for faster dy-
namic sensor selection. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pages
3356–3363, 2015.

Eric Anyung Shieh, Albert Xin Jiang, Amulya Yadav,
Pradeep Varakantham, and Milind Tambe. Unleash-
ing dec-mdps in security games: Enabling effective
defender teamwork. In Proceedings of the European
Conference on Artificial Intelligence (ECAI), pages
819–824, 2014.

Pradeep Varakantham, Jun-Young Kwak, Matthew Taylor,
Janusz Marecki, Paul Scerri, and Milind Tambe. Ex-
ploiting coordination locales in distributed POMDPs
via social model shaping. In Proceedings of the In-
ternational Conference on Planning and Scheduling
(ICAPS), pages 313–320, 2009.

Pradeep Varakantham, Hoong Chuin Lau, and Zhi Yuan.
Scalable randomized patrolling for securing rapid tran-
sit networks. In Proceedings of the Conference on
Innovative Applications of Artificial Intelligence Con-
ference (IAAI), 2013.

Pradeep Varakantham, Yossiri Adulyasak, and Patrick
Jaillet. Decentralized stochastic planning with
anonymity in interactions. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pages
2505–2512, 2014.

Prasanna Velagapudi, Pradeep Varakantham, Paul Scerri,
and Katia Sycara. Distributed model shaping for scal-
ing to decentralized POMDPs with hundreds of agents.
In Proceedings of the International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS),
pages 955–962, 2011.

Zhengyu Yin and Milind Tambe. Continuous time plan-
ning for multiagent teams with temporal constraints. In
IJCAI Proceedings-International Joint Conference on
Artificial Intelligence, volume 22, page 465, 2011.


