Goal Recognition Design: Tutorial

Sarah Keren & William Yeoh

ICAPS 2019

Goal Recognition Design (GRD) Our objectives for today

- \triangleright Present the GRD framework and its purpose
- \triangleright Motivate GRD using simple examples and real-world applications
- \triangleright Show the relationship between GRD and planning
- \blacktriangleright Specify open challenges

Did you get a chance to play the playGRounD game?

Goal Recognition Design (GRD) A little bit about us

Sarah

- \triangleright Now a post-doc at Harvard's school of engineering and applied sciences, working on various variations of Utility Maximizing Design
- \triangleright GRD was the topic of my PhD thesis at the Technion
- ▶ email: sarah.e.keren@gmail.com or skeren@seas.harvard.edu
- \blacktriangleright website: https://sarahkeren.wixsite.com/sarahkeren-academics

William

- \blacktriangleright An assistant professor at Washington University in St. Louis
- **IF** Primary research area is in multiagent systems, but got excited about GRD after learning about it from Sarah :)
- \blacktriangleright email: wyeoh@wustl.edu
- \triangleright website: https://sites.wustl.edu/wyeoh/

Goal Recognition Design (GRD) Goal Recognition

A goal recognition setting

Goal Recognition Design (GRD) Goal Recognition

A goal recognition setting

Goal Recognition Design (GRD) Goal Recognition

A goal recognition setting

Offline design as a way to facilitate **online** goal recognition

Worst case distinctiveness (wcd) as a measure of model quality
Sareh Keren & William Yeoh Goal Recognition Design: Tutorial

Offline design as a way to facilitate online goal recognition

Worst case distinctiveness (wcd) as a measure of model quality
Sarah Keren & William Yeoh Goal Recognition Design: Tutorial S arah Keren Beren Besign: Tutorial 5 / 1

Offline design as a way to facilitate **online** goal recognition

Worst case distinctiveness (wcd) as a measure of model quality
Sarah Keren & William Yeoh Goal Recognition Design: Tutorial S arah Keren Beren Besign: Tutorial 5 / 1

Offline design as a way to facilitate **online** goal recognition

 S arah Keren Beren Besign: Tutorial 5 / 1

Offline design as a way to facilitate **online** goal recognition

 S [Goal Recognition Design: Tutorial](#page-0-0) 6/1

Goal Recognition vs. Goal Recognition Design

- \triangleright Goal Recognition Online
	- \triangleright Recognize : Given an observation sequence what are the possible goals?
- \triangleright Goal Recognition Design Offline Design for early recognition
	- \triangleright Evaluate : Worst Case Distinctiveness (WCD) maximal number of steps an agent can take before his goal is revealed?
	- \triangleright Optimize : How can we modify the model to reduce WCD without increasing agent cost?

Goal recognition is to planning what inverse reinforcement learning is to reinforcement learning — GRD aims to facilitate the inverse-planning problem

Applies to any goal recognition setting that can be controlled. Extremely relevant to our 'big data' world

Applies to any goal recognition setting that can be controlled.

Extremely relevant to our 'big data' world

Applies to any goal recognition setting that can be controlled.

Extremely relevant to our 'big data' world

Applies to any goal recognition setting that can be controlled. Extremely relevant to our 'big data' world

Applies to any goal recognition setting that can be controlled. Extremely relevant to our 'big data' world

Goal Recognition Design (GRD) Tutorial Outline

- \blacktriangleright Elements of a GRD problem (Sarah)
- GRD in deterministic environments (Sarah)
- \triangleright GRD in stochastic environments (William)
- GRD for partially informed agents (Sarah)
- \triangleright Conclusions
- \triangleright The Goal recognition setting analyzed
	- \blacktriangleright Environment
	- \triangleright Acting agent (actor)
	- ▶ Recognition system (recognizer, observer)
- \triangleright A Design model
	- \blacktriangleright The possible ways to change the environment

Environment

- \triangleright The setting in which agents act (a.k.a as the *domain theory*)
- \blacktriangleright Can be described as a state space
- \blacktriangleright Typically, the description includes
	- \triangleright a set of features to describe a state
	- \triangleright a set of possible initial states
	- \triangleright a set of actions that can be performed at each state:
		- \blacktriangleright deterministic / non-deterministic / stochastic actions
		- \blacktriangleright temporal actions
	- \triangleright a set of possible goals (states or conditions to be met)

An environment induces a set of possible behaviors

- \triangleright The model of the *actor* (acting agent) specifies the assumptions made w.r.t. how an agent with a specific goal chooses to behave in a given environment
- \triangleright We are assuming agents enter the environment and follow a policy / plan to achieve some goal
- \triangleright Note: recognition in a multi-agent setting is an interesting extension but beyond scope for today!

In GRD, we need to account for the **set** of plans an actor may follow to achieve each of the possible goals

In particular, we need to answer the following questions:

- \blacktriangleright How does the actor make decisions?
- \triangleright What does the actor know and how does it perceive its surrounding ?
- \triangleright What is the actor's relationship to the recognizer?
- \triangleright What is the best formalism to represent the actor?

We are representing the actor from the recognizer's point of view

Actor

\blacktriangleright How does the actor make decisions?

- \triangleright For example: actors are optimal or sub-optimal
- \triangleright What does the actor know and how does it perceive its surrounding ?
	- \triangleright For example: when partially informed, we need to account for the actor's sensor model.
	- \triangleright Typically, a **belief state** is used to represent the states an agent deems as possible / a probability distribution over states.

\triangleright What is the actor's relationship to the recognizer?

- Agnostic the actor is agnostic to / unaware of the recognition process
- \triangleright Adversarial the actor wants to deceive the recognizer (given its own constraints)
- Intended the actor wants to implicitly communicate its goal $/$ plan to the recognizer

Strongly related to the topic of explainable/ privacy preserving **planning** - which assumes the role of an agent that chooses to behave in a way that reveals \prime obfuscates its objective

Actor

\triangleright What is the best formalism to represent the actor?

- \blacktriangleright There are many possible ways to represent the actor.
- \triangleright Two commonly used representations are plan libraries and domain theories.
- \triangleright Today we are going to focus on **Domain theory (planning)** to represent the actor (Ramirez and Geffner 2010).

Recognizer (Recognition System)

- \blacktriangleright The actor's model specified how the recognizer expects the actor to behave w.r.t each goal
- \triangleright For the recognizer, we need to specify the **Observability** -How does the recognizer perceive the actor's behavior? What is the recognizer's sensor model
- \triangleright The recognizer's sensor model is a mapping from executions/ plans / sequences to observation sequences
- \triangleright The observation sequence is the entity that is analyzed

Three types of Recognition

- \triangleright Plan recognition identify the sequence of actions the actor follows to achieve it's goal
- \triangleright Goal recognition identify the end conditions the actor wishes to a achieve \ominus
- \triangleright Activity recognition identify a specific action that is being performed by the actor \ominus

Today we will focus on goal recognition and the way to facilitate it via design

Design Model

It may be possible to affect the actor's behavior

- \triangleright Online
	- \triangleright Provoking the actor to behave in a specific way by setting the value of environment feature (Bisson, Kabanza, Benaskeur & Irandoust 2011)
	- \triangleright Direct communication- Asking the actor questions about its plans / goals ((Mirsky, Stern, Gal, Kalech 2018)
- \triangleright Offline Goal Recognition Design
	- \triangleright Facilitating online goal recognition via design
	- \triangleright Our focus today

Offline design as a way to facilitate **online** goal recognition

Worst case distinctiveness (wcd) as a measure of model quality
Sarah Keren & William Yeoh Goal Recognition Design: Tutorial

Offline design as a way to facilitate **online** goal recognition

Worst case distinctiveness (wcd) as a measure of model quality
Sareh Keren & William Yeoh Goal Recognition Design: Tutorial [Goal Recognition Design: Tutorial](#page-0-0) 21 / 1

Offline design as a way to facilitate **online** goal recognition

Worst case distinctiveness (wcd) as a measure of model quality
Sarah Keren & William Yeoh Goal Recognition Design: Tutorial [Goal Recognition Design: Tutorial](#page-0-0) 21 / 1

Offline design as a way to facilitate **online** goal recognition

[Goal Recognition Design: Tutorial](#page-0-0) 21 / 1

Goal Recognition Design in Deterministic Environments **Outline**

- \triangleright Background: automated planning
- \blacktriangleright Problem definition
- \triangleright Computing WCD using compilations to classical planning
- \triangleright Minimizing WCD using strong stubborn sets for safe pruning

Background: Domain Independent Planning

- \triangleright A domain independent *classical* planning problem contains:
	- \blacktriangleright Initial world state
	- \triangleright Desired goal condition
	- \triangleright Set of deterministic actions

 \triangleright Compact representation of the state space using STRIPS

- \triangleright A set P of boolean propositions are used to represent the world state. The goal condition is a subset of p .
- \blacktriangleright Each action is a triple

 $a = \langle \text{pre}(a) \subseteq p$, add $(a) \subseteq p$, del $(a) \subseteq p$), specifying the conditions, add effects and delete effects of each transition.

- \triangleright A solution is a sequence of actions:
	- \blacktriangleright Transforms the initial world state into a goal state
	- \triangleright It is optimal if it minimizes sum of action costs
- \triangleright Other models for planning account for various forms of uncertainty: (stochastic actions, conformant, contingent, partially observable Markov decision processes (POMDP), etc)

Background: Domain Independent Planning Representation: STRIPS

 \triangleright A STRIPS planning problem with action costs is a 5-tuple

$$
\Pi = \langle P, s_0, \textit{G}, \textit{A}, \textit{cost} \rangle
$$

where

- \triangleright P is a set of boolean propositions
- ► s_0 \subset P is the initial state
- \triangleright $G ⊂ P$ is the goal
- \triangleright A is a set of actions
- Each action is a triple $a = \langle \text{pre}(a), \text{add}(a), \text{del}(a) \rangle$
- \blacktriangleright cost : $A \to \mathbb{R}^{0+}$ assigns a cost to each action
- Applying action sequence $\pi = \langle a_0, a_1, \ldots, a_n \rangle$ at state s leads to $s\{\pi\}$
- ► The cost of action sequence π is $\sum_{i=0}^{n} cost(a_i)$
Background: Domain Independent Planning

- A *classical* planning problem:
	- Initial world state
	- \triangleright Desired goal condition
	- \triangleright Set of (deterministic) actions
- \triangleright Seeking a minimal plan to goal
- \blacktriangleright Any planning problem implicitly defines a directed graph
- In theory, Dijkstra's algorithm can solve the planning problem

Background: Domain Independent Planning

 \blacktriangleright A classical planning problem:

- Initial world state
- \triangleright Desired goal condition
- \triangleright Set of (deterministic) actions
- \blacktriangleright Seeking a minimal plan to goal
- Any planning problem implicitly defines a directed graph
- In theory, Dijkstra's algorithm can solve the planning problem
- Actual graphs are too big to be solved exhaustively
- We use different strategies to efficiently find solutions
- Other models of planning account for various forms of uncertainty: (stochastic actions (MDP), conformant, contingent, partially observable MDP, etc)
- Domain Independent!

Background: Domain Independent Planning Efficient Search: Pruning and Heuristics

\blacktriangleright Pruning:

- \blacktriangleright Ignore part of the search tree
- Safe pruning guarantees at least one desired solution is not pruned

\blacktriangleright Heuristic function: estimates cost to goal

- \blacktriangleright Admissible underestimate the cost to goal
- \blacktriangleright Automatic extraction from problem descriptions
- \triangleright Used with heuristic search algorithms (e.g. A^*)

We want informative and easy-to-compute admissible heuristics Many domain-independent solvers and heuristics developed in the past 20 years

Goal Recognition Design in Deterministic Environments

Goal Recognition Design

- An initial goal recognition model $R \in \mathcal{R}$
	- Environment $\epsilon = \langle s_0, \mathbb{G}, A, cost \rangle$
	- Agents α bounded sub-optimal agents
	- Recognition System σ with sensor model S by which agents are observed

► A Design Model: Δ

- \blacktriangleright Possible modifications M
- \triangleright Modification transition function $\Theta : \mathcal{M} \times \mathcal{R} \to \mathcal{R}$
- **Design constraints** $\Phi : \overrightarrow{\mathcal{M}} \times \mathcal{R} \rightarrow \{0, 1\}$

Observable Projection

The way a path is observed via the sensor model S

Non-distinctive Path

A path is non-distinctive if it has an observable projection, which is also the observable projection of a path leading to a different goal and distinctive otherwise

Worst Case Distinctiveness

The Worst Case Distinctivenss (WCD) is the maximal non-distinctive path

Goal Recognition Design in Deterministic Environments Example

- \triangleright Observable Projection
- \blacktriangleright Non-distinctive path
- \triangleright Worst Case Distinctivenss (WCD)

Goal Recognition Design: Assessing a Model

- \triangleright We are seeking the Worst Case Distinctiveness (WCD)- the maximal non-distinctive agent path
- \triangleright Basic approach: check all possible behaviors and select the maximal one.
- \triangleright Does not scale !

Goal Recognition Design

Sarah Keren & William Yeoh [Goal Recognition Design: Tutorial](#page-0-0) 30 / 1

Goal Recognition Design

- \triangleright WCD found by compiling a 2-goals goal recognition design problem into a 2-agent planning problem when $n > 2$ done for all pairs \blacktriangleright latest-split
	- \blacktriangleright agents can act separately or together
	- **Example 2** agent 'encouraged' to act together by a small discount ϵ

Goal Recognition Design - Compilation

A goal recognition design problem is a 6-tuple $\Pi = \langle P, s_0, \mathbb{G}, A, cost \rangle$

- \triangleright P
- \blacktriangleright $s_0 \subset P$
- \blacktriangleright $\mathbb{G} \subseteq 2^P$
- \blacktriangleright A is a set of actions
- Each action is a triple $a = \langle pre(a), add(a), del(a) \rangle$
- \blacktriangleright cost : $A \to \mathbb{R}^{0+}$

Goal Recognition Design - Compilation

A goal recognition design problem is a 6-tuple $\Pi = \langle P, s_0, \mathbb{G}, A, cost \rangle$

- $P \rightarrow P$; for each agent
- \triangleright s₀ \subseteq P \rightarrow both agents start at the init state
- $\blacktriangleright\ \mathbb{G}\subseteq 2^P\to$ each agent aiming at one goal
- A is a set of actions \rightarrow acting separately or together
- Each action is a triple $a = \langle pre(a), add(a), del(a) \rangle$
- \triangleright cost : $A \to \mathbb{R}^{0+} \to \epsilon$ discount for acting together

The optimal solution (produced by any off–the–shelf optimal planner) reveals WCD Later versions accounted for the recognition system's partial observability and for bounded sub-optimal agents

WCD Computation via Compilation to Planning domain.pddl

```
;; simple Grid-navigation
(define (domain navigator)
(:requirements :strips :typing)
(:types place)
(:predicates
(at ?p - place)
(connected ?p1 ?p2 - place)
)
(:action MOVE
:parameters (?src - place ?dst - place)
:precondition (and (at ?src) (connected ?src ?dst) )
:effect (and (at ?dst) (not (at ?src)))
)
)
```
WCD Computation via Compilation to Planning template.pddl

```
(define (problem simple5_5)
```

```
(:domain navigator)
(:objects
place_0_0 place_0_1 place_0_2 place_0_3 place_0_4
place_1_0 place_1_1 place_1_2 place_1_3 place_1_4
place_2_0 place_2_1 place_2_2 place_2_3 place_2_4
place_3_0 place_3_1 place_3_2 place_3_3 place_3_4
place_4_0 place_4_1 place_4_2 place_4_3 place_4_4
- place
)
(:init
(connected place_0_0 place_1_0) (connected place_0_0 place_0_1)
(connected place_0_1 place_1_1) (connected place_0_1 place_0_0)
...
(at place_2_0)
)
(:goal
(and
<HYPOTHESIS>
))
```
(at place_0_4) (at place_4_4)

WCD Computation via Compilation to Planning compiled domain

```
(define (domain navigator)
...
(:constants agent_0 agent_1 - agent)
...
(:predicates
(at ?p - place ?a - agent)(connected ?p1 - place ?p2 - place ?a - agent)
(split)
(ag0_done)
)
(:functions (total-cost) - number)
(:action split-agents
 :parameters ()
 :precondition (and (not(split) ))
 :effect (and (split )(increase (total-cost) 0 )) )
(:action agent-0-done
 :parameters ()
 :precondition (and (not(ag0_done) )(split ))
 :effect (and (ag0_done )(increase (total-cost) 0 ))
))
```
WCD Computation via Compilation to Planning compiled domain -contd.

```
(:action move_together
 :parameters ( ?src - place ?dst - place)
 :precondition (and (at ?src agent_0)(at ?src agent_1)
                   (connected ?src ?dst agent_0)
                   (connected ?src ?dst agent_1)
                   (not(split) ))
 :effect (and (at ?dst agent_0)(at ?dst agent_1)(increase (total-cost) 19980)
         (not (at ?src agent_0))(not (at ?src agent_1))))
(:action move_seperate_#0
 :parameters ( ?src - place ?dst - place)
 :precondition (and (at ?src agent_0)(connected ?src ?dst agent_0)
              (split)(not(ag0_done) ))
 :effect (and (at ?dst agent_0)(increase (total-cost) 10000 )
         (not (at ?src agent_0))))(:action move_seperate_#1
 :parameters ( ?src - place ?dst - place)
 :precondition (and (at ?src agent_1)(connected ?src ?dst agent_1)
              (split )(ag0_done ))
 :effect (and (at ?dst agent_1)(increase (total-cost) 10000 )
         (not (at ?src agent_1))))
```
WCD Computation via Compilation to Planning compiled problem

```
(define (problem simple5_5)
(:domain navigator)
(:objects
place_0_0 place_0_1 place_0_2 place_0_3 place_0_4
...)
(:init
(connected place_0_0 place_1_0 agent_0)
(connected place_0_0 place_1_0 agent_1)
...
(at place_2_0 agent_0)(at place_2_0 agent_1)
( not ( split ) ) (= (total-cost) 0))
(:goal
(and
(at place_4_4 agent_0)(at place_0_4 agent_1))(:metric minimize (total-cost)))
```
Goal Recognition Design: Minimizing WCD

- \triangleright We are seeking an optimal sequence of modifications
- \triangleright Basic approach: check all possible modification sequences and select the best one
- \triangleright Does not scale !

Searching for an optimal redesign sequence

- \triangleright At each stage, we prune modifications that have no effect on the WCD paths, the maximal non-distinctive paths
	- \triangleright found as part of the WCD calculation (no extra cost!)

- \triangleright At each stage, we prune modifications that have no effect on the WCD paths, the maximal non-distinctive paths
	- \triangleright found as part of the WCD calculation (no extra cost!)

Why is this working ?

- \triangleright At each stage, we prune modifications that have no effect on the WCD paths, the maximal non-distinctive paths
	- \triangleright found as part of the WCD calculation (no extra cost!)

Why is this working ?

 \triangleright The unpruned modifications form a Generalized Strong Stubborn Set for Independent, Persistent, Monotonic-nd models

► Generalized Strong Stubborn Sets for safe pruning

(Valmari 1989, Wehrle and Helmert 2014)

- \triangleright Original: in a solvable state, for at least one strongly optimal plan, there exists a permutation which is not pruned.
- \triangleright GRD: in a non-terminal node, for at least one strongly optimal modification sequence, there exists a permutation which is not pruned.

Equivalently:

For every node, the modifications not pruned include the first modification in a sequence that minimizes the wcd of the goal recognition model represented by the node.

- \blacktriangleright Independent, Persistent, Monotonic-nd models
	- \blacktriangleright Independent application order is not important
	- \blacktriangleright Persistent valid sequences can't have invalid prefixes
	- \blacktriangleright Monotonic-nd non-distinctive paths are not added

Allows us not only to account for all existing GRD models, but also to define new modification methods!

Modifications

Single Action Sensor Refinement (SAR)

- \blacktriangleright Improves the recognition system's sensor model
- ▶ Special case: Sensor Placement(SP)

Even with full observability, goal recognition may be delayed

Modifications

Single Action Sensor Refinement (SAR)

- Improves the recognition system's sensor model
- ▶ Special case: Sensor Placement(SP)

Action Conditioning (AC)

- \blacktriangleright Force a partial order between actions
- Special case: Action Removal(AR)

Even with full observability, goal recognition may be delayed

Goal Recognition Design Optimal Agents

Goal Recognition Design From Optimal to Bounded Sub-Optimal Agents

Goal Recognition Design From Optimal to Bounded Sub-Optimal Agents

- In (Keren, Gal and Karpas ICAPS 2014) agents are optimal
- \triangleright In (Keren, Gal and Karpas AAAI15), we account for sub-optimal agents (still using classical planning techniques!)

Goal Recognition Design From Full to Partial Observability

Goal Recognition Design From Full to Partial Observability

In (Keren, Gal and Karpas AAAI 2016, IJCAI 2016, ICAPS 2018, JAIR 2019) we account for noisy and partial sensors by which agent are observed (and still use compilations to classical planning!)

Goal Recognition Design From Full to Partial Observability

In (Keren, Gal and Karpas AAAI 2016, IJCAI 2016, ICAPS 2018, JAIR 2019) we account for noisy and partial sensors by which agent are observed (and still use compilations to classical planning!) Sensor refinement as a way to reduce WCD.

Goal Recognition Design Design for Improved Privacy

Goal Recognition Design Design for Improved Privacy

Cloaking : How long can an agent keep his goal ambiguous?

(Keren, Gal and Karpas IJCAI 2016)

A user can choose a path that potentially maximizes its privacy

The WCD-path that allows him to stay ambiguous for at most WCD steps

Goal Recognition Design Design for Improved Privacy

Cloaking : How long can an agent keep his goal ambiguous?

A user can choose a path that potentially maximizes its privacy

The WCD-path that allows him to stay ambiguous for at most WCD steps

Goal Recognition Design (GRD) in Stochastic Domains

Model: Stochastic Goal Recognition Design (S-GRD)

Goal Recognition Design in Stochastic Environments **Outline**

- \blacktriangleright background
- \blacktriangleright problem definition
- \triangleright wcd evaluation using augmented MDPs and VI
- minimizing wcd using heuristics for safe pruning
- \blacktriangleright sample results
Goal Recognition Design in Stochastic Environments Background: Markov Decision Process (MDP)

A Markov Decision Process (MDP) is a tuple $\langle S, A, T, C, G, s_0 \rangle$:

- \triangleright S is a set of states.
- \triangleright **A** is a set of actions.
- \blacktriangleright **T** : $S \times A \times S \rightarrow [0, 1]$ is a transition function.
- \triangleright **C** : $\mathbf{S} \times \mathbf{A} \times \mathbf{S} \rightarrow \mathbb{R}$ is a cost function.
- \triangleright **G** is a set of goal states.
- \triangleright s₀ is an initial starting state.

Goal Recognition Design in Stochastic Environments Background: Markov Decision Process (MDP)

Note: Using rewards instead of costs for these examples. $Cost = -Reward$

- \triangleright States = locations; Actions = movements (i.e., N, S, E, W).
- \blacktriangleright Transitions = successful movement with probability 0.8, left and right with 0.1 each.
- Rewards $= +1$ at goal, -1 at pit, and -0.1 at every other state.
- \triangleright Goal state = top right cell; Initial state = bottom left cell.

Goal Recognition Design in Stochastic Environments Background: Markov Decision Process (MDP)

Deterministic Environment Stochastic Environment

A solution to an MDP is a policy $\pi : S \to A$.

The expected cost function V^{π} for a policy π is:

$$
V^{\pi}(s) = \sum_{s \in \mathbf{S}} T(s, \pi(s), s')[C(s, \pi(s), s') + V^{\pi}(s')]
$$

The optimal policy π^* is the one with the minimum expected cost:

$$
\pi^*(s) = \operatornamewithlimits{argmin}_{\mathsf{a} \in \mathbf{A}} \sum_{s \in \mathbf{S}} \mathcal{T}(s, a, s')[C(s, a, s') + V^\pi(s')]
$$

Goal Recognition Design in Stochastic Environments Background: Value Iteration (VI)

To find an optimal MDP policy, the most popular way is through the Value Iteration (VI) algorithm.

It iteratively updates the value of each state using the Bellman update equation:

$$
V_k(s) = \min_{a \in \mathbf{A}} \sum_{s \in \mathbf{S}} T(s, a, s') [C(s, a, s') + V_{k-1}(s')]
$$

until convergence, where

$$
\forall s \in \mathbf{S}: \, V_k(s) - V_{k-1}(s) < \epsilon
$$

$$
R(s) = -0.03
$$

 $R(s) = -0.01$

$$
R(s) = -0.03
$$

 $R(s) = -0.01$

$$
R(s) = -0.03
$$

$$
R(s) = -2.00
$$

Goal Recognition Design in Stochastic Environments Fun Motivating Problem from Harry Potter

\blacktriangleright Marauder's Map:

- ▶ <https://www.youtube.com/watch?v=vNc43oKqQzg>
- \blacktriangleright Time: 1:04 1:40
- \blacktriangleright Moving Stairs in Hogwarts:
	- ▶ <https://www.youtube.com/watch?v=uFvizAQHJz8>
	- \blacktriangleright Time: 0:00 0:30

Goal Recognition Design in Stochastic Environments Fun Motivating Problem from Harry Potter

\blacktriangleright Marauder's Map:

- ▶ <https://www.youtube.com/watch?v=vNc43oKqQzg>
- \blacktriangleright Time: 1:04 1:40
- ▶ Moving Stairs in Hogwarts:
	- ▶ <https://www.youtube.com/watch?v=uFvizAQHJz8>
	- \triangleright Time: $0:00 0:30$
- \blacktriangleright Combined together:

How do we recognize where is Harry Potter trying to go if we observe him on the Marauder's map in Hogwarts?

Stochastic Goal Recognition Design (S-GRD):

- An initial goal recognition model $R \in \mathcal{R}$
	- \triangleright MDP without goals $\langle S, A, T, C, s_0 \rangle$
	- \blacktriangleright Possible goals $\mathbb G$
	- Agents α optimal agents
	- Recognition System σ with sensor model S by which agents are observed

► A Design Model Δ

- \blacktriangleright Possible modifications M
- **I** Modification transition function $\Theta : \mathcal{M} \times \mathcal{R} \rightarrow \mathcal{R}$
- **Design constraints** $\Phi : \overrightarrow{\mathcal{M}} \times \mathcal{R} \rightarrow \{0, 1\}$

 $\blacktriangleright \ \Pi_{\text{leg}}(g)$: Set of legal (partial) policies for a goal g:

- A (partial) policy $\pi \in \Pi_{\text{leg}}(g)$ if it is a subset of an optimal policy for goal g
- \triangleright Note: A partial policy can be a legal policy for multiple goals. Set of all goals for a policy π is $G(\pi)$

 $\blacktriangleright \ \Pi_{\text{leg}}(g)$: Set of legal (partial) policies for a goal g:

- A (partial) policy $\pi \in \Pi_{\text{leg}}(g)$ if it is a subset of an optimal policy for goal g
- \triangleright Note: A partial policy can be a legal policy for multiple goals. Set of all goals for a policy π is $G(\pi)$

 $\blacktriangleright \ \Pi_{\text{leg}}(g)$: Set of legal (partial) policies for a goal g:

- A (partial) policy $\pi \in \Pi_{\text{leg}}(g)$ if it is a subset of an optimal policy for goal g
- \triangleright Note: A partial policy can be a legal policy for multiple goals. Set of all goals for a policy π is $G(\pi)$

- \triangleright Recognizing goals of agents:
	- \triangleright Ideal if we can observe policies and infer the goal of the agent through their policy
	- **►** But we only observe the agent's trajectory $\tau = \langle s_0, a_1, s_1, \ldots \rangle$
	- \triangleright Or worse, the agent's state trajectory only $\tau = \langle s_0, s_1, \ldots \rangle$
	- \triangleright $G(\tau)$: Set of possible goals of trajectory τ :
		- **In** Goal g is a possible goal of τ iff $\exists \pi \in \Pi_{\text{lex}}(g)$ such that τ is a possible trajectory for.

- ► Cost of a trajectory $C(\tau)$:
	- If the trajectory is a state-action trajectory, then $C(\tau)$ is the sum of the cost of all actions in that sequence.
	- If the trajectory is a state trajectory, then $C(\tau)$ is the maximum cost across all possible state-action trajectories that could have resulted in the observed state trajectory.

- ► Cost of $(s_0, a_0, s_1, a_1, s_2) = 2$
- ► Cost of $(s_0, a_0, s_2) = 1$

- \triangleright Cost of a trajectory $C(\tau)$:
	- If the trajectory is a state-action trajectory, then $C(\tau)$ is the sum of the cost of all actions in that sequence.
	- If the trajectory is a state trajectory, then $C(\tau)$ is the maximum cost across all possible state-action trajectories that could have resulted in the observed state trajectory.
- \blacktriangleright Cost of a partial policy $C(\pi)=\sum_{\tau}P_{\pi}(\tau)C(\tau)$ is the expected cost of all possible trajectories of that policy

- ► Cost of $(s_0, a_0, s_1, a_1, s_2) = 2$
- ► Cost of $(s_0, a_0, s_2) = 1$
- ► Cost of policy $\langle s_0 \rightarrow a_0, s_1 \rightarrow a_1 \rangle = 0.5 \cdot 2 + 0.5 \cdot 1 = 1.5$

 \triangleright Worst-case distinctiveness wcd = max_{π∈Πleg}(_{G)} $C(\pi)$

- In Is the maximum expected cost incurred before an agent must reveal its goal.
- \triangleright Doesn't use any prior information on the goals; Assumes all goals are equally likely.

- \triangleright Key observation: Set of possible goals depend on the observed trajectory to a state. wcd computation isn't Markovian.
	- If trajectory is $(s_0, a_0, s_1, a_1, s_2)$, next action will reveal its goal
	- If trajectory is (s_0, a_0, s_2) , then it can still take a_3 without revealing its goal

- \triangleright Approach: Model the problem using augmented MDPs.
	- \triangleright wcd computation is now Markovian in the augmented state space
	- $Mcd = 0.5 \cdot 2 + 0.5 \cdot 2 = 2$

 \triangleright Compute wcd using a modified version of VI on the augmented MDP graph:

$$
V_k(s) = \max_{a \in \mathbf{A}} \sum_{s \in \mathbf{S}} T(s, a, s')[C(s, a, s') + V_{k-1}(s')]
$$

If Is a problem if there are loops in the graph, but our augmented MDP graphs don't have loops

- \triangleright Worst-case distinctiveness wcd = max_{π∈Πleg} (_G) $C(\pi)$
	- \triangleright Is the maximum expected cost incurred before an agent must reveal its goal.
	- \triangleright Doesn't use any prior information on the goals; Assumes all goals are equally likely.

► Expected-case distinctiveness ecd $= \sum_{\mathcal{g}} P(\mathcal{g}) \sum_{\pi \in \Pi_{\textit{leg}}(\mathcal{g})} \frac{1}{Z}$ $\frac{1}{Z}C(\pi)$

- \triangleright Uses prior information on the likelihood of each goal being the true goal
- If Is like wcd, but weighted by the prior
- \triangleright Useful when wcd is on trajectories to goals with small probabilities

Goal Recognition Design in Stochastic Environments **Minimizing** wcd

- \triangleright General idea: Enumerate through all combinations of design options (e.g., all combinations of actions to remove)
- \blacktriangleright To improve scalability:
	- **Pruning: E.g., if removing action** \hat{a} **results in lengthening the** optimal plan to a goal, then no need to consider combinations of \hat{a} with other actions
	- \triangleright Ordering heuristics: E.g., consider removing actions closer to the agent first

Goal Recognition Design in Stochastic Environments **Results**

Percentage of wcd reduction Percentage of ecd reduction

- \blacktriangleright The larger the modification, the larger the wcd and ecd reduction
- \triangleright ecd can be reduced in some problems where wcd cannot be reduced
- In some instances, wcd and ecd cannot be reduced at all

Model: Partially-Observable Stochastic Goal Recognition Design (POS-GRD)

Goal Recognition Design in Stochastic Environments Partially-Observable S-GRD

Setting: Observable actions, fully-observable states

Goal Recognition Design in Stochastic Environments Partially-Observable S-GRD

Setting: Observable actions, fully-observable states

Setting: Observable actions, fully-observable states $wcd = 0$; first action will reveal the goal of the agent

Setting: **Unobservable** actions, fully-observable states $wcd = max(0.9 \cdot 0 + 0.1 \cdot 2$ for a_0 , $0.9 \cdot 0 + 0.1 \cdot 2$ for a_1) = 0.2

Setting: Unobservable actions, partially-observable states Can't differentiate the states that map to the same observation

Setting: Unobservable actions, partially-observable states $wcd = max(0.9 \cdot 2 + 0.1 \cdot 2$ for a_0 , $0.9 \cdot 0 + 0.1 \cdot 2$ for a_1) = 2

Key takeaway: Uncertainty increases wcd of the problem.

In our example settings:

- \triangleright Observable actions and fully-observable states: wcd = 0.0
- Inobservable actions and fully-observable states: $wcd = 0.2$
- Inobservable actions and partially-observable states: $wcd = 2.0$

Partially-Observable S-GRD designs include sensor placements! $wcd = max(0.9 \cdot 0 + 0.1 \cdot 2$ for a_0 , $0.9 \cdot 0 + 0.1 \cdot 2$ for a_1) = 0.2

Preliminary results showing percentage of wcd reductions:

- \triangleright Sensor refinement is significantly more effective at reducing wcd in partially-observable environments
- Action removal is empirically ineffective
- \blacktriangleright Future work: Combine both modifications

Offline design as a way to facilitate **online** goal recognition

Worst case distinctiveness (wcd) as a measure of model quality
Sarah Keren & William Yeoh Goal Recognition Design: Tutorial

Offline design as a way to facilitate online goal recognition

Worst case distinctiveness (wcd) as a measure of model quality
Sarah Keren & William Yeoh Goal Recognition Design: Tutorial [Goal Recognition Design: Tutorial](#page-0-0) 105 / 1

Offline design as a way to facilitate **online** goal recognition

R

D

Worst case distinctiveness (wcd) as a measure of model quality
Sarah Keren & William Yeoh Goal Recognition Design: Tutorial Soal Recognition Design: Tutorial 105 / 105 / 1

Offline design as a way to facilitate **online** goal recognition

Soal Recognition Design: Tutorial 105 / 105 / 1

Offline design as a way to facilitate **online** goal recognition

[Goal Recognition Design: Tutorial](#page-0-0) 106 / 1

Goal Recognition Design Fully observable setting - logistics

Goal Recognition Design Fully observable setting - logistics

Goal Recognition Design with Non observable actions $WCD=1$

Goal Recognition Design with Non observable actions Load and Unload actions are not observed

Goal Recognition Design with Non observable actions $WCD=8$

Goal Recognition Design with Non observable actions Sensor placement: WCD=1

Goal Recognition Design (GRD) for Agents with Partial Knowledge (GRD-APK)

Optimistic (optimal) planning under uncertainty:

- \triangleright follow a minimal-cost plan to goal
- \blacktriangleright make as few **assumptions** as possible about unknown variables

Conservative Acting:

 \triangleright act only when outcome is known

Goal recognition cannot occur before the actor terminates execution $(WCD=4)$

GRD for Agents with Partial Knowledge (GRD-APK)

Actor:

- \blacktriangleright Partially informed
- \triangleright Modeled as a **contingent planner** (Bonet and Geffner 2012)
- Information as sensors (C, L) : the conditions C under which the true value of L is revealed

Recognizer:

- \blacktriangleright Has perfect information
- \triangleright Can selectively reveal information to the actor to recognize its goal as quickly as possible
- \triangleright Applies sensor extensions- add sensors to the actor

Information Shaping

Selecting which information to reveal to minimize WCD

Corresponds both to (direct) communication and (indirect) sensor distribution.

• Direct:
$$
(C = True, L = Safe(2,2))
$$

Indirect: $(C = \text{AgentAt}(1,2), L = \text{StenchAt}(2,2))$

 $"$ Cell $(3,1)$ is safe"

Information shaping - reveal safe cells

The first step reveals the actor's goal

 $(WCD=0)$

 $"(3,1)\&(1,3)$ are safe"

Information shaping - reveal safe cells We are back to the initial situations $(WCD=4)$

Information shaping is non-monotonic and needs to be applied carefully

Goal Recognition Design (GRD) Solution Approach

Searching for a design solution that minimizes WCD

Sarah Keren & William Yeoh [Goal Recognition Design: Tutorial](#page-0-0) 120 / 120 / 120 / 1

GRD for Agents with Partial Knowledge (GRD-APK) Solution Approach

Searching for a design solution that minimizes WCD

Information shaping is challenging because:

- \triangleright it's non-monotonic more information doesn't guarantee earlier recognition
- \triangleright the space of options is too large to explore exhaustively
- **P** previous approaches for **safe** pruning don't hold here

New techniques are needed !

GRD for Agents with Partial Knowledge (GRD-APK) Solution Approach

We use techniques from classical planning to **automatically** find sensor extensions that can be safely pruned

GRD for Agents with Partial Knowledge (GRD-APK) Solution Approach

Causal graph analysis automatically detects information that is (ir)relevant to each goal

GRD for Agents with Partial Knowledge (GRD-APK) Application

Applies to any goal recognition setting that can be controlled, and in which agents are only partially informed.

Example applications:

- \blacktriangleright Assistive cognition
- \blacktriangleright Intrusion detection
- \blacktriangleright Human-robot collaboration

Current focus: a robotic navigation setting, in which the map (occupancy grid) used by the robot can be manipulated

Conclusions

Goal Recognition Design Summary: What has been done?

Many other related framework exists, for example:

- ▶ Plan Recognition Design (Mirsky et al., PAIR-AAAI 2017)
- ▶ Deceptive Path Planning (Masters and Sardina, IJCAI 2017)
- ▶ Game-Theoretic Goal Recognition Models with Applications to Security Domains (Ang et al., GameSec 2017)

Goal Recognition Design **Conclusions**

- \triangleright Goal Recognition Design: Offline design for efficient online recognition
- \triangleright Relevant to a variety of applications

Source code for GRD for deterministic environments: https://github.com/sarah-keren/goal-recognition-design

Goal Recognition Design **Conclusions**

- \triangleright Goal Recognition Design: Offline design for efficient online recognition
- \triangleright Relevant to a variety of applications

Source code for GRD for deterministic environments: https://github.com/sarah-keren/goal-recognition-design

Open Challenges:

- \triangleright Extensions are orthogonal, but not effectively combined yet.
- \triangleright Evaluation with actual online goal recognition algorithms.
- \triangleright Mapping and deployment to practical real-world applications.
- \blacktriangleright ...?