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Abstract. Model Reconciliation Problems (MRPs) and their vari-
ant, Logic-based MRPs (L-MRPs), have emerged as popular meth-
ods for explainable planning problems. Both MRP and L-MRP ap-
proaches assume that the explaining agent has access to an assumed
model of the human user receiving the explanation, and it reconciles
its own model with the human model to find the differences such that
when they are provided as explanations to the human, they will un-
derstand them. However, in practical applications, the agent is likely
to be fairly uncertain on the actual model of the human and wrong
assumptions can lead to incoherent or unintelligible explanations. In
this paper, we propose a less stringent requirement: The agent has ac-
cess to a task-specific vocabulary known by the human and, if avail-
able, a human model capturing confidently-known information. Our
goal is to find a personalized explanation, which is an explanation
that is at an appropriate abstraction level with respect to the human’s
vocabulary and model. Using a logic-based method called knowledge
forgetting for generating abstractions, we propose a simple frame-
work compatible with L-MRP approaches, and evaluate its efficacy
through computational and human user experiments.

1 Introduction

Human-aware planning (HAP) is a rapidly growing area of research
on helping human users interface with AI agents in complex (sequen-
tial) decision-making tasks [13]. A typical HAP scenario involves an
AI agent explaining an inexplicable decision to a human user due
to differences in their mental models of the task.1 This approach is
referred to as the model reconciliation problem (MRP) [7], and its
predominant goal is to explain, in terms of model differences, why
an agent’s decision (e.g., a proposed sequence of actions to reach
a desired goal) is valid/optimal in the agent’s model but not in the
human’s model. A common thread around most MRP approaches is
the assumption that the agent has a version of the human’s model
available and that it is at the same granularity level as the agent’s
model [6, 7, 22, 26]. Albeit a necessary assumption for establishing
the foundations of MRP, it can, arguably, limit the overall practical-
ity of MRP frameworks, insofar as the agent’s version of the human
model may diverge from the actual human’s model and, importantly,
it may be at a different abstraction level, thus leading to generating
incoherent or unintelligible explanations.

However, one can argue that if the agent is not confident on its
estimate of the human model, then the human model should only
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encode their own understanding of the problem’s dynamics.

capture the information that the agent is confident in. The downside
of this argument is that, in practical applications, the agent is likely
to be fairly uncertain on most aspects of the human model and, as
such, it is likely that the human model is almost empty in most cases.
Consequently, the explanation generated will be unnecessarily long
because the agent is falsely assuming that the human is (almost) com-
pletely unaware of any task-specific knowledge,

Therefore, in this paper, we propose that the agent has access to
a vocabulary of task-specific terms of the human user and gener-
ates explanations with respect to that vocabulary. This assumption
is a reasonable tradeoff between assuming that the human model is
almost empty, which is overly pessimistic, and assuming that the hu-
man model is mostly specified, which is overly optimistic. Further,
it can also be used in conjunction with human models that capture
the information that the agent is confident the human user knows,
allowing it to leverage the strength of existing MRP algorithms.

As an example, consider the classical LOGISTICS domain [18].
The vocabulary of the human may include the different trucks
(e.g., truck1, truck2) and locations (e.g., loc1, loc2), and
their partial model includes the action dynamics of the move opera-
tor for trucks. One advantage of this approach is that the vocabulary
implicitly encodes the human’s knowledge or expertise level of the
given task. For instance, the more (or less) terms included in the vo-
cabulary, the higher (or lower) the human’s level of expertise, to the
extent that a human expert probably knows more task-specific terms
than a novice one, all else being equal. Continuing with the example
above, the human user is knowledgeable about trucks, but is unaware
of the existence of airplanes. The agent could then exploit the vocab-
ulary and construct explanations tailored to the human’s level.

To that end, we focus on logic-based MRPs (L-MRPs), a variant
of MRPs where the underlying optimization and explanation gener-
ation problems can be encoded in a logical language [21,25,26]. We
propose a framework, where given an agent knowledge base KBa
encoding a task, an explanandum ϕ entailed by KBa, a (possibly
partial or empty) human knowledge base KBh, and a human vo-
cabulary Vh consisting of task-specific terms, the goal is to find an
explanation that is at an appropriate abstraction level with respect
to KBh and Vh. To do this, we employ a fundamental logic-based
operation, namely knowledge forgetting [2, 24], and describe how it
can be used for generating abstractions. We then formally define the
notion of personalized explanations and present an algorithm that
can be combined with any off-the-shelf L-MRP approaches for com-
puting them. Finally, we empirically demonstrate the efficacy of our
framework on a set of representative benchmarks as well on a human
user study.



2 Logical Preliminaries
Throughout the paper, we assume a propositional language L con-
sisting of a finite set of propositional letters Γ. The simplest formulae
in L are literals, which are letters or their negations. More complex
formulae can be recursively build up from letters and the classical
logical connectives. A knowledge base KB is a set of formulae. The
set of letters used inKB’s formulae is called the vocabulary ofKB,
denoted by VKB . An interpretation is a function I : Γ → {>,⊥},
and if there exists an interpretation that satisfies a KB, then KB is
satisfiable, otherwise KB is unsatisfiable, denoted by KB |= ⊥. A
KB entails a formulaϕ, denoted byKB |= ϕ, iffKB∪{¬ϕ} |= ⊥.
Unless stated otherwise, we assume that a KB is satisfiable and ex-
pressed in conjunctive normal form (CNF), that is, a conjunction of
clauses, each of which is a disjunction of literals.

Definition 1 (Explanation). Given KB |= ϕ, ε ⊆ KB is an expla-
nation for ϕ from KB iff ε |= ϕ and ∀ε′ ⊂ ε, ε′ 6|= ϕ.

Example 1. Let KB = {a, b,¬a ∨ c}, where KB |= c. Then,
ε = {a,¬a ∨ c} is an explanation for c from KB.

In this paper, we build upon the logic-based variant of model rec-
onciliation (L-MRP) [26]. As an L-MRP explanation must take into
account both the knowledge base KBa of the agent providing an ex-
planation as well as the knowledge baseKBh of the human receiving
the explanation, an L-MRP explanation is defined slightly differently
compared to Definition 1:

Definition 2 (L-MRP Explanation). Given knowledge bases
KBa |= ϕ and KBh 6|= ϕ, ε = 〈ε+, ε−〉 is an L-MRP explana-
tion for ϕ from KBa to KBh iff ε+ ⊆ KBa, ε− ⊆ KBh, and
(KBh ∪ ε+) \ ε− |= ϕ.

When KBh is updated with an L-MRP explanation ε, new for-
mulae ε+ from KBa are added and formulae ε− from KBh are
removed to ensure consistency. Among the set of possible expla-
nations, Vasileiou et al. [26] proposed a number of cost functions
(e.g., subset-minimality, cardinality-minimality, etc.).

3 Related Work
The central area of this work is human-aware planning (HAP) [5,6].
A popular approach within HAP is called model reconciliation prob-
lem (MRP) [7, 21–23, 25, 26]. In this approach, the (planning) agent
must have knowledge of the human’s model in order to contemplate
their goals and foresee how its plan will be perceived by them. When
there exist differences between the models of the agent and the hu-
man such that the agent’s plan diverges from the human’s expecta-
tions, the agent provides a minimal set of model differences (i.e., an
explanation) to the human.

In the introduction, we described a key limitation of existing MRP
approaches, namely that it assumes that the human model is accu-
rate. As such, on one hand, it can generate overly long explanations
by pessimistically assuming that the human model is almost empty
when it captures only information that it is confident about. On the
other hand, it can generate incoherent explanations by optimistically
(and wrongly) assuming that the human model is mostly specified
when it also captures information that it is not confident about.

Nevertheless, our work in this paper is closely connected to a
logic-based variant of model reconciliation (L-MRP) [26], where the
underlying optimization and explanation generation problems can be
encoded in a logical language. A limitation of existing L-MRP ap-
proaches, but not necessarily non-logic-based MRP approaches, is

that they assume that ε+ ⊆ KBa must be subsets of exact clauses
from KBa (See Definition 2). Therefore, the human user may have
to learn and understand a very complicated ε+ with many new terms
and concepts when a simpler version with fewer new terms could
have sufficed. For example, in classical planning, only one action is
allowed to be executed at each time step. A logic-based encoding of
this restriction is through the following rule:∧

a∈A

∧
a′∈A|a6=a′

(¬at ∨ ¬a′t) (1)

where A is the set of actions in the problem and at represents action
a in timestep t. Note that A is the set of all actions in the problem.
As such, should the human user be unaware of this rule, ε+ would
include it and, thus, they need to learn about all possible actions.

Continuing with the LOGISTICS example in the introduction,
imagine that the agent is trying to explain that it is not possible to
execute, at the same time, both actions move(truck1, loc1,
loc2) and move(truck1, loc1, loc3), which correspond
to moving the truck to both locations loc2 and loc3 concurrently.
An explanation generated through existing L-MRP methods will in-
clude Rule 1 with the set of all actions when a much simpler and
shorter version whereA is composed of exactly the two move actions
above only would have sufficed. Our goal in this paper is to enrich the
L-MRP formulation by proposing a new algorithmic framework that
can find such simpler explanations through knowledge forgetting.

In the context of classical planning problems, Sreedharan et
al. [23] considered a related issue. They assumed the user’s model
is part of an abstraction lattice held by the agent, with each node rep-
resenting an abstracted planning task model produced by projecting
out a set of state fluents. The agent estimates the appropriate level
based on user interactions and provides consistent explanations. This
is achieved through a foil set (a set of plans) provided by the user,
which the agent uses to find a minimal set of models consistent with
the foil. This method can be seen as a special case of MRP, with the
user model belonging to a set of possible models representing various
abstractions of the agent’s model. In contrast, our approach follows
the standard MRP assumption with a single estimate of the user’s
model and a human-specified vocabulary that may include terms not
in the user’s model. This allows us to capture scenarios where users
have relevant vocabulary terms without knowledge of their relation-
ship to the problem. This can often be the case when the problem
includes terms, such as move in LOGISTICS, that are in everyday
conversation. Additionally, our approach has the merit of generality,
as it can be applied to problems beyond planning, as long as they can
be encoded in a logical formalism for which satisfiability of sets is
feasible.

Finally, with recent progress, large language models (LLMs) [1]
may be able to tackle explainability and reconciliation challenges.
As few-shot learners, LLMs excel at producing well-formed sen-
tences [3,16]. Nevertheless, their primary shortcomings in establish-
ing a robust basis for logical reasoning, mainly due to their depen-
dence on statistical features for inference, has been exploited [8,20].
Conversely, our framework’s symbolic nature offers important theo-
retical guarantees, such as logically consistent and accurate explana-
tions. The ability to perform consistent logical reasoning is vital for
building trust between human users and AI systems.

4 Knowledge Forgetting
Knowledge forgetting, henceforth forgetting, has an ordering func-
tion in the human mind – it can be seen as a process of omitting infor-



mation or knowledge from one’s memory in such a way that it is no
longer present or reproducible. From a cognitive point of view, for-
getting is a gradual process in which information that is less used is
moved to the “background,” from which it either dissipates or recov-
ered through remembering to the foreground [10]. This basic mech-
anism helps people deal with information overload by suppressing
irrelevant information, which allows them to focus on the relevant
aspects of a given task, thus improving their cognitive capabilities.
For example, when people are trying to focus on a specific task, they
tend to “forget” irrelevant aspects around it, or when trying to find a
solution under restricted conditions, they have to intentionally “for-
get” ways of solving the task in more granular environments [12].
This point to the fact that intentional forgetting is a fundamental cog-
nitive process involving many aspects of knowledge and reasoning.

Interestingly, the operation of forgetting aligns with a pragmatic
framework in cognitive linguistics called relevance theory [28]. Rel-
evance theory suggests that the relevance of a statement transmitted
to an individual should minimize their cognitive effort (i.e., effort in
processing the statement) and maximize their positive cognitive ef-
fect (i.e., the statement leads to a true conclusion). In other words,
the more positive the cognitive effects and the less the cognitive ef-
fort, the greater the relevance of the statement to the individual. The
connection we ought to draw here is that forgetting can be seen as
an operation for achieving the objectives suggested by relevance the-
ory, so far as forgetting irrelevant information from a statement can
decrease the individual’s effort, and by focusing only on what is rele-
vant, yield a positive effect. In the sequel, we look at forgetting from
the lens of logic and show how it can be used for that purpose.

4.1 Logic-based View of Knowledge Forgetting

Analogous to the cognitive operation of forgetting, which aims at
suppressing information from an agent’s memory, the logic-based
operation of forgetting aims at removing information from an agent’s
knowledge base. Forgetting has received many logical definitions and
interpretations, starting in the mid 1800s with Boole’s variable elim-
ination method [2]. For a historical overview of forgetting in logic
and AI, we refer the reader to the work by Van Ditmarsch et al. [24].

Generally, forgetting is defined through an operation that de-
creases the language of an agent, insofar as the vocabulary of the
agent’s language is reduced. Intuitively, forgetting information from
an agent’s knowledge base that encodes a specific domain affects the
agent’s ability to express or represent information about that domain,
rather than losing information about the domain per se.

Delgrande [9] presents a resolution-based mechanism for comput-
ing forgetting, where given a knowledge base KB defined over vo-
cabulary VKB , the operation of forgetting λ ⊆ VKB fromKB is the
logical consequences of KB expressible over VKB \ λ.

Given a knowledge base KB and a letter λ ∈ VKB in its vocab-
ulary, let KB↓λ and KB↑λ denote the sets of formulae of KB that
do not mention λ and do mention λ, respectively:

KB↓λ = {ϕ ∈ KB | λ 6∈ Vϕ} (2)

KB↑λ = {ϕ ∈ KB | λ ∈ Vϕ} (3)

Additionally, let Res(KB↑λ, λ) denote the set of formulae obtained
from KB↑λ by carrying out all possible resolutions with respect to
letter λ:

Res(KB↑λ, λ) = {ϕ | ∃ϕ1, ϕ2 ∈ KB↑λ s.t. (4)

λ ∈ ϕ1,¬λ ∈ ϕ2, ϕ = (ϕ1 \ {λ}) ∪ (ϕ2 \ {¬λ})}

Figure 1: Abstraction lattice forKB = {a, b,¬a∨c,¬b∨¬c∨d}. At
the root is level-0 of the lattice, i.e., the initial F(KB, {∅}) = KB.
The child nodes of the root form level-1 of the lattice and rep-
resent (from left to right): F(KB, {a}) = {b, c,¬b ∨ ¬c ∨ d},
F(KB, {b}) = {a,¬a∨c,¬c∨d}, andF(KB, {c}) = {a, b,¬a∨
¬b ∨ d}. Similarly, the subsequent nodes form level-2, and so on.

Combining those definitions, we get the definition of forgetting:

Definition 3 (Forgetting). Given a knowledge base KB and a letter
λ ∈ VKB in its vocabulary, forgetting λ from KB is defined as
F(KB,λ) = KB↓λ ∪Res(KB↑λ, λ).2

Definition 3 can be interpreted as follows: Perform all possible
resolutions with respect to the letter to be forgotten, and add these
resolvents to those formulae in KB that do not mention that letter.
While the resulting KB is weaker than before as it loses its expres-
sivity with respect to what is forgotten, one key advantage is that it
still entails the same set of formulae that are irrelevant to what was
forgotten:

Property 1. If KB |= ϕ, then ∀λ ⊆ VKB \ Vϕ, F(KB,λ) |= ϕ.

Example 2. Let KB = {a, b,¬a ∨ c,¬b ∨ ¬c ∨ d} with
VKB = {a, b, c, d}. Notice that KB |= d. For λ = {a}, we
get KB↓a = {b,¬b ∨ ¬c ∨ d} and KB↑a = {a,¬a ∨ c}, and
Res(KB↑a, a) = {c}. Then, F(KB, {a}) = {b, c,¬b ∨ ¬c ∨ d},
where F(KB, {a}) |= d.

Abstractions via Forgetting: As seen from the example above, the
forgetting operation can be viewed as a method for simplifying for-
mulae by “forgetting” a set of letters. In essence, if we define an
abstraction of a knowledge base as simplifying it, then forgetting is
a succinct operation for computing various abstraction levels:

Definition 4 (Abstraction). Given a knowledge base KB and a set
of letters λ ⊆ VKB in its vocabulary, a level-|λ| abstraction of KB
is F(KB,λ).

We can now create an abstraction lattice defining the abstraction
levels that can be achieved on a knowledge base given a set of letters.
Figure 1 shows a level-3 abstraction lattice based on Example 2. As
we will see in the next section, generating personalized explanations
boils down to finding the appropriate abstraction level with respect
to a set of letters (i.e., the human-specified vocabulary).

2 Note that computing forgetting for a set of letters can be done iteratively
(i.e., F(KB,λ1 ∪ λ2) = F(F(KB,λ1), λ2)).



5 Personalized Explanation Generation
Our framework builds upon the logic-based model reconciliation
problem (L-MRP) [26], where we make the following assumptions:
• The agent has a knowledge base KBa encoding its knowledge of

a task in a logical language. The agent’s knowledge base KBa
is logically closed, insofar as the agent is “logically omniscient”
about the task.
• The agent has a knowledge base KBh encoding, possibly incom-

pletely or erroneously, the human user’s knowledge of the same
task in the same logical language. It is possible for KBh = ∅.
• The human user provides to the agent: (i) An explanandum ϕ,

where KBa |= ϕ and KBh 6|= ϕ, and (ii) a vocabulary Vh. Natu-
rally, VKBh ⊆ Vh as all the terms in the human model must be in
their vocabulary. However, note that it is possible for the vocabu-
lary to include terms that are not in the human model. This is akin
to knowing a particular term, but not knowing how it relates to the
task or what it really means.

Thus, given the knowledge basesKBa andKBh, the corresponding
human vocabulary Vh, and an explanandum ϕ such that KBa |=
ϕ and KBh 6|= ϕ, the goal is to find an L-MRP explanation from
KBa to KBh for ϕ that is at an appropriate abstraction level with
respect to Vh. As already mentioned, we will call such an explanation
a personalized explanation.

The central question behind this setting is what is an appropriate
abstraction level. Clearly, an appropriate abstraction level should not
contain any irrelevant information with respect to the explanandum:

Definition 5 (Irrelevance). Given a knowledge base KBa |= ϕ, a
set of letters λ ⊆ VKBa from its vocabulary is irrelevant for KBa
with respect to ϕ iff F(KBa, λ) |= ϕ.

We say that a set of letters λ is irrelevant for KBa with respect to a
formula ϕ if forgetting λ from KBa does not affect the entailment
of ϕ in the resulting KBa. In our context, this definition is easily
satisfied by assuming that λ does not contain any letters from the
explanandum ϕ (see Property 1). We enforce this property in our
proposed algorithm, which we describe later.

Further, a personalized explanation is not really “personalized” un-
less it uses at least some letters familiar to the human (i.e., letters
from the vocabulary Vh). Naively, one could forget all letters from
VKBa except for those in Vh (and Vϕ). However, this may result in
overly short and trivial explanations of the form “why ϕ? Because
ϕ”, which is the case when KBh = ∅ and Vh ∩ VKBa = ∅.

Therefore, to avoid forgetting too many letters and oversimplify-
ing explanations to the point that they are trivial, we propose that the
goal of forgetting as many letters as needed to get an (L-MRP) expla-
nation is of reasonable complexity. The complexity of explanations
can be measured in a variety of ways, including with all the various
cost functions (e.g., subset-minimality, cardinality, etc.) previously
proposed in the literature [26].

Without loss of generality, we will assume that the choice of com-
plexity measure is the cardinality of the explanation. While we con-
tinue our description, provide theoretical properties, and propose an
algorithm based on this assumption, it is fairly straightforward to see
how they can be generalized to other complexity measures as well.

When the choice of complexity measure is explanation cardinality,
the constraint that needs to be satisfied is:

|F(ε+, λ)|+ |ε−| ≤ UB (5)

where λ ⊆ Vε+ \ (Vh ∪ Vϕ) is the set of letters to forget and UB is
a user-specific maximum cardinality of an explanation. Note that the

λ does not include any letters in the vocabulary Vh because the goal
is to personalize explanations by using terms known to the human
user. Additionally, λ does not include any letters in Vϕ because they
are needed to ensure that the updated KBh of the user entails the
explanandum ϕ (Property 1). Finally, no letters are forgotten from
ε− ⊆ KBh because they are all in the vocabulary Vh of the human
user by definition. More formally, extending Definition 2:

Definition 6 (Personalized L-MRP Explanation). Given knowledge
bases KBa |= ϕ and KBh 6|= ϕ, vocabulary Vh, and upper bound
UB, ε = 〈ε+, ε−〉 is a personalized L-MRP explanation for ϕ from
KBa to KBh with respect to Vh iff ε+ ⊆ KBa, ε− ⊆ KBh, λ ∈
Vε+ \(Vϕ∪Vh), |F(ε+, λ)|+ |ε−| ≤ UB, and (KBh∪F(ε+, λ))\
ε− |= ϕ.

Given Definitions 2 and 6 together with Property 1, we can then
show that if 〈ε+, ε−〉 is an L-MRP explanation for ϕ from KBa to
KBh, then 〈F(ε+, λ), ε−〉 is a personalized L-MRP explanation for
ϕ from KBa to KBh for any λ ⊆ Vε+ \ (Vϕ ∪Vh) if its cardinality
is no larger than a given upper bound UB. More formally:

Theorem 1. Given two knowledge basesKBa |= ϕ andKBh 6|= ϕ
with a corresponding L-MRP explanation 〈ε+, ε−〉 for explanandum
ϕ, for any set of letters λ ⊆ Vε+ \ (Vϕ ∪ Vh) and an upper bound
UB, 〈F(ε+, λ), ε−〉 is a personalized L-MRP explanation for the
same explanandum ϕ if its cardinality |F(ε+, λ)|+ |ε−| ≤ UB is no
larger than UB.

Proof. Assume λ ⊆ Vε+ \ (Vϕ ∪ Vh), which is the premise of the
theorem. Then:

F((KBh ∪ ε+) \ ε−, λ) = F((KBh \ ε−) ∪ (ε+ \ ε−), λ) (6)

= F((KBh \ ε−) ∪ ε+, λ) (7)

= F(ε+ ∪ (KBh \ ε−), λ) (8)

= F(ε+, λ) ∪ (KBh \ ε−) (9)

= (F(ε+, λ) ∪KBh) \ ε− (10)

= (KBh ∪ F(ε+, λ)) \ ε− |= ϕ (11)

The simplification from Equations 6 to 7 is due to the properties
of L-MRP explanations that ε− ⊆ KBh, ε+ ⊆ KBa, and that
the intersection KBh ∩ KBa will never be part of the explanation
since that information is already common to both knowledge bases
(Definition 2). The simplification from Equations 8 to 9 is because
λ ⊆ Vε+ \ (Vϕ ∪ Vh) (premise of the theorem) does not contain
any letters in KBh or its subset ε− ⊆ KBh. For the same reason,
Equation 9 can be rewritten as Equation 10. Finally, the entailment
in Equation 11 is because F((KBh ∪ ε+) \ ε−, λ) entails ϕ since
λ ⊆ Vε+\(Vϕ∪Vh) ⊆ V(KBh∪ε+)\ε−\Vϕ (Property 1). Combining
this entailment and the premise that |F(ε+, λ)|+ |ε−| ≤ UB, we can
conclude that 〈F(ε+, λ), ε−〉 is a personalized L-MRP explanation
(Definition 6).

5.1 Computing Personalized Explanations

Our algorithm, called Personalized Logical Explanation Algorithm
for Symbolic Environments (PLEASE), exploits Theorem 1 to find
personalized L-MRP explanations. Algorithm 1 describes its pseu-
docode. At a high level, PLEASE is composed of the following
steps:
(1) Use any off-the-shelf L-MRP solver to find a sequence of L-

MRP explanations.



Algorithm 1: Personalized Logical Explanation Algorithm
for Symbolic Environments (PLEASE)
Input: Agent knowledge base KBa, human knowledge base

KBh, explanandum ϕ, human vocabulary Vh, upper
bound UB

Result: A personalized explanation 〈ε+, ε−〉
1 while true do
2 〈ε+, ε−〉 ← next-L-MRP-exp(KBa,KBh, ϕ)
3 if 〈ε+, ε−〉 = null then
4 return null
5 else
6 foreach λ ⊆ Vε+ \ (Vh ∪ Vϕ) do
7 ε+ ← F(ε+, λ)
8 if |ε+|+ |ε−| ≤ UB then
9 return 〈ε+, ε−〉

(2) For each L-MRP explanation 〈ε+, ε−〉, iterate through all pos-
sible subsets of letters λ ⊆ Vε+ \ (Vϕ ∪ Vh).

(3) For each subset of letters λ to forget, check if the cardinality of
the explanation with forgotten letters |F(ε+, λ)| + |ε−| ≤ UB
is within the upper bound UB.

(4) If it is, then return the personalized explanation. If not, repeat
with the next L-MRP explanation from the L-MRP solver.

Example 3. Let KBa = {a, d,¬d ∨ b,¬a ∨ ¬b ∨ c}, KBh = ∅,
ϕ = {c}, and Vh = {a, d}, and suppose that we are searching
for a personalized explanation whose cardinality is within an upper
bound UB of 3. First, notice that since KBh = ∅, the only L-MRP
explanation is ε+ = KBa and ε− = ∅. As |ε+| + |ε−| = 4 +
0 = 4 is larger than the upper bound, we will iterate through all
possible subsets λ ⊆ Vε+ \ (Vϕ ∪ Vh) = {a, b, c, d} \ ({c} ∪
{a, d}) = {b}, which in this case is only the letter b. PLEASE then
checks if forgetting this letter is sufficient to reduce the cardinality
of the explanation to within the upper bound: |F(ε+, λ)| + |ε−| =
|F(ε+, b)| = |{a, d,¬a ∨ ¬d ∨ c}| = 3. Since it is, PLEASE will
return the personalized explanation 〈{a, d,¬a ∨ ¬d ∨ c}, ∅〉.

It is fairly straightforward to see that the algorithm is correct and
complete, under the assumption that the underlying off-the-shelf L-
MRP solver is also correct and complete.

6 Empirical Evaluations
We now empirically evaluate our approach both in simulated compu-
tational experiments as well as in a human user study.

6.1 Simulated Computational Experiments

We ran the experiments on a MacBook Pro machine comprising an
M1 Max processor with 32GB of memory. The time limit was set to
300s. PLEASE was implemented in Python, where we use the algo-
rithm described by Vasileiou et al. [25] as the off-the-shelf solver to
find L-MRPs.3 We used our own implementation for the knowledge
forgetting operation.4

We encoded some classical planning problems from the Interna-
tional Planning Competition (IPC) in the style of Kautz et al. [14],

3 We used the implementation provided by the authors, which is publicly
available at https://github.com/vstylianos/aaai21.

4 The code repository is available at https://github.com/YODA-Lab/PLEASE.

and used them to form the agent’s knowledge base KBa. The ex-
planandum ϕ for each problem was the plan optimality query, which
we constructed as described in [25]. We varied three parameters –
the assumed knowledge base of the human KBh, the vocabulary of
the human Vh, and the upper bound UB. To construct the knowledge
base KBh, we follow the literature by modifying KBa, specifically,
by removing p fraction of actions as well as p fraction of precon-
ditions and effects of each remaining action. To construct the vo-
cabulary Vh, we first extract all the letters that are used in KBh,
then supplement it with letters from KBa if |Vh| ≤ q fraction of
|VKBa |. Finally, we parameterize the upper bound UB as a fraction
r of the cardinality of the shortest L-MRP explanation |ε∗|. The de-
fault values for our three parameters are as follows: p = 0.8 for
KBh, q = 0.4 for Vh, and r = 0.8 for UB.

In our first experiment, we vary the completeness ofKBh by vary-
ing p ∈ {0.2, 0.4, 0.6, 0.8}. Table 1 tabulates the results, where we
report the length of an optimal plan |π∗|, the cardinality of the short-
est L-MRP explanations |ε∗| returned by the off-the-shelf L-MRP
solver, the cardinality of the personalized L-MRP explanations |ε|
returned by PLEASE, the number of letters forgotten |λ|, and the run-
times t of PLEASE. We make the following observations: Unsurpris-
ingly, |ε∗| increases as p increases. The reason is thatKBh decreases
as p increases. Therefore, more information needs to be provided in
the explanation in order for the updated KBh to entail the explanan-
dum. Additionally, |λ| increases as p increases as well because more
needs to be forgotten from longer explanations in order to get their
cardinality to within UB. Finally, as |π∗| increases, the cardinality of
both explanations |ε∗| and |ε| increases. Consequently, the runtime t
increases as well.

In our second experiment, we vary the size of the vocabulary |Vh|
by varying q ∈ {0.2, 0.4, 0.6, 0.8}. Table 2 tabulates the results. As q
(and, equivalently, the vocabulary size |Vh|) increases, |λ| decreases
and |ε| increases since fewer letters need to be forgotten before the
updated KBh entails the explanandum. Additionally, the cardinality
of the L-MRP explanation |ε∗| and runtimes t remain relatively un-
changed for all values of q. This implies that the runtime of PLEASE

is dominated by the time needed to find the L-MRP explanation by
the off-the-shelf solver, and the time needed to personalize the expla-
nations is relatively small.

In our third experiment, we vary the upper bound UB by vary-
ing r ∈ {0.6, 0.7, 0.8, 0.9}. Table 3 tabulates the results. As r (and,
equivalently, the upper bound UB) increases, |λ| decreases and |ε|
increases since fewer letters need to be forgotten to get a personal-
ized explanation with a cardinality that is within the upper bound
UB. Similar to the second experiment, the cardinality of the L-MRP
explanation |ε∗| and runtimes t remain relatively unchanged for all
values of r, making the same implication that the runtime of PLEASE

is dominated by the off-the-shelf solver.

6.2 Human User Study

We now evaluate one of the assumptions made in this paper, namely,
that personalized explanations with respect to a human vocabulary
increase the overall comprehension and satisfaction of human users.
It is important to note that while we could not control for the knowl-
edge of the human user (i.e., KBh), it is reasonable to assume that
their knowledge grows as their vocabulary Vh grows. For example,
in the LOGISTICS domain example, if a user’s vocabulary includes
the move operator, even if they do not know specifically the precon-
ditions and effects of the operator, they still have an intuitive sense
of what it does. As such, they would have a largerKBh compared to

https://github.com/vstylianos/aaai21
https://github.com/YODA-Lab/PLEASE


Prob. π∗
p = 0.2 p = 0.4 p = 0.6 p = 0.8

|ε∗| |ε| |λ| t |ε∗| |ε| |λ| t |ε∗| |ε| |λ| t |ε∗| |ε| |λ| t

B
L

O
C

K
W

O
R

L
D 1 4 3 2 1 0.1s 3 2 1 0.1s 54 43 12 1.5s 54 43 12 1.0s

2 10 3 2 1 0.4s 4 3 1 0.5s 17 14 3 2.5s 17 13 3 2.5s
3 18 10 8 1 0.5s 20 15 3 1.5s 59 44 19 33.0s 59 46 25 37.0s

L
O

G
IS

-
T

IC
S

1 12 5 4 1 1.0s 5 4 1 1.0s 10 8 2 2.0s 12 10 4 3.0s
2 14 4 3 1 2.0s 6 5 1 3.5s 8 6 2 4.0s 11 8 2 5.5s
3 20 6 5 1 24.5s 6 5 1 25.0s 10 8 2 25.0s 13 10 3 26.0s

T
P

P 1 5 16 13 3 1.5s 16 13 3 2.0s 16 12 4 1.5s 16 13 3 0.1s
2 18 43 34 9 1.5s 43 34 9 1.5s 43 34 9 1.5s 43 34 9 1.4s
3 27 85 68 17 144.5s 85 68 17 144.0s 85 68 17 145.0s 85 68 17 145.0s

D
E

P
O

T 1 2 5 3 31 0.5s 6 4 1 1.0s 14 11 3 2.0s 14 11 3 1.2s
2 6 7 5 1 1.0s 7 5 1 1.5s 14 11 3 32.5s 14 11 3 37.5s
3 10 11 8 2 2.5s 12 7 3 3.0s 26 21 5 185.0s 26 21 5 184.0s

Table 1: Evaluation of PLEASE with different completeness of knowledge bases |KBh|.

Prob. π∗
q = 0.2 q = 0.4 q = 0.6 q = 0.8

|ε∗| |ε| |λ| t |ε∗| |ε| |λ| t |ε∗| |ε| |λ| t |ε∗| |ε| |λ| t

B
L

O
C

K
W

O
R

L
D 1 4 54 43 12 1.2s 54 43 12 1.0s 54 43 12 1.1s 54 43 11 1.0s

2 10 17 12 5 3.0s 17 13 3 2.5s 17 13 4 3.0s 17 14 3 2.5s
3 18 59 47 12 41.0s 59 46 25 37.0s 59 44 13 42.0s 59 44 15 43.0s

L
O

G
IS

-
T

IC
S

1 12 12 8 5 4.0s 12 10 4 3.0s 12 10 2 3.0s 12 10 3 3.0s
2 14 11 8 2 5.0s 11 8 2 5.5s 10 8 2 5.2s 10 8 2 5.0s
3 20 13 9 3 27.5s 13 10 3 26.0s 13 9 4 25.5s 13 10 3 26.0s

T
P

P 1 5 16 13 3 0.1s 16 13 3 0.1s 16 13 3 0.1s 16 13 3 0.1s
2 18 43 34 9 1.5s 43 34 9 1.4s 43 34 11 2.0s 43 34 9 1.6s
3 27 85 68 17 143.0s 85 68 17 145.0s 75 68 17 145.0s 85 67 17 146.0s

D
E

P
O

T 1 2 14 11 3 1.2s 14 11 3 1.2s 14 11 3 1.2s 14 11 3 1.0s
2 6 14 11 3 38.0s 14 11 3 37.5s 14 11 3 37.5s 14 11 3 38.0s
3 10 26 21 5 186.0s 26 21 5 184.0s 26 21 5 187.0s 26 21 5 185.5s

Table 2: Evaluation of PLEASE with different sizes of vocabulary |Vh|.

Prob. π∗
r = 0.6 r = 0.7 r = 0.8 r = 0.9

|ε∗| |ε| |λ| t |ε∗| |ε| |λ| t |ε∗| |ε| |λ| t |ε∗| |ε| |λ| t

B
L

O
C

K
W

O
R

L
D 1 4 54 32 22 1.3s 54 38 16 1.3s 54 43 12 1.0s 54 49 5 1.2s

2 10 17 10 7 2.3s 17 12 5 2.5s 17 13 3 2.5s 17 15 2 2.5s
3 18 59 22 33 37.0s 59 22 33 37.5s 59 46 25 37.0s 59 53 6 37.0s

L
O

G
IS

-
T

IC
S

1 12 12 7 5 3.5s 12 8 4 3.5s 12 10 4 3.0s 12 11 1 3.0s
2 14 11 7 4 6.0s 11 8 3 5.0s 11 8 2 5.0s 11 9 1 4.5s
3 20 13 8 5 29.0s 13 9 4 29.0s 13 10 3 26.0s 13 12 1 29.0s

T
P

P 1 5 16 10 6 0.04s 16 11 5 0.1s 16 13 3 0.1s 16 14 2 0.1s
2 18 43 26 18 1.5s 43 30 13 1.4s 43 34 9 1.4s 43 30 4 1.5s
3 27 85 51 34 133.0s 85 59 26 135.0s 85 68 17 145.0s 85 76 9 136.5s

D
E

P
O

T 1 2 14 8 6 1.2s 14 10 4 1.5s 14 11 3 1.2s 14 13 1 1.0s
2 6 14 8 6 35.0s 14 10 4 34.0s 14 11 3 37.0s 14 13 1 35.0s
3 10 26 16 9 179.0s 26 18 7 180.0s 26 21 5 184.0s 26 23 2 186.5s

Table 3: Evaluation of PLEASE with different upper bounds UB.

another user who does not know about the operator, everything else
being equal. With this in mind, our hypothesis is that:

Human users with access to a known vocabulary of task-
specific terms (and their background knowledge associated to
those terms) have an increased understanding and satisfaction
with personalized explanations compared to human users with
generic explanations.

Study Design: We designed a between-subject user study, wherein

the users were divided into three vocabulary group pairs (Vh1, Vh2,
and Vh3), each of which consists of a treatment group and a con-
trol group. The study comprised a simple imaginary scenario that
involved a robot exploring an environment, and a supervisor (i.e., the
users) observing its behavior from a station. For simplicity, we sim-
ulated the environment as a 5x4 grid and informed the users about
the robot’s capabilities, such as moving to adjacent locations among
other actions. After the users understood the necessary information,
they instructed the robot to move to a certain location in the grid.



Vocabulary Vh1 Vocabulary Vh2 Vocabulary Vh3
Question Treatment Control Sig? Treatment Control Sig? Treatment Control Sig?

Q1: The explanation helped me understand the robot’s decision to communicate the data. 3.90 2.65 Yes 4.45 2.60 Yes 3.60 2.70 Yes
Q2: I am satisfied with the robot’s explanation about how it behaved. 3.90 2.70 Yes 4.40 2.65 Yes 3.65 2.90 Yes
Q3: I feel that the explanation of how the robot behaved has sufficient detail. 3.75 2.60 Yes 3.90 2.90 Yes 3.65 2.80 Yes
Q4: I feel that the explanation of how the robot behaved is complete. 3.75 2.60 Yes 3.95 2.80 Yes 3.15 2.80 No
Q5: I found the robot’s explanation useful for understanding its behavior. 3.70 2.40 Yes 4.10 2.65 Yes 3.50 2.80 No
Q6: I am confident in my understanding of the explanation. 4.15 2.30 Yes 4.30 2.65 Yes 3.45 2.75 No
Q7: I am confident in my ability to explain the robot’s behavior (based on its explanation)
to someone else.

3.95 2.10 Yes 4.05 2.30 Yes 3.35 2.75 No

Table 4: Average scores (max. score 5) and statistical significance (t-test, p = 0.05) on each question in the treatment and control groups.

To generate explanations, we told the users that on top of moving
to the particular location, the robot also communicated some data
to their station and, as supervisors, they requested an explanation so
as to understand its behavior. The explanations were in natural lan-
guage; however, some of the terms in the explanation were changed
to random Greek letters. These letters then formed the three vocab-
ulary groups (i.e., Vh1, Vh2, and Vh3, which has one, two, and three
letters with meanings described, respectively). Within each vocabu-
lary group, the treatment group received a personalized explanation,
where explanations were provided using only the vocabulary known
to the group, whereas the control group received the default explana-
tion without any personalization.5

The main task of the users was to evaluate the robot’s explanation.
To do this, we asked the users seven Likert-type questions pertaining
to the understandability and satisfaction of the explanation.

Results: In total, we recruited 120 users (40 for each vocabulary
group pair, 20 in the treatment and 20 in the control group) from the
online crowdsourcing platform Prolific [19], with the only filter be-
ing that the users are fluent in English. Table 4 tabulates the average
scores for each Likert-type question and whether the scores are statis-
tically significant with respect to a t-test based on a p-value of 0.05.
The distributions of all questions can be found in the supplement.

The results presented in Table 4 show a clear trend in favor of
personalized explanations. When comparing the treatment and con-
trol groups for each vocabulary, we observe that the treatment group
consistently scores higher on average across the seven Likert-type
questions. This indicates that personalized explanations tailored to
users’ known vocabulary can lead to an increased understanding and
satisfaction compared to generic explanations.

In the case of vocabulary groups Vh1 and Vh2, the treatment group
outperforms the control group in all questions, with statistical signif-
icance observed at a p = 0.05 level. This suggests that personalizing
explanations based on a smaller, more focused vocabulary (i.e., one
or two terms) has a considerable impact on users’ understanding and
satisfaction. These results support our hypothesis that personalized
explanations can be more effective than generic ones when users have
access to a known vocabulary of task-specific terms.

However, when we examine the results for vocabulary group Vh3,
we notice that the treatment group only shows statistically signifi-
cant improvements in Q1, Q2, and Q3. This finding may suggest that
as the vocabulary size increases, the benefits of personalized expla-
nations become less pronounced. Further investigation is needed to
better understand this relationship and its implications on the design
of personalized explanations.

In summary, the results of our study demonstrate the value of per-
sonalized explanations for enhancing user understanding and satis-
faction, especially when a smaller, focused vocabulary is used. While

5 For additional details about the study design and how the explanations were
generated in accordance to our framework, see the supplement available at
https://github.com/YODA-Lab/PLEASE.

the effectiveness of personalization appears to decrease with larger
vocabularies, the overall trend suggests that tailoring explanations to
users’ known vocabulary can lead to better outcomes than provid-
ing generic explanations. Future research could explore the potential
trade-offs between vocabulary size and personalization to better un-
derstand the optimal conditions for delivering effective explanations.

7 Conclusions

In this paper, we looked at generating explanations at appropri-
ate abstraction levels with respect to a human vocabulary via a
method called knowledge forgetting. While the operation of knowl-
edge forgetting has been extensively studied in various logical set-
tings [11, 17, 27, 30], its applicability in the context of human-aware
planning and explanation generation has not been fully explored, to
the best of our knowledge. We hope this work adds to the growing re-
search on human-aware planning, enabling effective communication
and collaboration between humans and AI agents, while ensuring a
coherent and personalized explanation experience.

It is important to note that in addition to explanation generation,
explanation communication is a crucial aspect of explanatory sys-
tems that is often ignored. It has been shown that explanations as
model reconciliation, presented mostly as text, serve an important
and intuitive way of explaining plans to users [4, 29]. Additionally,
Kumar et al. [15] showed that conveying explanations through visu-
alizations tend to be more preferred by users than text alone. On that
premise, and given the logical nature of our framework, we ought to
say that we do not aim at presenting explanations to users in a log-
ical format. The final form of our explanations can be, for instance,
translated into natural language before communicated to a user. We
will pursue this in future work.

At the other end of the spectrum, we view the work presented here
as a necessary step towards realizing an interactive, multi-shot expla-
nation generation scheme, where human users interact with an agent
in a dialogical fashion. The personalized explanations presented here
can serve as a foundation for instigating a dialogue between the user
and the agent. Specifically, we conceptualize a framework where,
upon receiving an initial explanation from the agent, the user would
have the option to request further clarifications by pointing to spe-
cific parts of the explanation, in which case the agent will increase
(or decrease) the explanation’s granularity. Another option for the
user would be to refute the agent’s explanation (i.e., engage in an
argumentative process). Through these interactions and the informa-
tion exchange, the agent will be able to update their approximation of
the user’s knowledge base and, thus, learn more accurate representa-
tions of the user’s actual knowledge. We hope to pursue this exciting
direction in the future as well.

https://github.com/YODA-Lab/PLEASE
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