Model Reconciliation in Logic Programs*

Tran Cao Son!, Van Nguyen', Stylianos Loukas Vasileiou?, and William Yeoh?

! New Mexico State University, Las Cruces, NM 88003, USA
{tson,vnguyen}@cs.nmsu.edu
2 Washington University in St. Louis, St. Louis, MO 63130, USA
{v.stylianos,wyeoh}@wustl.edu

Abstract. Inspired by recent research in explainable planning, we in-
vestigate the model reconciliation problem between two logic programs
o and 7p, which represent the knowledge bases of an agent and a hu-
man, respectively. Given m,, 7, and a query ¢ such that m, entails ¢
and 7, does not entail ¢ (or 7, does not entail ¢ and 7, entails ¢), the
model reconciliation problem focuses on the question of how to modify
7, by adding et C 7, to 7, and removing €~ C m, from 7, such that
the resulting program 75, = (75 \ €)Ue™ has an answer set containing ¢
(or has no answer set containing ¢). The pair (¢*,¢™) is referred to as a
solution for the model reconciliation problem (74, 7h, q) (or (Ta, Th, 7q)).
We prove that, for a reasonable selected set of rules et C 7, there exists
a way to modify 7, such that 7, is guaranteed to credulously entail ¢
(or skeptically entail —¢q). Given that there are potentially several solu-
tions, we discuss different characterizations of solutions and algorithms
for computing solutions for model reconciliation problems.

Keywords: Model Reconciliation; Explainable Planning; Answer Set
Programming

1 Introduction

In several problems involving two (or more) agents® with different knowledge
bases, the agents often discuss about the truth value of an atom. Frequently,
the question about the truth value of ¢—an atom appearing in the knowledge
bases of both agents—is raised by an agent, say A, to another one, say B. Facing
this question, agent B could potentially inform agent A the reason, constructed
using her knowledge, for the truth value of ¢. This method is reasonable if agents
A and B share a knowledge base. When they have different knowledge bases,
this method might no longer suitable. For example, in human-aware planning
problems [3,5,12,13], a planning agent may inform a human user that it has a
plan « for achieving a given goal. However, o may not be a feasible plan from

* This research is partially supported by NSF grants 1757207, 1812619, 1812628, and
1914635.

3 We discuss problems involving only two agents in this paper, but our approach could
be generalized to multiple agents.

2 Tran Cao Son, Van Nguyen, Stylianos Loukas Vasileiou, and William Yeoh

the human’s perspective. To address this issue, research in explainable planning
proposes the model reconciliation problem, where the goal is to reconcile some
of the differences in the models of the agent and the human (i.e., informs the
human what needs to be changed in her model) such that « is an optimal plan,
often the minimal length plan, in the reconciled model of the human.

In this paper, we propose a generalization of the model reconciliation prob-
lem, introduced in [1], as follows: Given a logic program 7, of a robot and a
logic program 7, of a human user such that 7, entails* an atom ¢ (resp. does
not entail ¢), the goal is to identify a pair of sub-programs et C 7, and e~ C
such that 7, = 7, \ e~ Ue™ will also entail ¢ (resp. will also not entail ¢). We refer
to this problem as the model reconciliation in logic programs (MRLP) problem.

We note that MRLP might appear similar to strong equivalent program trans-
formation (e.g., [6]) and logic program update (e.g., [11]), both research topics
that have been extensively studied by the logic programming community. It is
worth pointing out that MRLP’s goal is not to make m, and 7 equivalent. For
example, if x is an atom in the languages of both 7, and 7}, 7, entails z,
does not entail z, and € = (e*,e) satisfying #;, = 7, \ €~ U €™ entails ¢ then
€ is an explanation for the problem (74,7, q) even when 7, does not entail z,
i.e., Ty is not equivalent to 7,. Comparing to logic programming update, MRLP
first needs to identify € and then modifies the human program 7, by deleting
or adding rules; it does not change the remaining rules of 7. We will discuss in
more detail the differences between MRLP and logic program update later. In
summary, the main contributions of this paper are:

e a generalization of the model reconciliation problem in explainable planning
to define the MRLP and a method for solving MRLP problems;

o different characterization of solutions of a MRLP problem that can be used
to comparing solutions; and

e an algorithm for computing solutions of a MRLP problem.

The paper is organized as follows. The next section includes a short review of
logic programming under answer set semantics and the notion of a justification
for an atom with respect to an answer set that will be useful for later discussion.
We then propose a general method for solving MRLP problems and discuss
different ways to characterize a solution of a MRLP problem. Afterwards, we
present algorithms for computing solutions of a given MRLP.

2 Background: Answer Set Programming

Answer set programming (ASP) [7,9] is a declarative programming paradigm
based on logic programming under the answer set semantics. A logic program
II is a set of rules of the form ag < ai,...,a,, not ay,41,..., not a, where
0 < m < n, each a; is an atom of a propositional language and not represents

4 In this paper, whenever we say a program entails a literal, we refer to the credu-
lous entailment relationship between a program a literal. Precise definition will be
provided in the next section.

Model Reconciliation in Logic Programs 3

(default) negation. Intuitively, a rule states that if all positive literals a; are
believed to be true and no negative literal not a; is believed to be true, then
ao must be true. If ag is omitted, the rule is called a constraint. If n = 0, it is
called a fact. For a rule r, head(r) denotes ag; pos(r) and neg(r), referred to as
the positive and negative body, respectively, denotes the set {a1,...,a,} and
{@m+1,.--,an}, respectively. Also, atoms(r) denotes the set of all atoms in r,
viz. {head(r)} U pos(r) U neg(r); and, atoms(IT) denotes the set of all atoms of
I1. heads(II) (resp. negs(IT)) denotes the set of atoms occurring in the head of
rules of IT (resp. negative literals of IT).

Let IT be a program. I C atoms(II) is called an interpretation of II. For
an atom a, a is satisfied by I, denoted by I = a, if a € I. A set of atoms S is
satisfied by I'if S C I. For arule r, I = body(r) if pos(r) C I and neg(r)NI = §.
A rule r is satisfied by I if I [~ body(r) or I |= head(r). I is a model of a program
if it satisfies all its rules. An atom a is supported by I in II if there exists r € P
such that head(r) = a and I |= body(r).

For an interpretation I and a program II, the reduct of II w.r.t. I (denoted
by IT') is the program obtained from IT by deleting (i) each rule r such that
neg(r) NI # 0, and (ii) all negative literals in the bodies of the remaining
rules. Formally, P! = {head(r) < pos(r) | r € I, neg(r) NI =0}. Given an
interpretation I, observe that the program IT! is a definite program (a program
with no occurrence of negative literals). An interpretation I is an answer set [4]
of IT if I is the least model of IT? [2], which is the least fixpoint of the operator
Ty defined by T (I) = {a | Ir € II, head(r) = a,I = body(r)} and is denoted
by Ifp(Tr).

Given an answer set I of IT and an atom g, a justification for ¢ w.r.t. I is
a set of rules S C IT such that head(r) € I and I = body(r) for r € S and
q € lfp(Tgr). A justification S for ¢ w.r.t. I is minimal if there exists no proper
subset S’ C S such that S’ is also a justification for ¢ w.r.t. I. It is easy to see
that if S is a minimal justification for ¢ w.r.t. I then negs(S) N heads(S) = 0
and heads(S) is an answer set of S.

Given a logic program II, an atom a. We write II |~ a to indicate that
a belongs to at least one answer set of II or a is credulously entailed by II.
Furthermore, we use IT¢a to indicate that a does not belong to any answer set
of IT or —a is cautiously entailed by I1.

3 Model Reconciliation in Logic Programs

The model reconciliation problem in logic programs (MRLP) is divided into two
sub-problems, one aims at changing the human program so that it entails an
atom (e-MRLP) and another focuses on achieving that the updated program
does not entail an atom (n-MRLP). Inspired by the problem in explainable
planning, we define three different types of MLRP.

Definition 1 (MRLP). Let 7, and m, be two logic programs and q be an atom
in the language of m,.

4 Tran Cao Son, Van Nguyen, Stylianos Loukas Vasileiou, and William Yeoh

e The problem of model reconciliation for entailment in logic programs (e-
MRLP) is defined by a triple (7q,7n,q). A pair of programs (eT,e) such
that €t C w1, and e C m, is a solution of (74, Th,q) if 7in b q where 7y, =
T\ e Uet.

e The problem of model reconciliation for non-entailment in logic programs
(n-MRLP) is defined by a triple (wq, T, —q). A pair of programs (e*,e™) such
that et C w1, and e~ C m, is a solution of (74, Th, ~q) if Anltq where 7ty =
7\ e Uet.

e The general problem of model reconciliation in logic programs (MRLP) is
defined by a triple (7q,mh,w) where w = wt A —w™ and w™ (resp. w™) is
a conjunction of atoms in m,. (€7,€7) is a solution for the MRLP problem
if it is a solution for (74, mh,q) for each conjunct q in w* and solution for
(Ta, Th, 1) for each conjunct r in w™.

We note that e-MRLP focuses on credulous entailment of atoms while n-
MRLP on skeptical entailment of negation of atoms. This is because we are
interested in applying the framework in situations utilizing answer set program-
ming for problem solving. In this context, it is often the case that the existence
(resp. non-existence) of an answer set, that contains a designated atom, indicat-
ing that the problem is solvable (resp. not solvable). The combination of e-MRLP
and n-MRLP, as in the general MRLP, provides us way to express various types
of problems. For example, the shortest plan model reconciliation problem in ex-
plainable planning can be expressed by the triple (m,, 7, G) where 7, and 7,
are the logic programs encoding the planning problem of the agent and the hu-
man®, respectively, and G = goal(n) A ~goal(n —1) A... A —goal(0) representing
that the goal of the planning problem must be satisfied after the execution of n
actions but it is unsatisfied after the execution of any arbitrary k < n actions.

Observe that e-MRLP implicitly requires that 7, is consistent. On the other
hand, this requirement is missing in n-MRLP. As we are often interested in
the general MRLP problem, we will therefore interested in solutions of MRLP
problems that guarantee the consistency of 7;,. To simplify the presentation, we
will assume that given for a MRLP problem (7, 7, w), 7 v wt and 7, pw™;
for a e-MRLP problem (mq,7h,q1 A ... Aqg), Ta P ¢; for i = 1,..., qx; and
for a n-MRLP problem (g, 7h,—q1 A ... A 2qr), Tq I~ —g; for @ = 1,..., q.
Furthermore, we will discuss the solutions of e-MRLP or n-MRLP problems with
a single atom ¢ as the solutions for more complex formulas can be computed in
the same manner.

We will first discuss how to solve n-MRLP problems. Obviously, if 7 £ ¢ then
(0,0) is a solution for (w4, 7, —q). Now, assume that 7, |~ ¢. By definition of
answer sets, we can just remove rules from mj, to achieve 7p[tq. Let mh(q) =
{r | r € mp, head(r) = q}. It is easy to see that Pjlq for every P C mp, \ mr(q).
As such, a solution ((), ™) for the n-MRLP problem (7, 7, =q) that guarantees
the consistency of 75, could be determined with m,(q) C €~ C mp,. Observe that
taking 7, into consideration provide alternative solutions as well. For example,

5 Strictly speaking, 7, also encodes the shortest plan in explainable planning.

Model Reconciliation in Logic Programs 5

given the two programs:
o ={a+} 7w ={q <+ notc;c+ notg;a+ nota, not q}

It is easy to see that m, has a unique answer set {¢} and thus 7, |~ ¢ and
7 \ Th(q) is inconsistent. On the other hand, either (w4, 7(g)) or (0,{q <
not ¢;a « not a, not q}) is a solution for the n-MRLP problem (7, 75, —¢q). In
either case, 7, is consistent. The former adds a rule from 7, and removes 7 (q)
from 7, while the latter only removes rules from 7.

It should be noted that sometimes, there is no need to remove rules whose
head is ¢ to achieve that 7,|fq. For example, for the program 7, = {g +
not ¢;c < not d;d <} we have that 7, \ {d < }¢q. The two examples show
that there are several explanations for a n-MRLP problem. As we will see later,
the same holds for e-MRLP problems. In our view, which explanation should be
used is application dependent.

We now discuss a method for solving e-MRLP problems (7, 7, ¢). By defi-
nition of answer sets, 7, |~ ¢ means that there exists an answer set of 7y, which
contains a justification for ¢. In all likelihood, this justification must come from
7o if w2 q. In other words, the justification for ¢ in 7 should be a part of e*.
For this reason, we will focus on how to choose ¢*. This can be done by identi-
fying an answer set I supporting q and selecting a justification for ¢ w.r.t. I as
€. A solution can then determined by identifying ¢~ C mj, so that (et,e7) is
a solution to the problem (7, 7, q). Assume that I and €T have been selected,
we motivate the selection of e~ using a series of e-MRLP problems (7, 7p,b),
i.e., the robot wants to explain to the human that b is entailed by his program.

Example 1. Let 7y = {a b+ a} 7w, = {a <} Clearly, 7, has a unique an-
swer set Iy = {a,b} and €t = 7, is a justification for b. To explain b to the
human, the robot needs to inform the human that the rule b < a exists. Fur-
thermore, there is no need to remove anything from my,, i.e., €= = () since the
rule a < is satisfied by Iy.

The example above discusses a situation in which one needs to add rules to the
human’s program as part of the explanation process. The next examples discuss
different situations in which one needs to also remove rules from the human’s
program.

Ezample 2. Let 1, = {a + not b;b <+ not a} and 7, = {a <}. m, has two
answer sets I = {a} and Iy = {b}. Only I5 supports b and €™ = {b + not a} is
the justification of b w.r.t. Iy. It is easy to see that simply adding et to 7, will
result in a program with the unique answer set {a} which does not support b.
It means that the rule a + should be removed, i.e., e~ = {a <}. This suggests
that €~ should contain any rule whose head does not belong to Is.

Ezample 3. Let mq = {b < not a} mp, = {c + not c}.
7, has a unique answer set I3 = {b} and the unique justification for b is et = m,.
The program 7, U 7, is also inconsistent because of the rule ¢ <~ not c. So, we
need to have e- = {¢c « not c¢}. Observe that in this case, the rule r =
“c < not ¢’ satisfies head(r) € I3 but neg(r) N I3 = 0.

6 Tran Cao Son, Van Nguyen, Stylianos Loukas Vasileiou, and William Yeoh

Ezample 4. Let g, = {b + nota} m, = {« b}.

7, has a unique answer set Iy = {b} and the unique justification for b is et = 7,.
The program 7, U 7, is also inconsistent because of the constraint < b. So, we
should set e~ = m,. In this case, the constraint r = < b” satisfies head(r) & I4
but pos(r) C Iy.

Observe that in Example 1, the rule a + needs not to be removed since its
body and head are both satisfied by the answer set {a,b} which happens to be
the answer set of the justification €. In Example 2, the rule a + is removed
because of its body is satisfied but its head is not satisfied by the answer set
{b}. Although it appears differently, Examples 3—4 are similar to Example 2:
The head of the rule is not satisfied and the body of the rule is satisfied by
the answer set of the program e*. So, one might wonder whether there is any
reasonable situation in which a rule, whose head is not satisfied by the answer
set I, should be kept. Indeed, consider an example similar to Example 4, except
that 75, = {< ¢}. In this case, it would make sense not to remove the constraint
<+ ¢ because it is not falsified by the answer set I;. The discussion above leads to
the following notion that is useful for the computation of solutions of e-MRLP
problems.

Definition 2 (Residual of a program w.r.t. a set of rules and a set of
atoms). Let m, and my, be two programs. Further, let I be a set of atoms of m, and
€t C m,. The residual of mj, with respect to €™ and I, denoted by @(mp, €™, 1),
is the collection of rules from my, \ € such that for each rule r € @(mp, et I):

(i) head(r) € I and neg(r)NI=0; or

(i1) neg(r) N heads(e™) # 0; or

(iii) pos(r)\ I # 0.

We use € [et, I,] to denote the set of rules m, \ @(mp, ",).

It is easy to verify that if we use I and €' as in Examples 1-4, then
(et,e [et,I,m]) is a solution for the problem (g, 7, b) in these examples.

Observe that Examples 1-4 are somewhat unique in that, for each answer
set, there exists only one possible justification for the atom b. It is easy to see
that there are situations in which multiple justifications for an atom are present.
For example, consider

Ta={a<bab} m={a+}

In this case, m, also has a unique answer set I = {a,b}. However, there are
two possible ways for justifying the presence of b in the answer set: (1) ¢ =
{a +b + a} and (2) ¢ = {b «}. It is easy to see that for i = {1,2},
(¢, € [ef, 1, mp]) is a solution for (4, ms,b). A natural question is then which
solution should be used? We believe that choosing which solution to present to
the human is application dependent; for example, if b represents a fact in the
initial state of a planning problem, using €5 is reasonable; on the other hand, if b

is a derived fact and is dependent on a, using ¢ would be more reasonable as it

Model Reconciliation in Logic Programs 7

informs the human of the dependency between a and b, which could potentially
be useful for the human.

The above discussion shows that solutions of the e-MRLP problem (7, 71, q)
can be computed by identifying I, €™, and then set ¢~ = ¢~ [T, I, 7). An ap-
propriate choice of I and €' is specified in the next theorem.

Theorem 1. Let (74,7, q) be an e-MRLP problem. Further, let I be an answer
set of mq supporting q and €™ C w, be a minimal justification of ¢ w.r.t. I. Then,
(et e [er,I,m]) is a solution of (ma,Th,q).

Proof. Let P = m, \ e [e",I,mp] UeT. Let K = heads(P)N1I. Let P, = {r €
P | head(r) € I,neg(r) N K = (0}. Clearly, e™ C P;. Furthermore, for each rule
r € P1, neg(r)Nheads(Py) = 0 since heads(P;) C K. Therefore, P; is consistent
and has a unique answer set J containing heads(et) and J C I.

Consider r € P\ P;. We have that head(r) € I or neg(r) N K # 0. From
Definition 2, we can conclude that neg(r) N heads(et) # 0 or pos(r) \ I # 0.
This allows us to show that P/ = P/ U R and, for every r € R, pos(r) \ J # (.
This implies that J is an answer set of P, i.e., (e*,e¢ [T, I, 7)) is a solution
of (mq,7h, q). O

It is easy to see that the following holds:

Corollary 1. For an e-MRLP problem (mw,, 7, q), if there exists a non-trivial
justification et C m, w.r.t. an answer set I of m,, then it has a non-trivial
solution.

3.1 Computing Solutions of MRLP Problems Using ASP

We will conclude the section with a discussion on how a solution for a general
MRLP problem can be constructed. Without loss of generality, assume that
we have the problem (w4, 7, ¢ A —r) where ¢ and r are atoms of m,. Recall
that we assume that 7, |~ ¢ and 7,7 in this problem. A solution (e*,¢™) for
(7, Th,q A 1) can be computed by the following steps: (i) compute an answer
set I of m, that supports ¢ and identify a minimal justification et of ¢ w.r.t. I;
(1) compute €~ = e~ [et, I, my]; (éii) identify a set of rules A from 7" = 7, \ eUet
so that 7' \ AJ¢r. The final solution for (ma, 7p, g A —7) is then (e*, e~ U). Note
that because €' is a justification for g, e*[¢r holds. Therefore, A always exists
and Theorem 1 shows that the problem (7, 7, ¢ A—r) always has some solution.
Given a program 7w, and an answer set I supporting wt of 7, let IT(m,, I)

be the program such that:
e [I(m,,I) contains the constraint < not g, for each q € w™.
e For each x € 7, s.t. head(x) € I and I = body(z):

o head(x)<—pos(x),neg(x),ok(x) is a rule in II(m,, I).

o {ok(x)} + is a rule of II(m,,I).

o #mimimize{l, X : 0k(X)} is a rule of IT(m,, I).
e No other rule is in IT(7g, I).

8 Tran Cao Son, Van Nguyen, Stylianos Loukas Vasileiou, and William Yeoh

Algorithm 1: solve(m,, 7, w)

Input: Programs 7., 7, conjunction w

Output: a solution (¢, ¢™) for (mq, T, w)

Let I be an answer set of m, U {< not q|q € w™'}

Compute I (mq, I)

Compute an answer set J of II(mq,)

Compute € = {head(r) + pos(r),neg(r) | head(r) < pos(r),neg(r), ok(r) €
I (7o, I) and ok(r) € J}.

5 Let Ao ={r |7 €my \ e [e},I,7] and head(r) € w™}

6 Identify a set \g C A\ C 7 \ € [e¢", I, m4] such that 7, \ (e [e", I,mn] UN)Ue™

is consistent
7 return (et \ mp, e [eF, I, m] UN)

W =

We next present an algorithm which uses IT(7,,I) for generating solutions
of a MRLP problem (7, mp,w).

Recall that we assume that 7,) wt and 7,[¢w™ in this paper. Otherwise,
the algorithm needs to check for the two conditions (i) 7, |~ w™, i.e., whether 7,
has answer set satisfying w™; and (i) mg[fw™, i.e., whether 7, has any answer
set satisfying any atom occurring in w™ before continues with the first line. The
correctness of the algorithm is proved in Proposition 1 (below) and the fact that
all rules whose head occurring in w™ are removed (Line 4-5).

Proposition 1. Given a MRLP problem (m,,7h,w) and I is an answer set of
7o supporting wt. Let J be an answer set of II(mq,I) and €™ be the collection
of rules:

{ head(r) < pos(r),neg(r) | head(r) < pos(r),neg(r), ok(r) € I (my, [)A }
ok(r) e J

Then, J\ {ok(z) | zisarulein m,} C I and (e, e [eT, I, 7)) is a solution for
(o, Thyw™).

Proof. (Sketch) The proof of this proposition relies on the following observation:
(4) J\ {ok(z) | = is a rule in 7w, } C I follows immediately from the definition of
II(m,, I); (4) J must contain g, for ¢ € w™, due to the constraint “— not ¢”;
(44) the minimization statement ensures that J is a set with minimal number of
rules satisfying w™; and the fact that ¢ € J for ¢ € w™ implies that e is indeed
a minimal justification for w® w.r.t. I and, hence, (eT,e"[e*, I, m]) is a solution
for (mq, mh,w™). O

4 Characterizing Solutions

As we have discussed earlier, a MRLP might have several solutions and choosing
a suitable solution is application dependent. We now discuss some characteristics
of solutions that could influence the choice.

Definition 3. Let (74,7, w) be an MRLP problem and (e,e™) be a solution
of (mq, mh,w). We say:

Model Reconciliation in Logic Programs 9

o (et ¢e7) is optimal if there exists no solution (AT, A7) such that AT UX™ C
etUe.

o (et €7) is m-restrictive for m C m, if € C m; it is minimally-restrictive if
there exists no solution (AT, A7) such that * C e*.

e (e¢t,€e7) is m-preserving for m C mp, if mNe~ = ; it 45 maximally-preserving
if there exists no solution (AT, A7) such that \~ C €.

o (eT,¢7) is assertive if every answer set of m, \ €~ UeT satisfies w™.

e (e7,¢7) is a solution with justification (or j-solution) if €t contains a justi-
fication for wt w.r.t. some answer set I of m,.

Each class of solutions has its own merits and could be useful in different situa-
tions. Optimal solutions could be useful when solutions are associated with some
costs. Minimally-restrictive solutions focus on minimizing the amount of infor-
mation that the robot needs to introduce to the human. They will be useful when
explaining a new rule is expensive. On the other hand, maximally-preserving so-
lutions is appropriate when one seeks to minimize the amount of information
that needs to be removed from the human knowledge. Solutions with justifica-
tions are those that come with their own support. Assertive solutions do not
leave the human any reason for questioning the atom in discussion. In Exam-
ples 1-4, we can see that the solution in Example 1 is not optimal but all others
are optimal, minimally-restrictive and maximally-preserving, and solutions with
justification. We make the following observations:

Observation 1 e A minimal solution always exists. Similarly, a minimally-
restrictive (resp. mazimally-preserving) solution always exists.

e If a solution is minimally-restrictive and mazimally-preserving, then it is
optimal.

e For some m, there exists no w-preserving solution. For example, in Example 2,
a m-preserving solution does not exist for m = {a +}. Likewise, for some m
(e.g., m =0), there exists no w-restrictive solution.

e Not every solution of an MRLP problem is a j-solution. For example, ({b +
a},0) is not a j-solution for the problem ({a <+—;b < a;b <+ },{a <},0).

e Not every solution of an MRLP is assertive. For example, ({b < not a},)
is not an assertive solution for the problem ({a < mnot b;b < not a},{a +
not b}, b).

While it is natural to think of optimal solutions, there exists subprogram = of
7y, such that m-preserving solutions are reasonable. For example, it is reasonable
to consider solutions that is (m, N 7p)-preserving since m, N 7, represents the
common knowledge between the robot and the human. Examples 2-4 show that,
for some 7, there might not exists a m-preserving solution (i.e., for 7 = {a +}
in Example 2, a m-preserving solution does not exist). Theorem 1 shows that j-
solutions can be constructed from an answer set I of 7w, that supports g. It is easy
to see that not every solution of the problem must be a j-solution. For example,
({b + a},0) is not a j-solution for the problem ({a <—;b < a;b <+},{a <},b).

10 Tran Cao Son, Van Nguyen, Stylianos Loukas Vasileiou, and William Yeoh

4.1 Cost-Based Characterization

An alternative for characterizing solutions is to associate a cost to a solution
(eT,€e7) and use it as a means to compare solutions. In this paper, we are inter-
ested in the following cost functions.

Definition 4 (Cost Function and Cost-Optimal Solutions). A cost func-
tion of an MRLP problem (mq,mp,w) is a function C that maps each rule of
o U Ty to a non-negative number: C : mq U m) — RZ0.

The cost of a solution (e*,e¢~) w.r.t. C, denoted by C(e*,e™), is then defined
as ETEEJFUG*C(T)'

Given a cost function C, a solution (et ,e”) is cost optimal w.r.t. C if
C(et,e7) is minimal among all solutions.

We define some special cost functions as follows. C of (7, mh, q) is:
1. uniform if C(r) = ¢ for each rule r € 7, U my,, where ¢ > 0 is a constant.
2. agent-biased if C(r) = ¢ for each rule r € m,, where ¢ > 0 is a constant, and
C(r) = 0 for each rule r € 7.
3. human-biased if C(r) = 0 for each rule r € m, and C(r) = ¢, where ¢ > 0 is a
constant, for each rule r € 7.
Because minimality in cardinality of a set implies minimality with respect to
the subset relation, we can easily prove the following.

Proposition 2. Given a cost function C:
o If it is uniform, then a cost-optimal solution w.r.t. C is optimal (as in Defi-
nition 3).
e If it is agent-biased, then a cost-optimal solution w.r.t. C is minimally-
restrictive.
o If it is human-biased, then a cost-optimal solution w.r.t. C is mazimally-
Preserving.

Observe that more general or specific cost functions could be defined and used
to compare solutions. More specifically, a cost function discussed above is rule-
based. A more specific one could be an atom-level cost function that assigns each
atom some cost. A more general one is a solution-level cost function that assigns
each solution a cost. While all are theoretically reasonable, we believe that a
rule-based cost function is more appropriate because each rule is supposed to
encode a piece of knowledge from each agent (robot or human). Alternatively,
preferences among atoms that could be added or should be removed can be
defined and used in determining most preferred solutions. We will leave this for
the future work.

4.2 Assertiveness Characterization

We now propose an alternative perspective that is orthogonal to the characteri-
zation defined above. Given an MRLP problem (7, 7, w), the goal of the robot

Model Reconciliation in Logic Programs 11

in providing a solution € is to convince the human that w is true given its knowl-
edge base. Thus, the success of this process depends on how much the human
believes the solution presented by the robot. Following this line of thought, we
define the notion of an assertive score for solutions:

Definition 5 (Assertive Score). The assertive score of a solution (T ,e™) of
an MRLP problem (g, 7, w) is:

#answer sets of mp, \ €~ UeT where w™ is true

S(et,e7) =

#answer sets of m, \ €~ UeT

A solution (e, €e™) is assertive-score-maximal if Sy, q)(€) is mazimal among all
solutions.

Intuitively, S(e™,e™) represents the probability of the human believing the
solution. As we have remarked earlier, S(e™,e™) is always positive (cf. Theo-
rem 1). The last bullet in Observation 1 shows that can be less than 1. We can
prove the following proposition that certain solutions are assertive.

Proposition 3. For a MRLP problem (mwq, p,w). Assume that I is an answer
set of mq and €' is a minimal justification of wt w.r.t. I. If the residual of T,
w.r.t. € and I contains only definite rules then there exists a solution (e*,e™)
for (mq, mh,w) with e [et, I, 7] C e such that S(et,e™) = 1.

Proof. Let P = m, \ e [e",I,m,] Uet. Because P\ €' is a positive program,
we have that negs(P) = negs(e™). As such negs(P) N heads(P) = (). Hence,
any answer set X of P would satisfy that X N negs(P) = @. This implies that
P has a unique answer set satisfying w™. To obtain a solution for (my,mp,w),
we can remove the set A of rules whose heads occur in w™ from P. The re-
maining program P \ X is a positive program and entails w™. This shows that
S(et, e [er, I,mp] UN) = 1. O

5 Related Work and Discussions

The paper takes inspiration from the discussion in explainable planning (XAIP)
[1,12,13] and generalizes it to define MRLP problems. Solutions to a MRLP
problem could be viewed as explanations defined in XAIP. It is therefore closely
related to the recent paper [8]. Both [8] and this paper employ ASP as the
underlying representation language. However, [8] focuses on the development
of an ASP-based system for solving XAIP problems while the present work
emphasizes the knowledge representation aspects of a generalization of XAIP.
This difference in focus leads to the fact that the algorithms proposed in this
paper are general in that they are applicable in different classes of problems
representable by logic programs and are not as specific as the ones developed in
[8]. Furthermore, [8] does not include any characterizations of the solutions of
MRLP problems as discussed in this paper.

12 Tran Cao Son, Van Nguyen, Stylianos Loukas Vasileiou, and William Yeoh

It is worth noticing that Definition 2 appears to define an update operator to
a program 7, with a set of rules e™ and a set of atoms I. This operator, however,
differs from all update operators defined in the vast literature on logic program-
ming updates (see, e.g., the survey by [11]). In earlier operators, the inputs are
two programs 7, and €T, and the resulting program 7, @ et should include et
and retain as much as possible from mp, or satisfy certain postulates related to
belief revision (e.g., the AGM postulates). This is because update models are
defined for revising the beliefs of an agent 7, when some new information et
arrives. There is no consideration of the third parameter I and there is no re-
quirement that 7, @ €T |~ w™ even if €T satisfies the conditions in Theorem 1.
We note that the idea of eliminating rules in m;, that are “conflicting” with the
new rules e, presented by [15] and later by [14], could potentially be useful.
However, the operator in this work adds rules that are not in m, U €™ to the
resulting program.

Last but not least, we observe that Algorithm 1 only computes j-solutions
for an MRLP problem. It is easy to see that an an arbitrary solution (€T, ¢™)
for (mg,mh,w) could be computed by randomly selecting e™ C 7, and e~ C
7, and testing whether (eT,e7) is a solution for the problem, i.e., verifying
mn\ e Uet v wh and 7, \ € UeT [fw™. This idea is similar to the proposed
method of computing explanations of abductive logic programs discussed by [10]
. Although this idea is simple and generic, we observe that it can only be applied
whenever the symmetric difference between 7, and m;, is small and thus is not
practically useful.

It is worth noting that different methods proposed in the literature for com-
puting a justification (sometimes referred to as explanation) for an atom (set of
atoms) given a logic program could be used to replace the steps 1-4 in Algo-
rithm 1. The present work does not intend to provide a method for computing
such a justification.

6 Conclusions and Future Work

In this paper, we investigate MRLP problems between logic programs, repre-
sented by a tuple (74, 71, w), that focus on identifying a solution (e, ¢~) where
€™ C m, and €= C 7y, such that #;, = 7, \ € U €T satisfying #5, b w' and
Fpptw™, ie., Ty v q for every q € w™ and 7, [Lr for every r € w™.

We show that if 7, |~ w and 7, [¢w™ and there exists a justification ™ C 7,
for w™ then there exists a non-trivial solution (e, e™) for the problem. We dis-
cuss different types of solutions of a MRLP problem and algorithms for com-
puting a solution. We also present the notion of a cost-based and assessertive
characterization of solutions.

In this paper, we focus on the development of the theoretical foundation of
the MRLP problems. One of our immediate future work is to develop a system
for computing solutions of MRLP problems. The next goal is to experimentally
comparing this system with the system described in [8].

Model Reconciliation in Logic Programs 13

For future work, we note that our work assumes that the robot, who needs to
computes solutions, has the knowledge of both programs 7, and 7y, which is the
assumption in early work in explainable planning. In practice, this assumption
is likely invalid and the robot might also needs to change its program through
communication or dialogue with the human. For example, if the robot explains to
the human that its plan for going from location a to location ¢ through location
b is feasible and the human informs the robot that the path from location a to
location b is currently blocked, then the robot should eliminate the action of
going from location a to location b from its action description and replan a new
path to get to location c¢. Therefore, we plan to take such dialogue into account
and to formalize the process of reaching a consensus between the robot and the
human in the near future.

References

1. Chakraborti, T., Sreedharan, S., Zhang, Y., Kambhampati, S.: Plan explanations
as model reconciliation: Moving beyond explanation as soliloquy. In: IJCAIL pp.
156-163 (2017)

2. van Emden, M., Kowalski, R.: The semantics of predicate logic as a programming
language. Journal of the ACM 23(4), 733-742 (1976)

3. Fox, M., Long, D., Magazzeni, D.: Explainable planning. CoRR abs/1709.10256
(2017), http://arxiv.org/abs/1709.10256

4. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: LP. pp.
579-597 (1990)

5. Kambhampati, S.: Synthesizing explainable behavior for human-Al collaboration.
In: AAMAS. pp. 1-2 (2019)

6. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2(4), 526-541 (2001)

7. Marek, V., Truszczynski, M.: Stable models and an alternative logic programming
paradigm. In: The Logic Programming Paradigm: a 25-year Perspective. pp. 375—
398 (1999)

8. Nguyen, V., Vasileiou, S.L., Son, T.C., Yeoh, W.: Explainable Planning Using
Answer Set Programming. In: KRR. pp. 662-666 (2020)

9. Niemeli, I.: Logic programming with stable model semantics as a constraint pro-
gramming paradigm. Annals of Mathematics and Artificial Intelligence 25(3,4),
241-273 (1999)

10. Sakama, C., Inoue, K.: Updating extended logic programs through abduction. In:
LPNMR. pp. 147-161 (1999)

11. Slota, M., Leite, J.: Exception-based knowledge updates. CoRR abs/1706.00585
(2017), http://arxiv.org/abs/1706.00585

12. Sreedharan, S., Chakraborti, T., Kambhampati, S.: Handling model uncertainty
and multiplicity in explanations via model reconciliation. In: ICAPS. pp. 518-526
(2018)

13. Vasileiou, S.L., Previti, A., Yeoh, W.: On exploiting hitting sets for model recon-
ciliation. In: AAAT (2021)

14. Zhang, Y.: Logic program-based updates. ACM Transactions on Computational
Logic 7(3), 421-472 (2006)

15. Zhang, Y., Foo, N.Y.: Updating logic programs. In: ECAL pp. 403-407 (1998)

