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Abstract

Distributed Constraint Optimization (DCOP) is a key
technique for solving agent coordination problems. Be-
cause finding cost-minimal DCOP solutions is NP-hard,
it isimportant to develop mechanisms for DCOP search
algorithms that trade off their solution costs for smaller
runtimes. However, existing tradeoff mechanisms do not
provide relative error bounds. In this paper, we introduce
three tradeoff mechanisms that provide such bounds,
namely the Relative Error Mechanism, the Uniformly
Weighted Heuristics Mechanism and the Non-Uniformly
Weighted Heuristics Mechanism, for two DCOP algo-
rithms, namely ADOPT and BnB-ADOPT. Our exper-
imental results show that the Relative Error Mecha
nism generally dominates the other two tradeoff mech-
anisms for ADOPT and the Uniformly Weighted Heuris-
tics Mechanism generally dominates the other two trade-
off mechanisms for BnB-ADOPT.

1 Introduction

Many agent coordination problems can be modeled as Dis-
tributed Constraint Optimization (DCOP) problems, includ-
ing the scheduling of meetings [Maheswaran et al., 2004],
the allocation of targets to sensors in sensor networks [Ali
et al., 2005] and the coordination of traffic lights [Junges
and Bazzan, 2008]. Complete DCOP algorithms, such as
ADOPT [Modi et al., 2005], find globally optimal DCOP so-
lutions but have a large runtime, while incomplete DCOP a-
gorithms, such as DBA [Zhang et al., 2005], find only locally
optimal DCOP solutions but have a significantly smaller run-
time. Because finding optima DCOP solutions is NP-hard
[Modi et al., 2005], it is important to develop mechanisms
for DCOP algorithms that trade off their solution costs for
smaller runtimes. Some complete DCOP agorithms, for ex-
ample, alow users to specify an error bound on the solution

*Thismaterial isbased upon work supported by, or in part by, the
U.S. Army Research Laboratory and the U.S. Army Research Office
under contract/grant number W911NF-08-1-0468 and by NSF un-
der contract 0413196. The views and conclusions contained in this
document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the
Sponsoring organizations, agencies, companies or the U.S. govern-
ment. An earlier version of this paper without the Non-Uniformly
Weighted Heuristics Mechanism and with many fewer experimental
results appeared in AAMAS 2008 as a short paper.

cost. ADOPT is an example. Some incomplete DCOP algo-
rithms allow users to specify the size & of the locally optimal
groups. These DCOP algorithms partition the DCOP prob-
lem into groups of at most k£ agents and guarantee that their
DCOP solution is optimal within these groups. The class of
k-optimal algorithms [Pearce and Tambe, 2007] is an exam-
ple. However, efficient implementations for k-optimal ago-
rithmsare so far knownonly for & < 3 [Bowring et al., 2008].

We therefore seek to improve the tradeoff mechanisms of
a subclass of complete DCOP algorithms, namely complete
DCOP search algorithms. ADOPT s, to the best of our
knowledge, the only complete DCOP search algorithm with
such a tradeoff mechanism. Its Absolute Error Mechanism
allows users to specify absolute error bounds on the solution
costs, for example that the solution costs should be at most
10 larger than minimal. The downside of this tradeoff mech-
anismisthat it is impossible to set relative error bounds, for
example that the solution costs should be at most 10 percent
larger than minimal, without knowing the optimal solution
costs. In this paper, we therefore introduce three tradeoff
mechanisms that provide such bounds, namely the Relative
Error Mechanism, the Uniformly Weighted Heuristics Mech-
anism and the Non-Uniformly Weighted Heuristics Mecha-
nism, for two complete DCOP a gorithms, namely ADOPT
and BnB-ADOPT [Yeoh et al., 2008]. BnB-ADOFPT is a
variant of ADOPT that uses a depth-first branch-and-bound
search strategy instead of a best-first search strategy and has
been shown to be faster than ADOPT on several DCOP prob-
lems [Yeoh et al., 2008]. Our experimental results on graph
coloring, sensor network scheduling and meeting scheduling
problems show that the Relative Error Mechanism generally
dominates the other two tradeoff mechanisms for ADOPT
and the Uniformly Weighted Heuristics Mechanism gener-
aly dominates the other two tradeoff mechanisms for BnB-
ADORPT.

2 DCOP Problems

A DCOP problem is defined by a finite set of agents (or,
synonymously, variables) X = {x1, o, ..., z,}; aset of fi-
nite domains D = {D1, D, ..., D, }, where domain D, is
the set of possible values of agent z; € X; and a set of
binary constraints ' = {f1, f2, ..., fm}, Where constraint
fi + Di; x D, — RT U oo specifies its non-negative
constraint cost as a function of the values of distinct agents
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Figure 1: Example DCOP Problem

z;,,r;, € X that share the constraint.> Each agent assigns
itself repeatedly a value from its domain. The agents co-
ordinate their value assignments via messages that they ex-
change with other agents. A complete solution is an agent-
value assignment for all agents, while a partial solutionis an
agent-value assignment for a subset of agents. The cost of
a complete solution is the sum of the constraint costs of all
constraints, while the cost of a partial solution is the sum of
the constraint costs of all constraints shared by agents with
known values in the partial solution. Solving a DCOP prob-
lem optimally means to find its cost-minimal complete solu-
tion.

3 Constraint Graphsand Pseudo-Trees

DCOP problems can be represented with constraint graphs
whose vertices are the agents and whose edges are the con-
straints. ADOPT and BnB-ADOPT transform constraint
graphs in a preprocessing step into pseudo-trees. Pseudo-
trees are spanning trees of constraint graphswith the property
that edges of the constraint graphs connect vertices only with
their ancestors or descendants in the pseudo-trees. For ex-
ample, Figure 1(a) shows the constraint graph of an example
DCOP problem with three agents that can each assign itself
the values zero or one, and Figure 1(c) shows the constraint
costs. Figure 1(b) shows one possible pseudo-tree. The dot-
ted lineis part of the constraint graph but not the pseudo-tree.

4 Search Treesand Heuristics

Theoperation of ADOPT and BnB-ADOPT can bevisualized
with AND/OR search trees [Marinescu and Dechter, 2005].
We use regular search trees and terminology from A* [Hart
et al., 1968] for our example DCOP problem sinceits pseudo-
tree is a chain. We refer to its nodes with the identifiers
shown in Figure 2(a). Its levels correspond to the agents.
A left branch that enters a level means that the correspond-
ing agent assigns itself the value zero, and a right branch
means that the corresponding agent assigns itself the value
one. For our example DCOP problem, the partial solution
of nodee is (1 = 0,22 = 1). The f*-value of a node is
the minimal cost of any complete solution that completes the
partial solution of the node. For our example DCOP prob-
lem, the f*-value of node e is the minimum of the cost of

!Formulations of DCOP problems where agents are responsible
for several variables each can be reduced to our formulation[Yokoo,
2001; Burke and Brown, 2006]. Similarly, formulations of DCOP
problems where constraints are shared by more than two agents can
be reduced to our formulation [Bacchus et al., 2002].

Figure 3: h-Valuesfor the Example

solution (1 = 0,22 = 1,23 = 0) [=23] and the cost of
solution (1 = 0,29 = 1,253 = 1) [=15]. Thus, the f*-
value of node e is 15. The f*-value of the root node is the
minimal solution cost. Since the f*-values are unknown,
ADOPT and BnB-ADOPT use estimated f*-values, called f-
values, during their searches. They calculate the f-value of a
node by summing the costs of al constraints that involve two
agentswith known val ues and adding a user-specified h-value
(heuristic) that estimates the sum of the unknown costs of the
remaining constraints, similarly to how A* calculates the f-
values of its nodes. For our example DCOP problem, assume
that the h-value of nodee is3. Then, its f-valueis 11, namely
the sum of the cost of the constraint between agents z; and x5
[=8] andits h-value. Theideal h-valuesresultin f-valuesthat
are equal to the f*-values. For our example DCOP problem,
theideal h-valueof nodeeis15—8 = 7. Consistent h-values
do not overestimate the ideal h-values. ADOPT originaly
used zero h-values but was later extended to use consistent
h-values[Ali et al., 2005], while BnB-ADOPT was designed
to use consistent h-values. We thus assume for now that the
h-values are consistent.

5 ADOPT and BnB-ADOPT

We now give an extremely simplistic description of the oper-
ation of ADOPT and BnB-ADOPT to explain their search
principles. For example, we assume that agents operate
sequentially and information propagation is instantaneous.
Complete descriptions of ADOPT and BnB-ADOPT can be
foundin [Modi et al., 2005; Yeoh et al., 2008].

We visualize the operation of ADOPT and BnB-ADOPT
on our example DCOP problem with the search trees shown
in Figures 4 and 5. Unless mentioned otherwise, we use the
consistent h-values from Figure 3(a), which result in the f-
values from Figure 2(b). The nodes that are being expanded
and their ancestors are shaded grey.

ADOPT and BnB-ADOPT maintain lower bounds for all
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Figure 4: Simplified Execution Traces of ADOPT

grey nodes and their children, shown as the numbers in the
nodes. ADOPT and BnB-ADOPT initialize the lower bounds
with the f-values and then aways set them to the minimum
of the lower bounds of the children of the nodes. Memory
limitations prevent them from maintaining the lower bounds
of the other nodes, shown with crossesin the nodes. ADOPT
and BnB-ADOPT also maintain upper bounds, shown as ub.
They always set them to the smallest costs of any complete
solutionsfound so far. Finally, ADOPT maintains limits (usu-
ally expressed as the thresholds of the root nodes), shown
as li. It dways set them to b plus the maximum of the
lower bounds (b(r) and the f-values f(r) of the root nodes
r [li := b+ max(lb(r), f(r))], where b > 0 is a user-
specified absolute error bound. For consistency, we extend
BnB-ADOPT to maintain these limits as well.

ADOPT expands nodes in a depth-first search order. It al-
ways expands the child of the current node with the smallest
lower bound and backtrackswhen the lower bounds of all un-
expanded children of the current node are larger than the lim-
its. This search order is identical to a best-first search order
if one considers only nodesthat ADOPT expandsfor the first
time. BnB-ADOPT expands nodes in a depth-first branch-
and-bound order. It expands the children of a node in order
of their f-values and prunes those nodes whose f-values are
no smaller than the upper bounds.

ADOPT and BnB-ADOPT terminate once the limits (that
are equal to b plus the tightest lower bounds on the min-
imal solution costs) are no smaller than the upper bounds
[li > ub].2 Thus, ADOPT and BnB-ADOPT terminate with
solution costs that should be at most b larger than minimal,
whichiswhy werefer to thistradeoff mechanism asthe Abso-
lute Error Mechanism. Figures 4(a) and 5(a) show execution
traces of ADOPT and BnB-ADOPT, respectively, with the
Absolute Error Mechanism with absolute error bound b = 0
for our example DCOP problem. Thus, they find the cost-
minimal solution.

*The unextended BnB-ADOPT terminates when (b(r) = ub.

6 Proposed Tradeoff Mechanisms

We argued that it is often much more meaningful to spec-
ify the relative error on the solution costs than the abso-
lute error, which cannot be done with the Absolute Error
Mechanism without knowing the minimal solution costs. In
this section, we introduce three new tradeoff mechanisms
with this property, namely the Relative Error Mechanism,
the Uniformly Weighted Heuristics M echanism and the Non-
Uniformly Weighted Heuristics Mechanism.

6.1 Reative Error Mechanism

We can easily change the Absolute Error Mechanism of
ADOPT and BnB-ADOPT to a Relative Error Mechanism.
ADOPT and BnB-ADOPT now set the limits to p times the
maximum of the lower bounds b(r) and the f-values f(r) of
the root nodes r [l := p x max(lb(r), f(r))], wherep > 1
is a user-specified relative error bound. ADOPT and BnB-
ADOPT still terminate once the limits (that are now equal
to p times the tightest lower bounds on the minimal solution
costs) are no smaller than the upper bounds. Thus, although
currently unproven, they should terminate with solution costs
that are at most p times larger than minimal or, equivalently,
at most (p — 1) x 100 percent larger than minimal, which is
why we refer to this tradeoff mechanism as the Relative Error
Mechanism. The guarantee of the Relative Error Mechanism
with relative error bound p is thus similar to the guarantee of
the Absolute Error Mechanism with an absolute error bound
b that isequal to p — 1 timesthe minimal solution cost, except
that the user does not need to know the minimal solution cost.

Figures4(b) and 5(b) show executiontracesof ADOPT and
BnB-ADOPT, respectively, with the Relative Error Mecha
nismwith p = 2 for our example DCOP problem. For exam-
ple, after ADOPT expands node d in Step 3, the lower bound
[=11] of unexpanded child h of node e is no larger than the
limit [=12]. ADOPT thus expands the child [=h] with the
smallest lower bound in Step 4. The limit is now no smaller
than the upper bound and ADOPT terminates. However, after
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Figure 5: Simplified Execution Traces of BnB-ADOPT

ADOPT in Figure 4(a) expands node d in Step 3, the lower
bounds of al unexpanded children of node d are larger than
thelimit. ADOPT backtracksrepeatedly, expandsnode ¢ next
and terminates eventually in Step 6. Thus, ADOPT with the
Relative Error Mechanism with relative error bound p = 2
terminates two steps earlier than in Figure 4(a) but with a so-
lution cost that is 2 larger.

6.2 Uniformly Weighted Heuristics Mechanism

The h-values should be as close as possible to the ideal
h-values to minimize the runtimes of ADOPT and BnB-
ADOPT. We therefore multiply consistent h-values with a
user-specified constant weight ¢ > 1, which can result in
them no longer being consistent, similar to what others have
done in the context of A* where they could prove that A*
is then no longer guaranteed to find cost-minimal solutions
but is still guaranteed to find solutions whose costs are at
most ¢ times larger than minimal [Pohl, 1970]. ADOPT and
BnB-ADOPT use no error bounds, that is, either the Abso-
lute Error Mechanism with absolute error bound b = 0 or the
Relative Error Mechanism with relative error bound p = 1.
They terminate once the lower bounds of the root nodes (that
can now be at most ¢ times larger than the minimal solution
costs and thus, despite their name, are no longer lower bounds
on the minimal solution costs) are no smaller than the up-
per bounds. Thus, although currently unproven, ADOPT and
BnB-ADOPT should terminate with solution costs that are at
most ¢ times larger than minimal. Therefore, the Uniformly
Weighted Heuristics Mechanism has similar advantages as
the Relative Error Mechanism but achieves them differently.
The Uniformly Weighted Heuristics Mechanism inflates the
lower bounds of branches of the search trees that are yet to
be explored and thus makes them appear to be less promis-
ing, while the Relative Error Mechanism prunesall remaining
branches once the early termination condition is satisfied.
Figures 4(c) and 5(c) show execution traces of ADOPT
and BnB-ADOPT, respectively, with the Uniformly Weighted
Heuristics M echanism with constant weight ¢ = 2 for our ex-
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ample DCOP problem. Figure 3(b) shows the corresponding
h-values, and Figure 2(c) shows the corresponding f-values.
ADOPT terminates two steps earlier than in Figure 4(a) but
with asolution cost that is 2 larger.

6.3 Non-Uniformly Weighted Heuristics M echanism

The h-values of agents higher up in the pseudo-tree are often

lessinformed than the h-values of agentslower in the pseudo-

tree. The informedness of h-values is defined as the ratio
of the h-values and the ideal h-values. We run experiments
using the same experimental formulation and setup as [Ma-
heswaran et al., 2004; Yeoh et al., 2008] on graph coloring
problemswith 10 agents/vertices, density 2 and domain cardi-

nality 3 to confirm this correlation. We use the preprocessing
framework DP2 [Ali et al., 2005], that calculatesthe h-values
by solving relaxed DCOP problems (that result fromignoring
backedges) with adynamic programming approach. DP2 was
developed in the context of ADOPT but applies unchanged to
BnB-ADOPT aswell. Figure 6 shows the results. They-axis
shows the informedness of the h-values, and the x-axis shows
the normalized depth of the agents in the pseudo-tree. The
informedness of the h-values indeed increases as the normal -

ized depth of the agents increases. Pearson’s correlation co-

efficient shows a large correlation with p > 0.85. Motivated
by thisinsight, we multiply consistent i-values with weights
that vary according to the depths of the agents, similar to what
othershave donein the context of A* [Pohl, 1973]. We set the



ADOPT BnB-ADOPT
Relative Error Bound 1.0 12 14 1.6 18 2.0 22 24 2.6 28 3.0 1.0 12 14 16 18 2.0 2.2 24 2.6 2.8 3.0
AE Mechanism 508 515 547 568 571 577 577 577 577 577 577 508 518 545 569 573 579 579 579 579 579 579
RE Mechanism 508 513 543 558 571 572 577 577 577 577 577 508 515 544 | 559 572 573 579 579 579 579 579
UWH Mechanism 508 514 535 555 593 607 622 644 | 654 675 704 508 515 533 558 594 609 630 | 663 705 724 | 727
NUWH Mechanism 508 513 540 559 596 605 618 651 660 663 663 508 514 541 559 596 605 620 | 648 660 669 669

Sensor Network Scheduling —9 Agents

ADOPT BnB-ADOPT
Relative Error Bound 1.0 12 14 1.6 18 2.0 2.2 2.4 2.6 2.8 3.0 1.0 12 14 1.6 1.8 2.0 2.2 24 2.6 2.8 3.0
AE Mechanism 116 119 124 130 133 134 133 135 135 136 136 116 118 124 130 133 136 138 138 138 139 139
RE Mechanism 116 118 122 127 131 133 133 133 133 135 135 116 117 122 127 131 133 135 135 137 138 138
UWH Mechanism 116 119 124 130 139 144 148 154 153 155 160 116 118 126 134 142 148 153 158 156 160 165
NUWH Mechanism 116 118 125 133 141 144 148 152 159 162 165 116 118 126 135 143 148 151 156 162 163 166

Meeting Scheduling — 10 Agents

ADOPT BnB-ADOPT
Relative Error Bound 1.0 12 14 1.6 18 2.0 2.2 2.4 2.6 2.8 3.0 1.0 12 14 1.6 1.8 2.0 2.2 24 2.6 2.8 3.0
AE Mechanism 54207 | 54256 | 56819 | 61326 | 64204 | 64380 | 64539 | 64539 | 64539 | 64539 | 64539 || 54207 | 54221 | 56018 (63149 | 67681 | 69326 (69732 (69863 |69863 69863 |69863
RE Mechanism 54207 | 54284 | 54771 | 57381 | 60146 | 62754 | 63998 | 64525 | 64539 | 64539 | 64539 || 54207 | 54207 | 54454 | 56088 | 61277 | 64515 (67271 (68891 |69231 69601 | 69863
UWH Mechanism 54207 | 54207 | 54944 | 57423 | 62344 | 64391 | 64792 | 66488 | 67411 | 67913 | 68473 || 54207 | 54207 | 54733 | 58410 (62636 (66160 |66812 |68253 | 69541 | 70389 (70840
NUWH Mechanism || 54207 | 54207 | 54697 | 58071 | 62022 | 64342 | 66065 | 66987 | 68216 | 68010 | 68481 || 54207 | 54207 54639 | 58443 | 63105 | 66156 |67878 |69483 70120 (70143 | 70942

Graph Coloring — 10 Agents

ADOPT BnB-ADOPT
Relative Error Bound 1.0 12 14 1.6 18 2.0 2.2 2.4 2.6 2.8 3.0 1.0 12 14 1.6 1.8 2.0 2.2 24 2.6 2.8 3.0
AE Mechanism 67675 | 67795 | 71744 | 78149 | 79322 | 79591 | 79591 | 79591 [ 79591 | 79591 | 79591 || 67675 | 67705 | 71566 | 78770 | 82645 | 83439 83768 83768 |83768 |83768 |83768
RE Mechanism 67675 | 67700 | 68894 | 73059 | 77387 | 78556 | 79197 | 79591 [ 79591 | 79591 | 79591 || 67675 | 67691 | 68705 | 72027 | 77020 | 80160 |82223 82845 | 83439 | 83768 |83768
UWH Mechanism 67675 | 67795 | 68868 | 73084 | 76433 | 77808 | 79632 | 80747 | 80889 | 82046 | 83452 || 67675 | 67675 | 68543 | 71864 | 76812 (80605 | 81947 | 82578 (82824 (82509 |82509
NUWH Mechanism || 67675 | 67689 | 69055 | 72684 | 75716 | 77863 | 78658 | 79431 | 80787 | 82109 | 82580 || 67675 | 67675 | 67675 | 67683 | 67878 | 69296 |69613 | 70676 |72036 |72983 | 73926

Graph Coloring — 12 Agents

ADOPT BnB-ADOPT
Relative Error Bound 1.0 12 14 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.0 12 14 1.6 1.8 2.0 2.2 24 2.6 2.8 3.0
AE Mechanism N/A | 76669 | 80699 | 89978 | 92415 | 93095 | 93095 | 93095 | 93095 | 93095 | 93095 (| 76465 | 76465 80231 91334 | 96922 (99717 |99717 | 99717 (99717 (99717 |99717
RE Mechanism N/A | N/A | 77411 | 82443 | 87841 | 91373 | 92907 | 93095 | 93095 | 93095 | 93095 || 76465 | 76465 | 77401 | 80865 | 87210 | 93726 |97048 (98925 | 99166 | 99717 |99717
UWH Mechanism N/A | N/A | 77285 81422 | 86407 | 91124 | 91881 | 92713 | 94694 | 95195 | 96683 (| 76465 | 76465 | 77064 | 80848 | 87589 (92584 | 95716 | 97479 (97701 (97992 |97958
NUWH Mechanism N/A | N/A | 77648 | 81513 | 86780 | 89816 | 91509 | 93413 | 94263 | 94455 | 95422 || 76465 | 76465 | 76465 | 76479 | 76837 | 77334 | 78424 | 79773 81234 (82661 | 84266

Graph Coloring — 14 Agents

Table 1. Experimental Results on the Solution Costs

weight of agent z; to 1+ (¢ — 1) x (1 —d(x;)/N), wherecis
auser-specified maximum weight, d(z;) is the depth of agent
x; in the pseudo-tree and N is the depth of the pseudo-tree.
This way, the weights decrease with the depth of the agents.
Everything else is the same as for the Uniformly Weighted
Heuristics Mechanism. The resulting weights are no larger
than the weights used by the Uniformly Weighted Heuristics
Mechanism with constant weight c¢. Thus, although currently
unproven, ADOPT and BnB-ADOPT should terminate with
solution costs that are at most ¢ times larger than minimal.

7 Experimental Results

We compare ADOPT and BnB-ADOPT with the Abso-
lute Error Mechanism, the Relative Error Mechanism, the
Uniformly Weighted Heuristics Mechanism and the Non-
Uniformly Weighted Heuristics Mechanism. We use the DP2
preprocessing framework to generate the h-values. We run
experiments using the same experimental formulation and
setup as [Maheswaran et al., 2004; Yeoh et al., 2008] on
graph coloring problems with 10, 12 and 14 agents/vertices,
density 2 and domain cardinality 3; sensor network schedul-
ing problems with 9 agents/sensors and domain cardinality
9; and meeting scheduling problems with 10 agents/meetings
and domain cardinality 9. We average the experimental re-
sults over 50 DCOP problem instances each. We measure the
runtimes in cycles [Modi et al., 2005] and normalize them

by dividing them by the runtimes of the same DCOP algo-
rithm with no error bounds. We normalize the solution costs
by dividing them by the minimal solution costs. We vary the
relative error bounds from 1.0 to 4.0. We use the relative
error bounds both as the relative error bounds for the Rela
tive Error Mechanism, the constant weightsfor the Uniformly
Weighted Heuristics Mechanism and the maximum weights
for the Non-Uniformly Weighted Heuristics Mechanism. We
pre-calculate the minimal solution costs and use them to cal-
culate the absolute error boundsfor the Absolute Error Mech-
anism from the relative error bounds.

Tables 1 and 2 tabulate the solution costs and runtimes of
ADOPT and BnB-ADOPT with the different tradeoff mecha-
nisms. We set the runtime limit to be 5 hours for each DCOP
algorithm. Data points for DCOP algorithms that failed to
terminate within thislimit arelabeled ‘ N/A’ in the tables. We
did not tabulate the data for all data points due to space con-
straints.

Figure 7 shows the results on the graph coloring problems
with 10 agents. We do not show the results on the graph
coloring problems with 12 and 14 agents, sensor network
scheduling problems and meeting scheduling problems since
they are similar. Figures 7(al) and 7(bl) show that the nor-
malized solution cost increases as the relative error bound in-
creases, indicating that the solution quality of ADOPT and
BnB-ADOPT decreases. The solution quality remains signif-



ADOPT BnB-ADOPT
Relative Error Bound 1.0 12 14 16 |18(20]|22]|24|26[28|30(| 10| 12 | 14 | 16| 18| 20| 22| 24| 26| 28] 3.0
AE Mechanism 5069 74 37 14 |13 | 131313 |13 (13|13 |/ 431|102 | 38 |14 (13|13 |13 |13 |13 |13 |13
RE Mechanism 5069 96 42 15 (14|13 (13(13(13|13 |13 || 431 (123 | 49 |15 |14 (13 (13|13 |13 (13|13
UWH Mechanism 5069 | 255 39 18 |14 | 14|14 |13 |12 (12|12 || 431 | 95 38 |19 |14 (14 (14|13 |12 (12|12
NUWH Mechanism 5069 | 444 70 19 |15 |15|14 |14 |14 (12|12 || 431 | 118 | 49 |20 (17 |16 |14 |14 |14 |12 | 12

Sensor Network Scheduling —9 Agents

ADOPT BnB-ADOPT
Relative Error Bound 1.0 12 14 16 [18]20]|22(24]|26(28[30| 1.0 | 12 | 14| 16| 18] 20| 22| 24]| 26| 28] 30
AE Mechanism 8347 | 525 66 28 |18 |17 (18|17 |18 (17|17 ||1180| 578 | 94 [ 39 (24 |19 | 18 | 17 | 17 | 17 | 17
RE Mechanism 8347 | 1022 | 350 58 |26 |20(21|20|18 (17|18 |/1180| 644 | 348 (100 | 41 | 28 | 24 | 24 | 21 |19 | 19
UWH Mechanism 8347 | 1482 | 160 29 |25(20)|119(19(18 |18 |18 ({1180 | 344 | 133 |41 |28 (24 (23 |21 |19 (18 | 18
NUWH Mechanism 8347 | 2573 | 522 50 | 26 (20|22 |20 |19 |19 |18 ||1180| 485 | 265 | 68 | 34 | 26 | 27 | 22 | 20 | 20 | 17

Meeting Scheduling — 10 Agents

ADOPT BnB-ADOPT
Relative Error Bound 1.0 12 14 16 [18]20]|22(24]|26(28[30| 1.0 | 12 | 14| 16| 18] 20| 22| 24| 26| 28] 30
AE Mechanism 17566 | 2606 | 152 31 | 2621|1818 (18|18 |18 || 703 | 665 | 269 | 47 |21 (19 (19 |19 [ 19 [ 19 | 19
RE Mechanism 17566 | 3819 | 1496 | 291 | 51 |26 |22 (19 (19|18 |18 || 703 | 677 | 578 |304| 67 [ 44 |23 | 19 | 19 (19 | 19
UWH Mechanism 17566 | 8625 | 2284 | 87 (30 |20|18 (17|17 |17 |17 || 703 | 523 | 318 |102 |38 | 21 | 18 | 18 | 17 | 17 | 17
NUWH Mechanism 17566 | 13804 | 5665 | 808 | 44 | 22 |18 (18|17 |17 |17 || 703 | 636 | 487 |177 |48 | 23 | 18 | 18 | 18 | 18 | 17

Graph Coloring — 10 Agents

ADOPT BnB-ADOPT
Relative Error Bound 1.0 12 14 16 [18]20]|22(24]|26(28[30| 1.0 | 12 | 14| 16| 18] 20| 22| 24| 26| 28] 30
AE Mechanism 42256 | 6499 | 820 36 |21 |21|21 (21|21 |21 |21||1007| 959 (424 |51 |22 |21 |21 |21 |21 21|21
RE Mechanism 42256 | 7857 | 3557 | 1255|201 (36 (32|21 |21 |21 |21 |[1007 | 983 | 793 (476 (173 | 64 [ 40 | 27 (21 (21 | 21
UWH Mechanism 42256 | 18507 | 4556 | 831 | 84 |30 {21 (20|19 (19 | 19 || 1007 | 745 | 436 |206 | 68 | 35 |24 [ 22 |21 |21 |21
NUWH Mechanism || 42256 | 34009 | 13226 | 3222 | 558 | 29 | 28 | 20 | 19 [ 19 | 19 || 1007 | 834 | 692 |536 |412 | 315 | 244 (185 | 150 | 117 | 93

Graph Coloring — 12 Agents

ADOPT BnB-ADOPT
Relative Error Bound 1.0 12 14 16 [18]20]|22[24]|26[28[30] 1.0 | 12 | 14| 16]| 18] 20| 22| 24| 26| 28] 30
AE Mechanism N/A | 29983 712 53 |29 |24 |24 (24|24 |24 |24 ||2048 1956 | 861 | 85 | 28 |24 |24 |24 |24 |24 | 24
RE Mechanism N/A | N/A [16234|2687 (10230 (25|24 |24 | 24 | 24 ([ 2048|1994 | 1678 (883 (204 | 41 (25 | 24 |24 |24 | 24
UWH Mechanism N/A | N/A | 8710 | 956 | 54 (27 |23 |22 |22 |22 |22 ([2048|1355| 683 (254 ( 73 | 30 (24 | 23 |23 [ 23 | 23
NUWH Mechanism N/A | N/A 494846712 | 79 |32 |22 |22 |22 |21 | 21 || 2048 | 1581 | 1197 | 879 | 618 | 442 [ 332|230 | 187 [151 124

Graph Coloring — 14 Agents

Table 2: Experimental Results on the Runtimes

icantly better than predicted by the error bounds. For exam-
ple, the normalized solution cost is less than 1.4 (rather than
3.0) when the relative error bound is 3.0.

Figures 7(a2) and 7(b2) show that the normalized run-
time decreases as the relative error bound increases, indicat-
ing that ADOPT and BnB-ADOPT terminate earlier. In fact,
their normalized runtime is almost zero when the relative er-
ror bound reaches about 1.5 for ADOPT and 2.0 for BnB-
ADOPT.

Figure 8 plots the normalized runtime needed to achieve
a given normalized solution cost. It compares ADOPT (top)
and BnB-ADOPT (bottom) with the different tradeoff mech-
anisms on the graph coloring problems with 10 agents (left),
sensor network scheduling problems (center) and meeting
scheduling problems (right). For ADOPT, the Absolute Error
M echanism and the Relative Error M echanism perform better
than the other two mechanisms. However, the Relative Error
M echanism has the advantage over the Absolute Error Mech-
anism that relative error bounds are often more desirable
than absolute error bounds. For BnB-ADOPT, on the other
hand, the Uniformly Weighted Heuristics Mechanism per-
forms better than the other three mechanisms. For example,
on graph coloring problems with 10 agents, the normalized
runtime needed to achieve a normalized solution cost of 1.05
is about 0.25 for the Uniformly Weighted Heuristics Mecha-
nism, about 0.30 for the Absolute Error Mechanism, about

0.35 for the Relative Error Mechanism and about 0.40 for
the Non-Uniformly Weighted Heuristics Mechanism. This
trend is consistent across the three DCOP problem classes.
Thus, the Uniformly Weighted Heuristics M echanism gener-
aly dominates the other proposed or existing tradeoff mech-
anisms in performance and is thus the preferred choice. This
is a significant result since BnB-ADOPT has been shown to
be faster than ADOPT by an order of magnitude on several
DCOP problems[Yeoh et al., 2008] and our results allow one
to speed it up even further.

8 Conclusions

In this paper, we introduced three mechanisms that trade
off the solution costs of DCOP agorithms for smaller run-
times, namely the Relative Error Mechanism, the Uniformly
Weighted Heuristics Mechanism and the Non-Uniformly
Weighted Heuristics Mechanism. Thesetradeoff mechanisms
provide relative error bounds and thus complement the exist-
ing Absolute Error Mechanism, that provides only absolute
error bounds. For ADOPT, the Relative Error Mechanism is
similar in performanceto the existing tradeoff mechanism but
has the advantage that relative error bounds are often more
desirable than absolute error bounds. For BnB-ADOPT, the
Uniformly Weighted Heuristics Mechanism generally domi-
nates the other proposed or existing tradeoff mechanismsin
performance and is thus the preferred choice. In general,
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Figure 7. Experimental Results of ADOPT and BnB-ADOPT
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Figure 8: Experimental Results on the Tradeoff Performance

we expect our tradeoff mechanisms to apply to other DCOP
search algorithms as well since all of them perform search
and thus benefit from using ~-values to focus their searches.
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