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Goal Recognition Design (GRD) is the problem of finding the least amount of environment

modifications to force an acting agent to reveal its goal as early as possible. Figuring out

an agent’s goal by observing its behavior is a problem studied in Psychology, Economics,

and Artificial Intelligence, where it is known as goal recognition. Contrary to most common

approaches where the focus is on finding faster algorithms to detect the goal, GRD takes

an offline approach and focuses on environment design to facilitate goal recognition. This

thesis investigates GRD problems when action outcomes are stochastic, which is the case

of most physical world interactions. I propose the Stochastic GRD (S-GRD) problem and

study its specific characteristics, challenges, and limitations. Under this umbrella, we analyze

partially-observable and suboptimal cases and provide a novel way to redesign the environment

for partially-observable settings. This thesis presents the problem formulation and novel

algorithms to solve the problem. Additionally, empirical evaluations show that S-GRD helps

reduce the complexity of a goal recognition problem in all cases.
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Chapter 1

Introduction

“Our goals can only be reached through a vehicle of a plan,

in which we must fervently believe,

and upon which we must vigorously act.

There is no other route to success.”

– Pablo Picasso

Our ability to recognize other people’s plans and goals relies on the assumption that most

human behavior is goal-oriented. It enables us to understand other people’s motivations and

expedites human communication. Nowadays, our interactions are not limited to humans but

also artificial agents. As human-machine interaction and automated systems’ intelligence

continually grow, so does the need to understand each other’s objectives. Therefore, researchers

aim to provide artificial agents with goal recognizing capabilities (Sukthankar et al., 2014).

Research in goal recognition studies the problem of determining an agent’s goal by observing
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its behavior. Since it is desirable to recognize the goal before the agent reaches it, most

research focuses on finding fast online algorithms.

One characteristic that delays the recognition is observing ambiguous behavior. Consider

the Charade1 game, where the actor collaborates with the observer by making distinctive

actions to help with the goal recognition. The more ambiguous the actions, the more the

amount of time that is required to guess. Consequently, a natural concern is to know if it is

possible to induce a non-ambiguous behavior even when the actor is indifferent or unaware of

the observer.

This thesis studies how the design of a stochastic environment can minimize the ambiguous

policies of an acting agent to facilitate goal recognition. It is a more general case of Goal

Recognition Design (GRD) (Keren, A. Gal, et al., 2014) that assumes deterministic action

outcomes. We propose the Stochastic Goal Recognition Design (S-GRD) framework, which

presumes a keyhole goal recognition and stochastic agent action outcomes. Initially, we

consider the problem for optimal actors and observers with full observability; later, these

assumptions are relaxed to model more realistic scenarios.

Our specific contributions consist of formalizing S-GRD problems, providing algorithms to

solve them, and a novel type of modifications for partially-observable settings. Given an

original stochastic environment, a set of possible goals, and an actor behavior, our algorithms

find the minimal set of modifications that minimize the non-distinctive (ambiguous) policies

and therefore facilitate goal recognition. We empirically evaluate the algorithms and the

usefulness of the approach.
1Charade is a word guessing game. It requires the actors to mime their hints without using any spoken

words.
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1.1 Stochastic Goal Recognition Design in Context

Plan and goal recognition problems aim to identify an agent’s plan or goal from observing

its behavior. Researchers have made significant progress within the last decade through

synergistic integrations of techniques ranging from logic (Hobbs et al., 1988; Kautz and

J. F. Allen, 1986) and probability (Charniak and Robert Prescott Goldman, 1991; E. Y. Ha

et al., 2011) to natural language processing (Geib and Steedman, 2007; Vilain, 1990) and

planning (Ramı́rez and Geffner, 2009; Ramı́rez and Geffner, 2010; Ramı́rez and Geffner,

2011). Plan and goal recognition problems have been used to model applications in a wide

range of domains such as software personal assistants and robots that anticipate the needs

of the humans (Kelley et al., 2012; Oh et al., 2010; Oh et al., 2011a; Oh et al., 2011b;

Tavakkoli et al., 2007); intelligent tutoring systems that recognize sources of confusion or

misunderstanding in students through their interactions with the system (Johnson, 2010;

S. Lee et al., 2012; McQuiggan et al., 2008; Min, E. Ha, et al., 2014); and security applications

that recognize terrorist plans (Jarvis et al., 2005).

Cohen et al., 1981 and Geib and Robert P Goldman, 2001 distinguish plan recognition

according to the relationship between observer and observed agent: keyhole, intended, and

adversarial. In keyhole recognition, the agent is not aware that it is being observed and is

engaged in its own task; In intended recognition, the actor cooperates with the observer

and chooses actions that can be easily understood by the observer; adversarial recognition

assumes that de actor actively tries to deceive the observer through its actions.

Most research in goal recognition primarily focuses on developing better and more efficient

techniques to recognize the plan or the goal of an acting agent given a sequence of observa-

tions of its actions. For example, imagine a simplistic agent-navigation scenario shown in

Figure 1.1(a), where an agent is at E3, it can move in any of the four cardinal directions, and

3



(a) (b)

Figure 1.1: Example Problem (a) Original goal recognition problem with starting state at
position E3 and possible goals G1 (at B1), G2 (at A5), and G3 (at C5). (wcd=4) (b) A
design solution that blocks actions (E3, up), (C4, right), (C5, up). (wcd=2)

its goal is one of three possible goals G1 (at B1), G2 (at A5), and G3 (at C5). Additionally,

assume that it will move along the shortest path to its goal. Then, if it moves left to E2,

we can deduce that its goal is G1. Similarly, if it moves right to E4, then its goal is either

G2 or G3. However, if it moves up to D3, we cannot make any informed deductions. In

fact, if the agent moves along any one of its shortest paths to goal G3, throughout its entire

path, which is of length 4, we cannot deduce whether its goal is either G2 or G3! This

example illustrates one of the challenges with this approach: there are often many ambiguous

observations resulting from similar ways to accomplish different goals. As such, it is difficult

to uniquely determine the agent’s goal until a long sequence of actions is observed.

Therefore, Keren, A. Gal, et al., 2014 proposed an orthogonal approach to modify the

underlying environment of the agent, in such a way that the agent is forced to reveal its goal

as early as possible. They call this problem the Goal Recognition Design (GRD) problem.

For example, if we block the actions (E3, up), (C4, right), (C5, up) in our example problem,

where we use tuples (s, a) to denote that action a is blocked from cell s, then the agent

can make at most 2 actions (i.e., right to E4 then up to D4) before its goal is conclusively
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revealed. Figure 1.1(b) shows the blocked actions. This problem finds itself relevant in many

of the same applications of goal recognition because, typically, the underlying environment

can be easily modified.

The transformation performed to the model through modifications is an instance of design

optimization; thus, we require measuring and comparing models to identify the optimal

solution. The seminal work (Keren, A. Gal, et al., 2014) introduced the notion of worst-case

distinctiveness (wcd), a measure that assesses the ease of performing goal recognition in an

environment. The wcd of a problem is the longest sequence of actions an agent can take

without revealing its goal. The objective is to find a subset of feasible actions to make it

infeasible such that the resulting wcd is minimized. In this problem, they make three explicit

assumptions: (i) the agents in the system will act optimally (i.e., agents will move along one

of the shortest paths to its goal); (ii) the outcomes of the actions of agents are deterministic;

and (iii) the environment is fully observable (e.g., agent and observer have access to all

variables). Other implicit assumptions are that all goals are equally important or possible

and that all types of modifications have the same cost.

Goal Recognition Design and most of the work derived from it (Ang et al., 2017; Harman and

Simoens, 2019; Keren, A. Gal, et al., 2015; Keren, A. Gal, et al., 2016a; Keren, A. Gal, et al.,

2016b; Keren, A. Gal, et al., 2018; Keren, Xu, et al., 2020; Mirsky et al., 2017; Son et al.,

2016) assume agents with deterministic action outcomes. In this thesis, I study how design

can facilitate keyhole goal recognition in stochastic environments. Our approach uses the

idea to formulate goal recognition as planning (Ramı́rez and Geffner, 2010) and uses Markov

Decision Processes (MDPs) Mausam and Kolobov, 2012 to formulate the planning problem

of the agents within the GRD problem. This choice is motivated by the fact that MDPs

are often de facto models for representing planning problems with uncertainties. Real-world
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applications inspire the assumptions made for each proposed setting. They aim to extend the

applicability of GRD to cases where agents and observers interact with the physical world.

1.2 Overview of Contributions

This thesis presents a general model for the S-GRD framework, which supports four different

settings or problems:

1. The Optimal Stochastic Goal Recognition Design (OS-GRD) problem, where

we assume optimal agents, stochastic action outcomes, and full observability for agents

and observer.

2. The Partially Observable Stochastic Goal Recognition Design (POS-GRD)

problem, with optimal agents, stochastic action outcomes, and observers affected by

sensor limitations in two ways: actions are no longer observable, and due to sensor

resolution, states are only partially observable. Acting agents have full observability.

3. The Suboptimal Stochastic Goal Recognition Design (SS-GRD) problem,

which assumes boundedly rational agents, stochastic action outcomes, and full ob-

servability for agents and observer.

4. The Partially Observable Suboptimal Stochastic Goal Recognition Design

(POSS-GRD) problem, which combines the assumptions of POS-GRD and SS-GRD

settings.

For each problem, we introduce new algorithms and thoroughly discuss related properties.
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1.3 Research Output

Some of the material in this thesis appeared in the following publications:

• Christabel Wayllace, Sarah Keren, Avigdor Gal, Erez Karpas, William Yeoh, and

Shlomo Zilberstein. Accounting for Observer’s Partial Observability in Stochastic

Goal Recognition Design. In Proceedings of the European Conference on Artificial

Intelligence (ECAI), pages 2394-2401, 2020.

• Christabel Wayllace, Ping Hou, and William Yeoh. New Metrics and Algorithms

for Stochastic Goal Recognition Design Problems. In Proceedings of the International

Joint Conference on Artificial Intelligence (IJCAI), pages 4455-4462, 2017.

• Christabel Wayllace, Ping Hou, William Yeoh, and Tran Cao Son. Goal Recognition

Design with Stochastic Agent Action Outcomes. In Proceedings of the International

Joint Conference on Artificial Intelligence (IJCAI), pages 3279–3285, 2016.

1.4 Thesis Outline

The rest of the thesis is organized as follows:

In Chapter 2, we provide the background information that reviews classical and probabilistic

planning, relevant work on goal recognition, design optimization, and GRD. Chapter 3

presents a description of the proposed S-GRD framework, its mathematical model, and the

settings that supports: Optimal S-GRD, Partially-Observable S-GRD, Suboptimal S-GRD,

and Partially-Observable Suboptimal S-GRD. Chapter 4 analyzes the properties of each

setting and presents algorithms to compute wcd in each case. Chapter 5 focuses on the design

stage and presents algorithms to minimize wcd. Chapter 6 empirically evaluates all proposed

7



algorithms as well as the usefulness of the approach. In Chapter 7, we discuss related work

and Chapter 8 presents the conclusions and future work.
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Chapter 2

Background

“Without leaps of imagination or dreaming,

we lose the excitement of possibilities.

Dreaming, after all is a form of planning.”

– Gloria Steinem

Goal Recognition Design (GRD) stands at the intersection of goal recognition, design

optimization, and classical planning. This thesis is a generalization of GRD problems and

uses probabilistic planning, particularly Markov Decision Processes (MDPs), at its core. This

chapter provides basic background information of classical and probabilistic planning with

an emphasis on MDPs and common algorithms to solve them. Next, it presents a review of

some relevant work on goal recognition using planning, a background on design optimization,

and a more detailed description of GRD.
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2.1 Classical Planning

Planning is a branch of AI that consists on devising a plan of action to achieve an agent’s

goals. The agent selects the next action to take based on a model of the problem that specifies

how actions and sensors work, the agent’s current situation, and the goal to be achieved. A

planning problem is formed by the model, the language that expresses the model, and the

algorithms that use the model representation to generate the behavior. In this section, we

will review these concepts for classical planning.

Classical planning is the simplest form of planning where the actions have deterministic

outcomes and the initial state is fully known. A classical planning model (Geffner and Bonet,

2013), can be represented as a tuple 〈S, s0,A, f, C,G〉, where:

• S is a finite and discrete state space.

• s0 ∈ S is a known initial state of the agent.

• A is the set of actions and A(s) ⊆ A is the set of actions applicable in each state s ∈ S.

• f : S ×A → S is a deterministic state transition function, where s′ = f(s, a) is the

successor state after applying action a ∈ A(s) in state s.

• C : A→ R+ defines the cost for each action.

• G is a set of goal states.

A plan π = 〈a1, . . . , an〉 is a sequence of applicable actions that brings an agent from the

starting state s0 to a goal state g ∈ G. The cost of a plan C(π) =
∑

i C(ai) is the sum of the

cost of each individual action in the plan. The goal is typically to find a cost-minimal plan

π∗ = argminπ C(π).
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The main challenge in planning is to achieve both generality and scalability. Thus, a solution

cannot be improved by using any domain-specific strategy. A classical planner must accept

any problem whose states and actions are defined in terms of a set of problem variables

called state variables; any domain-specific information must be irrelevant and in any case the

planner must provide a set of actions to take in order to achieve the goal.

An algorithm to solve a classical planning problem should take advantage of its structure.

The challenge is to find a language to represent planning problems in compact form and

expressive enough to represent a wide variety of problems. We will review two languages:

STanford Research Institute Problem Solver (STRIPS) (Fikes and Nilsson, 1971), a simple and

possibly the oldest classical planning language, and Planning Domain Definition Language

(PDDL) (Ghallab et al., 1998), a language and syntax that has been used as the standard

language in the planning competitions since 1998.

2.1.1 Planning Languages

STanford Research Institute Problem Solver (STRIPS)

STanford Research Institute Problem Solver (STRIPS) (Fikes and Nilsson, 1971) is a language

based on Boolean state variables. A planning problem expressed in STRIPS is a tuple

P = 〈F, I,O,SG〉 (Geffner and Bonet, 2013) where:

• F represents the set of atoms or propositions of interest (usually called fluents).

• I ⊆ F represents the initial state.

• O represents the set of actions. The actions o ∈ O are represented by three sets of

atoms over F called the Add (Add(o)), Delete (Del(o)), and Precondition (Pre(o))
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lists. Add(o) describes the atoms that the action o makes true, Del(o) the atoms that

o makes false, and Pre(o) the atoms that must be true for the action to be applicable.

• SG ⊆ F represents the goal.

A STRIPS problem P = 〈F, I,O,SG〉 encodes the classical state model 〈S, s0,A, f, C,G〉 in

compact form:

• The states s ∈ S are the possible collections of atoms over F where an atom p ∈ F is

true in s ⇐⇒ p ∈ s.

• The initial state s0 is I.

• The actions a ∈ A(s) are the ones in O with Pre(a) ⊆ s.

• The state transition function is f(a, s) = (s \Del(a)) ∪ Add(a).

• The action costs C(a),∀a ∈ A, are equal to 1 by default.

• The set G of goal states comprises the states s for which SG ⊆ S.

Since the states in S(P ) are represented as collections of atoms from F, the number of states

in S(P ) = 2|F|, where |F| is the number of atoms in P .

Planning Domain Definition Language (PDDL)

The Planning Domain Definition Language (PDDL) (Geffner and Bonet, 2013; Ghallab et al.,

1998) supports STRIPS-style actions as well as a number of additional syntactic constructs in

a notation originated in the Lisp programming language. PDDL planning tasks are expressed

in two parts: the general domain and a specific domain instance. The general domain
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describes predicates and actions while the specific domain creates object names that will

replace the variables defined in the general domain and specifies the initial and goal states. A

“requirement” flag in the general domain describes the PDDL fragment used by the encoding,

which can include STRIPS and other notations as well as extensions for conditional effects,

quantification, etc. PDDL has evolved over time adding minor and major changes to cover

new requirements; however, most planners do not support the entire PDDL and can even

interpret some constructs in a different way according to the requirements of the algorithms

used to solve the problem.

2.2 Probabilistic Planning

Classical planning assumes a fully known initial state and deterministic action outcomes.

Those assumptions are inappropriate for many domains, the world dynamics can affect the

action effects in many ways that cannot be completely modeled. When things do not work

as expected due to insufficient knowledge or when a situation requires a complex model, it

is easier to use a probabilistic model. For instance, when a key sometimes fails to start an

old car, it is easier to assign a success probability than to consider all possible combinations

of thing that could cause the failure. The initial world states are also source of uncertainty:

will the highway be crowded?

Probabilistic planning is an extension of classical planning that assumes uncertainty over the

initial world state, action effects, and events. It presumes the agent’s model and goals, as

well as the domain dynamics, are known and focuses on finding the behavior of the agent

to achieve its objectives. Unlike classical planning, there is not a unique formulation for a

probabilistic planning problem; the formulation differs according to the approach to solving

the problem. For instance, Kushmerick et al., 1995 use a probability distribution over possible
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world states to model imperfect information about the initial world state and assumes that

actions have a conditional probability distribution over changes to the world. However, most

researchers agree on formulating it as a Markov Decision Process (Lago Pereira et al., 2008;

Littman et al., 1998; Majercik and Littman, 1998; Yoon, Fern, and Givan, 2007; Yoon, Fern,

Givan, and Kambhampati, 2008).

2.2.1 Markov Decision Process (MDP)

Markov Decision Processes (MDPs) provide a mathematical formalism to model decisions

with uncertain outcomes of actions that an agent must take. In general, MDPs consist of a

set of states, a set of actions, a transition model that describes the outcome of each action

in each state, i.e, the probability of changing to a new state after taking one action in the

current state, and an objective function. The solution of an MDP determines the action to

take in each one of the states where the agent might arrive. A solution of this type is called

a policy. An optimal solution optimizes the objective function that could be for instance,

minimizing the incurred cost when traversing a path. MDPs can model problems in numerous

domains, especially when they present the following characteristics (Mausam and Kolobov,

2012):

• Uncertain Domain Dynamics: Even though MDPs can model deterministic domains,

their more valuable contribution is in stochastic domains.

• Sequential Decision Making: MDPs are useful when the agent needs to plan a sequence

of actions to obtain maximum benefits in the future.

• Cyclic Domain Structures: The algorithms used to solve MDPs optimally handle

situations where the agent has the possibility to revisit a state, for example, if after

taking one action the state of the agent does not change.
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• Nature is Fair: Domains where the outcomes are random instead of caused by another

agent’s decisions are best modeled by MDPs.

• Full Observability and Perfect Sensors: This characteristic implies that the agent has

access to the whole state space and that its observations are correct.

Since MDPs can model such a broad spectrum of domains, proposing efficient solution

techniques becomes difficult. As a result, researchers conceived specialized MDPs with new

restrictions added to the general model. These restrictions try to model more specific types of

problems while still covering significant classes of real-world scenarios. This thesis focuses on

MDPs modeling scenarios where the agent has a limited but unknown time to make decisions,

which implies that the system will eventually reach a terminal state or goal. In particular, it

uses Stochastic Shortest-Path (SSP) MDPs (Mausam and Kolobov, 2012), which are more

general than other well known classes such as finite-horizon and infinite-horizon discounted

reward MDPs.

An SSP-MDP is represented as a tuple 〈S, s0,A, T , C,G〉 where:

• S is a finite set of all possible states of the system.

• s0 ∈ S is a start state.

• A is a finite set of all actions an agent can take.

• T : S×A× S→ [0, 1] is a transition function that specifies the probability T (s, a, s′)

of transitioning from state s to s′ when action a is executed

• G ⊆ S is the set of all goal states s.t. ∀g ∈ G, a ∈ A, T (g, a, g) = 1 and C(g, a, g) = 0,

that is, the goal states are terminal.

15



• C : S×A× S→ R+ is a cost function that gives the cost C(s, a, s′) of executing action

a in state s and arriving to state s′ under two conditions:

1. There exists at least one proper policy, which is a policy that is guaranteed to

reach a terminal state.

2. Every improper policy must incur an accumulated cost of ∞ from all states from

which it cannot reach the goal with probability 1.

These two conditions imply that some proper policy for the SSP-MDP is preferable to all

improper ones. Under the SSP-MDP definition conditions, in expectation, an optimal policy

is the “shortest” way of reaching the goal from any given state. At a higher level, making

the rewards for all actions negative means the agent is effectively paying a cost every time

it executes an action; thus, it is motivated to reach a goal state as fast as possible. If we

consider an SSP-MDP with one goal and a deterministic transition function, that is, G = {g}

and T : S×A× S→ 1, the problem turns into the classical problem of finding a weighted

shortest path in a graph. This property is the reason for its name.

As stated before, a solution of an MDP is a policy that maps states to actions. In the next

subsection, we will present a well-known algorithm called Value Iteration for finding an

optimal policy.

2.2.2 Value Iteration (VI)

The Value Iteration (VI) algorithm was proposed by Bellman, 1957; the basic idea is to

compute the utility value for each state and use those values to select an optimal action for

each state. VI is based on the Bellman equations (Bellman, 1957) that have a unique solution
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and mathematically represents the optimal solution of an MDP:

V ∗(s) = 0 if s ∈ G

V ∗(s) = min
a∈A

Q∗(s, a) if s /∈ G

Q∗(s, a) =
∑
s′∈S

T (s, a, s′)
[
C(s, a, s′) + V ∗(s′)

] (2.1)

Where V ∗(s) is the minimum expected cost to reach a goal starting from a state s and

Q∗(s, a) is defined as the minimum expected cost to reach a goal starting in state s if the

first action is a. VI first initializes all values V0 arbitrarily; in the nth iteration it computes

a new approximation Vn for each state value using the successor values from the previous

iteration Vn−1:

Vn(s)← min
a∈A

∑
s′∈S

T (s, a, s′)
[
C(s, a, s′) + Vn−1(s

′)
]

(2.2)

VI successively approaches to V ∗(s) with a Vn(s) function that converges to V ∗(s) in the

limit as n tends to infinity. The action chosen by the policy for each state s is then the one

that minimizes V ∗(s). VI is an iterative algorithm that performs a Bellman update on each

state in each iteration and there is one Bellman equation per state. The difference between

the expected cost of a state in two consecutive iterations is called the residual of that state

and the largest residual is called the residual error. The algorithm terminates when the values

converge, that is, the residual error is less than a user-defined threshold ε.

Theoretical Properties of VI

As any iterative algorithm, VI is characterized by four properties: convergence, optimality,

termination, and running time.

17



• VI converges in the limit, without initial restrictions, to the optimal values, that is,

for the SSP-MDP: ∀s ∈ S, limn→∞ Vn(s) = V ∗(s), irrespective of the initialization V0.

• The residual of a state is the amount of change in the values between two successive

iterations. In an SSP-MDP ResV (s) = |Vn−1(s) − Vn(s)| with Vn(s) as defined in

Eq. 2.2. The residual w.r.t. a value function V is ResV = maxs∈S ResV (s) and it is

called ε − consistent if ResV < ε. Since VI is monotonic, once all residuals are less

than ε, they will remain less than ε for all subsequent iterations, and so, it guarantees

termination.

• In the worst case, a singe Bellman update runs in O(|S||A|) (checking all actions and all

successor states) and a single iteration requires O(|S|) updates, so the total running

time is O(|S2||A|). Bonet, 2007 established a polynomial bound for SSP-MDPs when

costs are positive and the initial values are admissible, i.e., a lower bound of the optimal

cost.

2.2.3 Topological VI (TVI)

VI suffers from a limitation that it updates each state in every iteration even if its expected cost

has converged. Topological VI (TVI) (Dai, D. S. Weld, et al., 2011) addresses this limitation

by detecting the MDP structure and updating states grouped in topological sequences. It

first divides the MDP into strongly connected components (SCCs) and repeatedly updates

the states in only one SCC until their values converge before updating the states in another

SCC. Since the SCCs form a directed acyclic graph, states in an SCC only affect the states

in upstream SCCs. Thus, by choosing the SCCs in reverse topological sort order, it no longer

needs to consider SCCs whose states have converged in a previous iteration.
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TVI is guaranteed to terminate and to converge to an optimal value function. Essentially,

TVI decomposes an MDP into sub-problems or components and solves each one of them

using VI. The solution of a sub-problem depends only either on its states or on converged

ones (treated as sink states).

2.2.4 MDPs with Dead Ends

A dead end is a state s ∈ S such that no policy can reach a terminal state from s in any

number of steps. SSP-MDPs assume that there exists a way for the agent to reach a terminal

state or goal with probability 1 from each state. Therefore, SSP-MDPs do not handle dead

ends.

Since dead ends model failures in real-world applications, the inability to control them reduces

the applicability of SSP-MDPs. Hence, it is essential to extend their solution techniques

to handle these kinds of states. One consequence of considering dead ends is that the VI

algorithm will never converge. An option to avoid this problem is to transform an MDP

with dead ends (called finite penalty stochastic shortest-path MDP with dead-ends) to an

SSP-MDP by adding a new action with a high cost that causes a transition to a goal state

with probability 1 (Mausam and Kolobov, 2012). The penalty should be high enough to force

the agent to prefer a better policy or, in case of no alternative options, the start state’s value

becomes large and triggers the process to stop.

The option discussed in the previous paragraph assumes that a dead end is easy to identify;

this is possible if no action applies to a non-goal state (explicit dead end). However, if the

available actions do not lead to a goal, we face a case of implicit dead ends that are costly to

detect. MDP solvers use different techniques, for instance, Kolobov, D. S. Weld, et al., 2009

classify states to find states with known properties, explicit dead ends, and others. When
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a state s is in the third group, the solver uses a determinized version of the domain and

a classical planner to find a plan; failure indicates that s is a dead end. A different faster

approach uses machine learning to identify implicit dead ends (Kolobov, D. Weld, et al.,

2010).

While our work assumes SSP-MDP agents, the process to redesign the model causes dead

ends, especially with the use of action removal.

2.2.5 Probabilistic PDDL (PPDDL)

Although the definition of an SSP-MDP is short, it is not easy to describe MDP instances. A

flat representation assigns IDs to each state, but in this case, the states are not informative,

which prevents algorithms from taking advantage of the structure of a particular problem.

Further, some domains could contain a vast number of states, causing the transition function

to use more space and time than the state space itself. A factored representation specifies

a state as a combination of state variables, which helps to reduce the description of the

state space and other components such as the transition function. Similar to the planning

domain definition language (PDDL) presented in Subsection 2.1.1 (p. 12), the probabilistic

PDDL language (PPDDL) uses a factored representation and takes advantage of the problem

structure. PPDDL is convenient when actions have correlated effects and few outcomes. This

subsection reviews PPDDL in more detail.

PPDDL, specifically PPDDL1.0, is an extension of PDDL2.1 that expresses Planning Domains

with Probabilistic Effects (Younes and Littman, 2004). The main extension is the support for

probabilistic effects where rewards are modeled by fluents to model MDPs. The syntax for

probabilistic effects is (probabilistic p1e1 . . . pkek ) where effect ei occurs with probability

pi having pi ≥ 0 and
∑k

i=1 pi = 1. For instance, in a blockworld domain, the probabilistic
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effect that models the effect of stacking one block on top of another block can be represented

in PPDDL as:

:effect( (probabilistic 0.9
(and (not (holding ?x)

(not (clear ?y))
(clear ?x)
(handempty
(on ?x ?y))))))

The previous expression means that after executing the action, the block x will be on top

of block y with probability 0.9. Note that it is implicit that with probability 0.1, the state

remains unchanged. Other statements are also required to define the state; for example, the

agent is no longer holding block x, or the top of block y is no longer clear. A new flag in the

requirements section, :probabilistic-effects, signals the support of probabilistic effects.

As stated earlier, Markovian rewards can be encoded using fluents. The reserved word reward

is used to represent the total accumulated reward due to the execution of the action and it is

restricted to action effects of the form (〈additive− op〉〈rewardfluent〉〈f − exp〉) where:

• 〈additive− op〉 can be increase or decrease.

• 〈f − exp〉) is a numeric expression not involving reward.

The requirement flag, :rewards, signals that Markovian rewards are utilized. Domains that

use both probabilistic effects and rewards can use instead the requirement flag :mdp which

implies :probabilistic-effects and :rewards.

21



Goals statements use the same syntax as in PDDL, (:goal φ). In the probabilistic context,

the probability of achieving φ is maximized by default but it can be changed by explicitly

specifying an optimization metric. When a planning problem declares the :rewards require-

ment, the plan objective by default is to maximize the expected reward. It is also possible to

specify a one-time reward for entering to the goal state by using (:goal-reward f), where

f is a numeric expression.

2.2.6 The Problem of Finding Best-k Policies

In many real-world scenarios, providing only one optimal solution is not enough. For example,

in situations where the optimal solution gives a trajectory where some state has a high risk of

failure, it might be preferred to take a less risky, slightly suboptimal path. Even if the reward

function incorporates the risk factor, it is not always easy to account for all world dynamics

in the model. The criteria to optimize a solution can also be diverse and multi-objective

planning is slow. Therefore, a good alternative is to look for multiple solutions optimal for a

single criterion and later choose one that best accommodates all requirements.

Solving the k best policies problem naïvely is exponential in k. The main idea of the algorithm

proposed by Dai and Goldsmith, 2009 is to first define a metric and a lexicographic ordering

to compare and rank policies by (1) The expected value at the starting state; (2) Their

“distance” to a better policy (the number of states for which two policies differ); and (3)

Their lexicographical order. Then, starting from an optimal policy, the next k − 1 policies

can be found one at a time. To find the next best policy, the algorithm prunes the search

22



space of policies based on a theorem that essentially states that among the best k policies,

there is at least one that differs from the best k policy in one state.

We now explain the method in more detail. Dynamic programming finds optimal policies

because it assumes that every subproblem is optimal; this assumption is no longer valid for

suboptimal policies. However, finding the next best policy is possible by reducing the problem

to many optimal planning problems. For instance, given the best and second-best policies π1

and π2, π3 either differs from π1 on s0 and from π2 on s0, or from π1 on s0 and from π2 on s1,

and so on. In fact, comparing all states requires to solve | S |2 optimal planning problems, in

general | S |k many. The complexity of this approach when Value Iteration is used becomes

| S |k O(V I).

To improve the algorithm, the authors propose a theorem that formally states that “among

the top-k policies, there exists πm with m < k, such that the k-th best policy differs from

πm on exactly one state.” The new algorithm keeps an ordered set of candidate policies P

initially empty. The first policy is an optimal policy computed using VI. To find the i-th best

policy, the algorithm generates k−i+ 1 distinct policies as candidates. These candidates (1)

must not be duplicates of any policy in P , and (2) each differs from πi−1 on exactly one state.

The authors also prove that πi ∈ P , in fact, πi is the best policy in P .

There are (| A | −1)× | S | policies that have exactly one state different from π. Finding the

best k−i+ 1 of them has a complexity of k× | A | × | S | ×O(policy evaluation). Note that

the complexity of keeping the list P sorted is O(k2log(k)) so it does not increase the total
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complexity. Hence, the complexity of the new algorithm using VI is k× | A | × | S | ×O(V I),

which is a linear function of k.

A later paper (Dai and Goldsmith, 2010) proposes an approximate algorithm that skips

many “less useful” or trivial policies, which are policies that differ from other policies only in

unreachable states. In this case, any trivially extended policies from the current best list P

are excluded.

2.3 Plan and Goal Recognition

Plan recognition (PR) is the problem of inferring an agent’s plan and goal given observations

of its behavior. On the other hand, goal recognition (GR) focuses only on the agent’s goal

inference, therefore, GR is considered a subproblem of PR. Both problems fall within the

scope of plan, activity, and intend recognition (PAIR), where activity recognition focuses

on problems that deal directly with data obtained from physical sensors and plan and

intend recognition concentrate on identifying the high-level goals and intends of an acting

agent (Sukthankar et al., 2014).

There is considerable interest in goal and plan recognition not only in the AI community but

also in Psychology, where prediction of agent’s behavior is of interest. More than four decades

ago, Schmidt et al., 1978 studied the relevance of PR to both Psychology and AI. Nowadays,

research in cognitive sciences use AI models to understand human actions or to model human

plan recognition (Baker, R. Saxe, et al., 2009; Baker and Tenenbaum, 2014; Bonchek-Dokow
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and Kaminka, 2014; Tauber and Steyvers, 2011). At the same time, researchers in AI

use concepts of mirroring (the empathetic human response to observations) to solve GR

problems (Vered et al., 2018) or add human skills like empathy to PR models (Shvo, 2019).

The intersection of Psychology and AI with respect to plan and goal recognition lies on their

shared interest of multi-agent interaction. Applications using PR or GR are diverse and

typically involve interactions between human and artificial agents. PR has been applied in

education, analyzing student’s interaction with exploratory learning environments (Amir and

Y. Gal, 2013; Uzan et al., 2015); in computer games, to give computer-controlled players the

ability to recognize the opponent’s strategies (Kabanza et al., 2010) or in the case of games

with multiple solution paths, to detect the opponent’s goals (GR) (E. Y. Ha et al., 2011; Min,

Mott, et al., 2016). Other fields include security, where it is used to correlate and analyze

security alerts (Qin and W. Lee, 2004) or as part of intrusion prevention systems (G. Chen et

al., 2010), and human-robot interaction (HRI), for human-robot collaborative teams (Levine

and Williams, 2018).

Most applications in plan and goal recognition require the following properties (Sukthankar

et al., 2014):

• Speed: Plan and goal recognition are usually performed online and the process must

finish before the agent arrives to the goal. Ideally, it should take a fraction of the time

required by the agent to take the next action.
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• Precision and Recall: It is desirable that the predictions are correct (precision) and

at every opportunity (recall).

• Early Prediction: Applications need early and accurate predictions, the problem

must be solved as early as possible, that is, with the minimum amount of observations.

• Partial Prediction: When full prediction is not immediately available, applications

should be able to use partial information.

Nevertheless, not all solutions have all the properties, usually systems will sacrifice one for

another.

2.3.1 Plan Recognition as Planning

The general idea of solving a PR problem is to match a given sequence of observations to

a plan and goal (or only to a goal in the case of GR). The problem requires as input a set

of actions together with a means to encode the correct use of those actions. They can be

provided through plan libraries (Geib, 2009; Geib and Kantharaju, 2018; Kautz and J. F.

Allen, 1986; Maraist, 2017; Massardi et al., 2019; Singla and Mooney, 2011) or via planning

domains (domain theory) (Baker, R. Saxe, et al., 2009; Ramı́rez and Geffner, 2009; Ramı́rez

and Geffner, 2010; Ramı́rez and Geffner, 2011). An alternative input for GR problems is

data (corpora) that is used to train the model of a recognizer (Blaylock and J. Allen, 2003;

E. Y. Ha et al., 2011). In this thesis, we are interested in techniques using domain theory that
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rely on the idea that PR is planning in reverse and use planning algorithms and representation

languages to solve it.

Ramı́rez and Geffner, 2009 proposed a mapping of plan recognition to a planning problem

where the original domain (called theory) is transformed into a new planning domain that

accounts for the observations (actions) and can be solved using planning algorithms. They

use a heuristic estimation based on the cost from the current state to discard candidate goals.

Later, Ramı́rez and Geffner, 2010 used off-the-shelf classical planners and Bayes theory to

find a probability distribution over the goals given a sequence of observations. Researchers in

cognitive sciences (Baker, R. Saxe, et al., 2009) independently used a similar technique with

MDP models to explain human actions. Ramı́rez and Geffner, 2011 extend the approach

for GR assuming partially-observable MDP (POMDP) settings where the acting agent has

partial observability of its current state.

This work has inspired many researchers to use inverse planning as a technique to solve PR

problems. Sohrabi et al., 2016 and Riabov et al., 2020 extend the work in classical domains

to account for unreliable observations that a plan’s actions cannot explain a particular goal.

Additionally, they assume that the (possibly noisy) observations are over fluents instead of

actions, as in most PR cases, and find probability distributions over the plans instead of

goals. Since the observations may not be accurate, the approach does not discard a possible

goal in case of an optimal path for it (given the current set of observations) is not available;

instead, the probability of that goal decreases to be the lowest. The experiments use two
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planers, one of which is a top-k planner that showed better performance in the presence of

missing or noisy observations.

Pereira et al., 2017 provide two landmark-based heuristics for GR approaches that use inverse

planning. Landmarks are properties or actions that every plan must have in every plan

execution towards a goal. The proposed heuristics remove the need to run the planner twice

per goal as required in previous work (Ramı́rez and Geffner, 2009; Ramı́rez and Geffner, 2010).

The use of landmarks, however, does not support unreliable observations as it compares them

with landmarks for all possible goals to estimate the correct goal.

Most approaches explicitly provide a set of possible goals from which the recognizer will

choose one or assign a probability distribution reflecting their likelihood of being the actual

goal. Pattison and Long, 2010 consider that goals should be any subset of fluents reachable

from the start state. The authors assign probability distributions to subsets of fluents and

call them goal hypothesis. Since this assumption creates a huge goal hypothesis space, they

suggest an approximation that works in domains with independent goals, i.e., goals that

are not strongly correlated. They analyze the domain to find useful properties to reduce

the goal hypothesis space and update it after each observation. The heuristic assigns lower

probabilities to fluents further away from the current state, favoring close to optimal plans.

A later work (Pattison and Long, 2011) does not assume any rationality and finds subgoals

using a Bayesian approach; it also claims to scale better than the approach by Ramı́rez and

Geffner, 2010 but still requires mutually-exclusive goals. In this approach, candidate goals

are never eliminated and assume the agent can revisit search space areas.
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Having subgoals is not the only reason for an agent to revisit states or have a seemingly

erratic behavior: deception, where an agent tries to hide or disguise its real goal, is a common

reason found in adversarial GR. Masters, 2019 study GR and deception in path planning and

consider deceptive agents that, instead of acting erratically, find other more optimal ways

and achieve either the same or a better result. A deceptive agent’s objective is to confuse a

goal recognizer to the point where either none of the goal candidates are possible anymore

or when the most probable goal keeps changing with more sequences of observations. The

authors work on both sides: on the one hand, they propose a self-modulating formula that

reduces the confidence of the goal recognizer when observing erratic behavior; and on the

other, they maximize deceptive planning at the lowest cost. They consider two forms of

deception: simulation (showing the false) and dissimulation (hiding the real). One important

contribution used to find a strongly deceptive strategy with the lowest cost, is the finding

that in path planning, probabilistically ranking the goals to infer the true goal is independent

of the observations. Therefore, it is possible to build a map of probabilities for the whole

state space before the agent acts in the environment (Masters and Sardina, 2017a). This is

an alternative offline approach to evaluate a GR problem, equivalent to the first stage of

GRD, reviewed later in Section 2.5.

While the reviewed work so far presumes deterministic environments, there has been work

within this trend assuming stochastic action outcomes. Baker, Tenenbaum, and R. R. Saxe,

2007 uses inverse planning to infer the goals of people. The paper analyzes three distinct

goal configurations that help to recognize goals in different contexts. The first configuration

29



assumes only one goal and interprets deviations as noise or bounded rationality; the second

configuration models agents with complex (i.e., with subgoals); the last option assumes

that the agent changes goals over time. In their work, Baker, Tenenbaum, and R. R. Saxe,

2007 assume agent’s states and actions can change over time, whereas world’s states are

stationary. The authors consider an SSP-MDP (Mausam and Kolobov, 2012) agent whose

degree of rationality is modeled with a softmax Bellman operator that provides a probability

distribution over actions. A temperature parameter models the way agents choose an action,

which could range from optimal to random behavior. The probability distribution over the

candidate goals is obtained using Bayesian inference.

Ramı́rez and Geffner, 2011 propose to infer a probability distribution over all possible goals

when the agent has partially-observable states and stochastic action outcomes. The observer

receives a subset of the observations available to the agent and can observe actions only

partially, so she must fill the gaps. Same as Baker, Tenenbaum, and R. R. Saxe, 2007, their

approach uses the softmax Bellman operator (or Boltzmann policy) to model the likelihood

of choosing an action given that the agent is pursuing a particular goal G.

2.4 Design Optimization

Design optimization is a design methodology used in engineering where a mathematical

optimization problem supports the selection of an optimal design among multiple alternatives.

The online dictionary Lexico (OxfordUniversityPress, 2019) defines designer as a person who
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plans the form, looks, or application of something before it is built. If it is possible to define

the mathematical model of the designed object, then it is possible to modify its parameters

and generate different alternatives. The latter implies that the designer must select the most

desirable alternative. A rational choice requires a criterion to assess alternatives and to rank

them (Papalambros and Wilde, 2000).

The evaluating criterion is rarely unique; it depends on the application, point of view, and

the designer’s judgment; a criterion can also change over time. Like all components of the

model, the criterion is an approximation of reality, and it is useful only under the model

assumptions. A design model that includes an evaluation criterion is called an optimization

model, where the selected design is the optimal design, and the criterion is the objective of

the model. Since a model is only an approximation of a system or design, there are different

degrees of “success”. A successful model that is also supported by accumulated empirical

evidence often becomes a law.

A new design model can be used to generate alternatives by manipulating the values of the

design variables. Also, changes in the design parameters can show the effect of environmental

factors. In the case of product enhancement or redesign, we are usually interested in small

changes that improve the product’s performance. In such situations, the model is used to

predict the effects of the changes. In addition to the criterion used and the design variables,

design optimization should also consider the limitations or available resources, such as natural

laws or user preferences. Limitations define the design requirements, and their selection is

intimately related to the first two points.
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In general, the formal mathematical model of design optimization is:

minimize f(x)

subject to h(x) = 0

g(x) ≤ 0

x ∈ X ⊆ R

Where f is the objective criterion, h,g are the set or system of (functional) constraints, and

X is the set constraint.

Optimizing the design for large and complicated systems may be costly in computer resources,

time, or both. In those cases, the usual practice is to use approximations and exploit

characteristics of the model. Some methods decompose the problem into successively smaller

problems, or stop the iterations when achieved sufficient improvement (J. Gero, 2012). Popular

techniques use pair-wise evaluations of variables, follow a specific order to change variable

values, or use heuristics to prune the search space.

Archer, 1968 and Rosenman and J. S. Gero, 1985 describe design as “a goal-directed problem-

solving activity and basically a decision-making process” and so, taking the best design as

a goal, planning methods are also a valid solution approach. Particularly, Rosenman and

J. S. Gero, 1985 decompose a complex problem into subproblems, and the designer finds a

set of feasible alternatives for each subsystem. The model of the problem represents each

subsystem as a stage and the feasible alternatives per subsystem as states. The connections
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among states are related to the objective function, i.e., if their interaction affects the objective,

they are connected. The solution to the problem modeled as a graph is then the shortest

path, and both the whole problem and the subproblems can use the same solution approach.

In this model, the optimization procedure uses the stages as variables and the states as their

alternative values.

2.5 Goal Recognition Design (GRD)

A Goal Recognition Design (GRD) problem (Keren, A. Gal, et al., 2014) is represented as

a tuple T = 〈P0,D〉, where P0 is an initial goal recognition model and D is a design model.

The initial model P0, in turn, is represented by the tuple 〈D,G〉, where D = 〈S, s0,A, f, C〉

captures the domain information and G is a set of possible goal states of the agent. The

elements in the tuple D are as they are described in classical planning except that all actions

have the same cost of 1. The worst-case distinctiveness (wcd) is a measure to assess P0 and

represents the length of a longest sequence of actions π = 〈a1, . . . , ak〉 that is the prefix in

cost-minimal plans π∗
g1

and π∗
g2

to distinct goals g1, g2 ∈ G. Intuitively, as long as the agent

executes π, it does not reveal its goal to be either g1 or g2.

A design model D = 〈M, δ, φ〉 (Keren, A. Gal, et al., 2018) includes three components:

The set M of modifications that can be applied to a model; a modification function δ

that specifies the effect each modification m ∈ M has on the goal recognition setting to

which it is applied; and a constraint function φ that specifies the modification sequences
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that can be applied to a goal recognition model. In the original GRD problem definition,

action removal is the only type of modifications allowed in the design model. An action is

disallowed or removed from the model only if the cost to reach any of the possible goals does

not increase. In later GRD definitions, the model supports arbitrary modifications; Keren,

A. Gal, et al., 2019 describe three additional modifications (suitable for GRD extensions

described in Section 2.6, p. 37): action conditioning, sensor placement, and single-action

sensor refinement. Action conditioning forces ordered sequences of actions, which, similar

to action removal, is a mechanism to eliminate legal plans. Sensor placement exposes a

previously non-observed action, and single-action sensor refinement maps an action to a

single (possibly noisy) observation.

The objective in GRD is to find a feasible modification sequence that, when applied to the

initial goal recognition model P0, will minimize the wcd of the problem.

2.5.1 Computing wcd

The baseline approach to compute wcd is to enumerate all possible legal plans (optimal

plans in this case) and mark prefixes common to more than one goal to find the largest

non-distinctive prefix. The allowed plans result from an exhaustive exploration of the state

space using BFS, and the search stops at the level of the most distant goal. A backward

search of the tree, level by level, starting from the most distant leaves, and keeping track of

each node’s goals, could find the largest path common to two goals.
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A more optimized version constructs a graph where each node represents sub-paths, and

edges represent available actions (the root node is the initial state). The algorithm traverses

the graph in a BFS fashion but does not expand nodes representing distinctive paths, i.e.,

paths with no shared goals, and the wcd value is the length of the sub-paths expanded in the

last iteration. Finding distinctive paths requires planner calls per node to check whether a

sub-path is part of an optimal plan; therefore, even after pruning some of the search space

with an upper bound, this method does not scale well.

Finally, Keren, A. Gal, et al., 2014 present a third method based on the problem’s compilation

into a planning problem. This approach models one agent per candidate goal and finds the

wcd by looking for the longest path that those agents may share. Their compilation assumes

two agents; in case of more candidate goals, they find the maximum wcd among all pairs. In

the planning problem, each agent tries to achieve its target, but they get a higher reward for

“working together”. The reward is bounded to avoid an agent diverging from its optimal path.

This approach is solved using off-the-shelf classical planners.

2.5.2 Reducing wcd

To reduce wcd, any modification to the model needs to affect the optimal policies reaching

one or more goals. Therefore, the authors chose to remove actions from the original model.

Note that although not explicitly stated, action removal refers to removing state-action pairs.

For example, in Figure 2.1(b), used in the introduction and copied here for convenience, the
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(a) (b)

Figure 2.1: Example Problem (a) Original goal recognition problem with starting state at
position E3 and possible goals G1 (at B1), G2 (at A5), and G3 (at C5). (wcd=4) (b) A
design solution that blocks actions (E3, up), (C4, right), (C5, up). (wcd=2)

removed actions are (E3, up), (C4, right), and (C5, up), not just up or right. For simplicity,

we will use actions in this section to refer to state-action pairs.

The basic approach to reduce the wcd is an exhaustive search in the space of combinations of

state-action pairs modeled as a tree. Each node contains removed actions. The root is an

empty set representing the original goal recognition problem, i.e., no removed actions. Direct

edges connect nodes where parents have one element less than their children.

The algorithm traverses the tree using BFS and explores a node only if the original cost to

reach a goal does not increase. The search stops when wcd = 0 or when there are no more

actions to remove. The output contains the smallest set of removed actions for the minimum

wcd. While complete, this algorithm needs to explore all actions in the model. The authors

observed that removing an action not used to compute the original wcd does not change the
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wcd for the new problem. Therefore, a pruning method consists of not considering nodes

with actions that were not optimal in the models represented by their parent nodes.

2.6 GRD Extensions

Keren, A. Gal, et al., 2015 extend the GRD model to account for suboptimal agents where the

agent has a budget to deviate from its optimal path. They consider two types of suboptimal

agents: a naïve agent and a deceptive agent, who tries to mislead the observer by following

the longest path towards a fake goal while still being able to achieve its real goal within

the allowed budget. Keren, A. Gal, et al., 2016a assume partial observability of agent

actions; the wcd represents, in this case, the longest sequence of actions an agent can take

before the observed portion of the trajectory reveals its true goal. Additionally, the paper

presents a new type of modification that allows the exposure of non-observable actions.

In a subsequent paper, Keren, A. Gal, et al., 2016b generalize the model to also consider

non-deterministic sensors. These types of sensors cause the observer to have partial and

possible noisy observability of agent actions. The modification used to improve the observer’s

sensor model chooses actions to make it fully observable.

Other limitations can also affect the actor; a recent paper (Keren, Xu, et al., 2020) assumes

actors with incomplete knowledge about the environment. Therefore, they make assumptions

about unknown variables but choose plans with minimum assumptions. The new setting

models the observer or recognizer as an agent that knows everything and provides some
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information to the actor to figure out the real goal faster. The high-level idea is to help the

actor reduce extra steps to acquire knowledge to reach its goal. The challenge is to determine

the information to provide, as the space is vast and more information is not necessarily better

for goal recognition. This type of modification is called information shaping and is applied

offline as in previous approaches.

Keren, A. Gal, et al., 2018 redefined the GRD model as a tuple containing an initial goal

recognition model and a design model. The design model includes a set of modifications,

a function specifying each modification effect, and a constraint function that determines

the allowed modification sequences. The model presented in Section 2.5 (p. 33) used this

formulation. Further, the authors present in this paper a class of modifications that allows

pruning in the modification space by using strong stubborn sets (Valmari, 1989).

Finally, Keren, A. Gal, et al., 2019 generalize the GRD model once more for deterministic

environments by adding a set of observations, a set of legal policies, and a sensor function to

the initial goal recognition model. The new model accounts for all extensions in a deterministic

setting. In contrast to goal recognition models, the set of observations contains all possible

observation sequences that could be observed. While previous papers assumed unitary costs,

this journal generalizes it to arbitrary action costs.
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Chapter 3

Stochastic Goal Recognition Design

(S-GRD)

“It is the existence of goals which makes design purposeful

and necessitates decisions about the best ways to achieve those goals.”

– John Gero

No artificial or living creature can recognize goals with a hundred percent of certainty. Even in

the most favorable conditions, there are situations where ambiguity is unavoidable; otherwise,

playing charades would not be fun! Indeed, in those intended GR scenarios, ambiguous

observations can result from incomplete models of the acting agent and the world. Actions
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can have different meanings for the actor and the observer, or players can consistently get

the most challenging words to guess.

The problem becomes more challenging when the actor is not aware of the observer, and,

therefore, it does not help her intentionally. Consider the grid in Figure 3.1(a) and imagine that

you observe an agent (represented by a dot) shifting to the left. Assuming full observability

and an optimal agent that only moves in one of the four cardinal directions, can you conclude

its goal is G1? There may be many more variables to consider: is the agent a robot or a

human? Is it summer or freezing winter? Common to both scenarios is that the dynamics of

the world may affect the action outcomes. Previous work within the GRD framework fails to

capture this information, so it will conclude that going to the left is not an ambiguous action.

A design based on this result might not be useful in these cases.

G1 G2

1     2     3     4     5

A

B

C

D

E

G3

(a) (b)

Figure 3.1: Example of GR. (a) A simplified scenario with a dot-agent moving to the left
(b) Knowledge of the type of agent (human or robot) and dynamics of the world (slippery
ground)2

2Ice walking in Beijing. Attribution: The Erica Chang. Changes: Circular mask applied.
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In this chapter, we model the GRD problem for environments that cause stochastic agent

action outcomes. We study scenarios where agents reach a state different from the one

intended due to, for instance, slippery or malfunction. Our system might consider that

observing the dot-agent moving to the left of its original position is ambiguous and, hence,

the design decisions could change. Since our intention on generalizing the GRD framework

OS-GRD

POS-GRD SS-GRD

POSS-GRD

S-GRD

Figure 3.2: S-GRD: Model Structure

stems from its applicability to physical world scenarios, it is only logical to consider partial

observability and suboptimal agents. The models we propose observe four main assumptions;

the agent has full observability, shares its model with the observer, its action outcomes are

stochastic, and is unaware of any observer. Figure 3.2 shows a diagram of the proposed

models where each block has one characteristic relaxed from its parent.
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The Optimal S-GRD (OS-GRD) is the most basic S-GRD model; here, the sensor system

provides reliable observations of states and actions of the acting agent, and agents always

select the optimal policy. The Partially-Observable S-GRD (POS-GRD) accounts for partial

observability (of an observer) in stochastic environments. POS-GRD assumes unobservable

actions and undistinguishable contiguous states. The Suboptimal S-GRD (SS-GRD) relaxes the

optimality assumption and considers boundedly rational agents that might follow suboptimal

policies. Finally, the POSS-GRD model merges POS-GRD and SS-GRD.

Below we describe the reasoning behind the assumptions for partially-observable and subop-

timal settings.

Partially-observable settings: The ability to recognize an agent’s goal depends, to a large

extent, on the ability of an observer to monitor agent behavior. Implicitly, the quality of the

observations depends on the sensor resolution.

Consider a robot tasked to deliver a parcel to a monitored area where a tracking system

detects the robot’s current position. Depending on the sensors’ resolution, the robot’s exact

coordinates may not be available, just an approximation. Further, note that we do not

observe the robot’s actions but its states (or action outcomes) in reality. To accurately

recognize the robot’s goal, a GR system should consider that since actions are not perceived,

two or more actions could generate the same observation. For instance, any turn observed

could be either intentional or a result of slippery wheels.

42



While in deterministic scenarios, it is possible to infer actions from states and vice versa,

it is not feasible in stochastic cases. Even assuming a sensor with excellent resolution, we

are still limited to observe the outcomes instead of the actions. Therefore, we envision an

environment where an observer may not distinguish among several nearby states. In such a

setting, changes in observations are the only indication of activities performed by an agent.

Suboptimal settings: The optimality assumption reduces the complexity of the problem but

also its applicability. Indeed, a goal recognizer that accounts for some level of suboptimality

deals better with uncertainties (Riabov et al., 2020; Sohrabi et al., 2016). Autonomous

agents could execute suboptimal policies for many reasons, including resource limitations

or unexpected environmental changes. In our delivery robot example, holes in the ground

or people walking nearby could require a trajectory change. Since S-GRD is an offline

problem, we should anticipate some degree of suboptimality. Our suboptimal settings assume

a boundedly rational agent where the number of suboptimal actions is bounded.

The rest of this chapter is organized as follows. Section 3.1 defines a generalized model for

Stochastic Goal Recognition Design (S-GRD) problems. Consistent with the GRD case, we

consider the GR model, the design model, and the evaluation measure as well as the general

objective of S-GRD as an optimization problem. Section 3.2 discusses differences with the

most recent GRD model.

43



3.1 Model

In this section, we describe a generalized S-GRD model that accounts for an environment that

causes stochastic action outcomes, the observer ’s capability of perceiving the actor’s behavior,

and the degree of agent’s suboptimality. We model an S-GRD problem with two elements:

the initial GR model to be analyzed and the design model that finds the modifications to the

original GR setting that reduce ambiguity. We formulate each component separately before

defining the S-GRD problem formally.

3.1.1 Stochastic Goal Recognition (Stochastic GR)

In general, a GR setting defines how actions work in an environment where an agent acts while

being observed. The agent generates a sequence of observations during its quest for one goal

from a set of candidate goals. In the GRD case, the agent does not act and, therefore, it does

not emit observations. Hence, we need to account for all possible policies and observations

that an agent could take and generate. Additionally, in the S-GRD problem, the challenge is

to handle loops produced by revisited states under the same policy. For instance, someone

walking on ice could either move for a while but fall and end up in the same original place

or continuously slip and not advance at all. If an observer gains some information from the

former situation, the goal recognizer needs to differentiate between the initial and last state

(even if it corresponds to the same position).
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Following the trend of work from Ramı́rez and Geffner, 2009 and Baker, R. Saxe, et al., 2009

(discussed in the literature review Subsection 2.3.1, p. 26), we use planning models to define

the rules that govern actions applicability.

Definition 1. A stochastic goal recognition problem P is a tuple P = 〈M,G, k,N , Co〉, where:

• M = 〈S, s0,A, T , C〉 is an SSP-MDP (Subsection 2.2.1, p. 15) without a goal. The four

first elements model the world mechanics, and the cost function C : S×A× S→ R+

specifies the agent’s cost C(s, a, s′) of taking action a at state s and arriving to state s′.

• G is a set of candidate goals, that is, ∀g ∈ G, G ⊆ S; g is a possible goal of the agent.

• k ≥ 0 is the degree of granted suboptimality, with k = 0 representing optimal agents. In

this thesis, k denotes the number of suboptimal actions allowed.

• N : S → S is a sensor function that defines the observer’s degree of observability.

For partially-observable models, each state s is associated with an observation N (s),

which we refer as the “projected observation” of s. The set S is partitioned into

observation sets O1, ...,On such that ∀s, s′ : N (s) = N (s′) ⇐⇒ ∃i : s, s′ ∈ Oi. For

fully-observable models, N is an identity function.

• Co : S×A× S→ R+ is the observer’s cost function that assigns a potentially different

cost to each agent’s action.

The model admits different cost functions for the agent and the observer, considering their

preferences without affecting each other. For example, consider two ambiguous policies with
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the same cost for the agent but with a different number of actions per trajectory; the observer

should prefer to observe the shorter one, i.e., the one with fewer actions. In this thesis, we

assigned a cost of 1 to all actions in both cases.

3.1.2 Design Model

The design model describes the characteristics of applicable modifications.

Definition 2. A design model in S-GRD is a tuple D = 〈M, δ, φ, Cm, µ〉 where:

• M is a finite set of applicable modifications. A modification sequence is an ordered set

of modifications ~m = 〈m1,m2, . . . ,mn〉 with mi ∈M. We refer to ~M as the set of all

those sequences.

• δ :M× P → P is a modification function, specifying the effect of modifications on the

stochastic GR model.

• φ : ~M× P → {⊥,>} is a constraint function that specifies the allowable modification

sequences.

• Cm :M→ R+ defines the cost Cm(m) to apply modification m ∈M to a stochastic GR

model.

• µ is a user-defined parameter that limits the size of allowed modification sequences.

In this thesis, we use Cm(m) = 1 for all proposed modifications. We focus on modifications

that are budget preserving, limiting the modification cost incurred, and expected cost preserving,
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restricting a modification not to increase agent’s or observer’s costs. The constraint function

handles both restrictions.

The design model allows the application of changes in a principled way. Definition 3 presents

the resultant model after the correct application of a sequence of modifications.

Definition 3. Given a stochastic goal recognition model P and a modification sequence

~m ∈ ~M such that ~m = 〈m1,m2, . . .mn〉; m ∈M; and φ(~m) = >; the sequence ~m applied to

P gives a new stochastic GR model P ~m = δ(mn, . . . , δ(m1, P )).

The different ways to modify a stochastic GR model depend on the settings and context. We

apply two types of modifications to S-GRD. The first, action removal defined as by Keren,

A. Gal, et al., 2014, removes an action from the set of applicable actions. The second,

sensor refinement, allowing one to distinguish between states previously mapped to the same

observation (Definition 6).

Definition 4. A modification m is an action removal modification if for any stochastic GR

model P = 〈〈S, s0,A, T , C〉,G, k,N , Co〉, Pm = 〈〈S, s0,A, T m, C〉,G, k,N , Co〉 is identical to

P except that ∃A′ ⊆ A ∧A′ 6= ∅,∀a ∈ A′, s, s′ ∈ S : T (s, a, s′) > 0 =⇒ T m(s, a, s′) = 0.

Definition 5. A sensor model N ′ is a refinement of sensor model N if ∀si, sj : N ′(si) =

N ′(sj) =⇒ N (si) = N (sj) (but not necessarily vice versa).

Let Pm represent the model that results from applying m to P and let Nm and N denote

the sensor models of Pm and P , respectively. We define sensor refinement as follows.
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Definition 6. A modification m is a state sensor refinement modification if for any partially-

observable GR model with stochastic action outcomes P = 〈〈S, s0,A, T , C〉,G, k,N , Co〉,

Pm = 〈〈S, s0,A, T , C〉,G, k,Nm, Co〉 is identical to P except that Nm is a refinement of N .

Note that as opposed to the sensor refinement suggested by Keren, A. Gal, et al. (2016b),

where the sensor model is defined over tokens emitted by performed actions, the sensor

refinement defined here applies to settings where the state of the agent may be only partially

observed and the observer has a way to improve its observability by sensing features of the

environment.

3.1.3 Evaluating the Goal Recognition Problem

In GRD problems, design optimization serves to minimize ambiguous paths and, consequently,

to facilitate GR. Therefore, the approach requires a measure or criterion to assess the difficulty

of performing GR in a given model, i.e., environment plus acting agent. The measure used is

called the worst-case distinctiveness (wcd) (described in Section 2.5, p. 33). In this subsection,

we redefine wcd for S-GRD problems.

Example 1. To facilitate the understanding of some definitions, we use Figure 3.3 to

illustrate examples of fully-observable (a) and partially-observable (b) S-GRD settings with

states (annotated nodes), actions (annotated edges), and observations (annotated shaded

areas). Double-lined circles represent goals. A multi-head arrow marks stochastic actions,

dashed edges denote unobservable actions, gray edges mark suboptimal actions, and all actions
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have a cost of 1. The thickness of arrows marks optimal actions for a specific goal. Thin

arrows represent intended goal g0, thicker arrows represent intended goal g1, and the thickest

(action a0 in Figure 3.3(a)) is common for both.

S2

S0

S1

g1

g0

a0 a 1 a 2
a3

a4

(a)

g0

g1

a1

a2

a6

a5

a
4

a
3

O101

O201

O30

O41
S2

S0

(b)

Figure 3.3: S-GRD Models. (a) OS-GRD considers only black arrows and SS-GRD all. (b)
POS-GRD considers only black arrows but POSS-GRD includes all.

Worst-Case Distinctiveness (wcd)

Intuitively, the wcd (defined for GRD) is the longest sequence of actions that an agent can

execute before it reveals its goal. We redefine the wcd for S-GRDs taking into account two

aspects. First, since transitions are stochastic, the number of actions or, equivalently, the

cost incurred can be measured either in the worst-case maximum or in the expectation. The

worst-case maximum may be infinite (e.g., when the agent can transition back to its previous

state and potentially get stuck in a loop), which prohibits meaningful comparisons. Therefore,

we choose to measure the cost in the expectation and use the worst-case distinctiveness (wcd)

as this measure. Second, note that contrary to Keren, A. Gal, et al., 2019, we propose that
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the cost used should be the cost for the observer (Co in Definition 1) as the optimization is

for the observer’s benefit (we provide more details in Section 3.2, p. 57). Hence, at a high

level, the wcd for S-GRD settings corresponds to the highest expected cost or penalty an

observer could experience while the acting agent does not reveal its goal.

Definition 7. Given a stochastic GR model P = 〈M,G, k,N , Co〉, the agent’s strategies are

the set of all policies Πk
g of MDP M for goal g ∈ G within the limits imposed by k.

Definition 8. Given the agent’s strategies Πk
g for goal g ∈ G, the set ΠG =

⋃
g∈G Πk

g is the

set of all legal policies of P for all possible goals.

In other words, the set of legal policies contains every policy that an agent can execute for

every candidate goal according to the limitations imposed by its model. Models for optimal

agents will define k = 0. Figure 3.3 represents optimal actions in black arrows; actions a0, a2,

and a3 in Figure 3.3(a) form a legal policy in Π0
g1.

We next define wcd for S-GRD problems, starting with partial policy containment. The

following definitions are constrained to legal policies.

Definition 9. A partial policy π̂ is contained in a policy π ∈ ΠG (marked π̂ ⊆ π) if Sπ̂ ⊆ Sπ

and ∀s ∈ Sπ̂, π̂(s) = π(s).

Sπ represent the set of reachable states while following policy π.

Definition 10. A partial policy π̂ satisfies a goal g if ∃π ∈ Πk
g s.t. π̂ ⊆ π. The set of goals

G′ ⊆ G satisfied by a partial policy π̂ is marked by G′(π̂).
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A trajectory ~τ = 〈s0, a1, s1, . . . , an, sn〉 is a realization of an agent’s policy, denoted by

alternating actions an agent performs and reached states. We use trajectory indices to relate

an action with its resulting state. A trajectory ~τ is feasible if ∀i : T (si, ai+1, si+1) > 0. We

next relate trajectories and goals.

Definition 11. A feasible trajectory ~τ = 〈s0, a1, s1, . . . , an, sn〉 satisfies a possible goal g if

∃πg ∈ ΠG(g) s.t. ∀i ∈ {0 . . . n− 1}, si ∈ Sπg and ai+1 = πg(si).

Definition 12. The observable projection of a trajectory ~τ = 〈s0, a1, s1, . . . , an, sn〉 for

OS-GRD and SS-GRD settings is: obs(~τ) = ~τ = 〈s0, a1, s1, . . . , an, sn〉

That is, the observer is able to capture all information about agent’s visited states and

executed actions.

Partial observability in POS-GRD and POSS-GRD cases is materialized by limiting the

observer to only see changes in emitted observations. To model this, we define an observable

projection of a trajectory, where · denotes the concatenation of two sequences.

Definition 13. The observable projection of a trajectory ~τ = 〈s0, a1, s1, . . . , an, sn〉 is:

obs(~τ) = obs(〈s0 . . . sn〉) =


〈N (s0)〉 n=0 (3.1)

obs(〈s0 . . . sn−1〉) n > 0 ∧N (sn−1) = N (sn) (3.2)

obs(〈s0 . . . sn−1〉) · 〈N (sn)〉 n > 0 ∧N (sn−1) 6= N (sn) (3.3)
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For example, consider Figure 3.3(b). The observable projection of trajectory

~τ = 〈S0, a1, S2, a3, S1, a5, g0〉 is obs(~τ) = 〈N (S0),N (S1),N (g0)〉 = 〈O1, O2, O3〉.

Definition 14. An observable projection o satisfies a possible goal g if there exists a feasible

trajectory ~τ that satisfies g and o = obs(~τ).

We denote by G(π̂) and G(o) the set of goals satisfied by a partial policy π̂ and observation

sequence o, respectively.

Definition 15. The set of goals satisfied by the observed sequence of trajectory ~τ =

〈s0, π(s0), s1, . . . , sn〉 is:

G(obs(〈s0, π(s0), . . . , sn〉)) =


G i=0 (3.4)

G(obs(〈s0, π(s0), . . . , si−1〉)) 0 < i ≤ n ∧N (si−1) = N (si) (3.5)

G(obs(〈s0, π(s0), . . . , si−1〉)) ∩G′ 0 < i ≤ n ∧N (si−1) = N (si) (3.6)

where:

G′ = G(π(si−1)) for FO models (3.7)

G′ =
⋃

π(s)|∃s′:T (s,π(s),s′)>0∧N (s)=N (si−1)∧N (s′)=N (si)

G(π(s)) for PO models. (3.8)
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In a fully-observable setting, actions are observable and a goal g becomes no longer possible

if the executed action a does not satisfy g. In the partially-observable case, actions cannot

be observed, thus g is discarded only if there exist an action a that can be executed at any

state projecting N (si−1), transitions to state s′ with projected observation equal to N (si),

and does not satisfy goal g.

To illustrate, consider Figure 3.3(b) (p. 49), where obs(〈S0〉) = N (S0) = O1 and G(obs(〈S0〉)) =

{g0, g1} = G. In a fully-observable case, G(obs(〈S0, a2, S2〉)) = {g1}. However, in a partially-

observable setting, G(obs(〈S0, a2, S2〉)) = {g0, g1} =
(
G(〈obs(S0)〉 = G

)
∩
(
G(a1) = {g0} ∪

G(a2) = {g1}
)
because G(obs(〈S0, a2.S2〉)) = G(obs(〈S0, a1.S2〉)) = 〈N (S0),N (S2)〉 =

〈N (S0),N (S1)〉.

Finally, we are ready to define non-distinctiveness.

Definition 16. A partial policy π̂ (respectively trajectory ~τ or observation sequence o) is

non-distinctive if it satisfies more than one goal (|G(π̂)| > 1 (respectively |G(obs(~τ))| > 1)).

If a partial policy (respectively, observation sequence) is not non-distinctive we say it is

distinctive. Note that an empty policy π̂ is non-distinctive as it is legal for all candidate goals.

The core of our analysis consists of identifying and characterizing non-distinctive (ambiguous)

behavior possible in the model. For this purpose we will use the following observations.

Lemma 1. Given two partial policies π̂ and π̂′, if π̂ ⊆ π̂′ and π̂ is distinctive, then π̂′ is

distinctive.
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Proof. Assume to the contrary that π̂ ⊆ π̂′, π̂ is distinctive but π̂′ is non-distinctive. Since

π̂′ is non-distinctive ∃g0, g1 that are both satisfied by π̂′ (Definition 16). This in turn means

that ∃πg0 ∈ Πk
g0

and πg1 ∈ Πk
g1

s.t. π̂′ ⊆ πg0 and π̂′ ⊆ πg1 (Definition 10). According to

the containment relation described in Definition 9, the fact π̂′ is contained in both πg0 and

πg1 means that ∀s ∈ Sπ̂′ π̂′(s) = πt(s) = πt′(s). Since π̂ ⊆ π̂′ then ∀s ∈ Sπ̂′ , s ∈ Sπ̂ and

π̂(s) = π̂′(s) = πt(s) = πt′(s). Thus, π̂ ⊆ πt0 and π̂ ⊆ πt1 thus satisfying both t0 and t1 and

contradicting our assumption that π̂ is distinctive. �

Lemma 2. Given a distinctive trajectory ~τ = 〈s0, a0, s1, a1 . . . , sn, an, sn+1〉, any trajectory

for which ~τ is a prefix is distinctive .

Proof. Assume by contradiction that ∃~τ ′ = 〈s0, a0, s1, a1..., sn, an, sn+1, ..., am, sm+1〉 (n ≤ m)

for which ~τ is a prefix that is non-distinctive. According to Definition 16 since ~τ ′ is non

distinctive, then ∃g, g′ ∈ G (g 6= g′) both satisfied by ~τ ′. This, according to Definition 11,

means that ∃π̂g ∈ Π̂k
g and π̂g′ ∈ Π̂k

g′ s.t. ∀i ≤ m, si ∈ Sπ̂g , si ∈ Sπ̂g′
and ai = π̂g(si) = π̂g′(si).

In particular, this is true for any i ≤ n, contradicting our assumption that ~τ is distinctive. �

We now (re)define the worst case distinctiveness (wcd) for models with stochastic actions.

Distinctiveness cost is the total cost of the maximal prefix of a trajectory whose observable

projection is non-distinctive. A partial policy π̂ induces a distribution on trajectories, in which

the probability of trajectory ~τ = 〈s0, a1, s1 . . . , an, sn〉 is Pπ̂(~τ) = Πn
i=1Iπ̂(si−1)=aiP (si|si−1, ai),

where I is the indicator function that takes value 1 when π̂(si−1) = ai and 0 otherwise.
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Therefore, the wcd of a stochastic GR model is the (legal) partial policy with the maximal

expected distinctiveness.

Definition 17. The distinctiveness cost DC(~τ) of a trajectory ~τ = 〈s0, a1, s1 . . . , an, sn〉 is

max
i∈{0...n} s.t. |G(obs(〈s0,...,ai,si〉))|>1

i∑
j=1

Co(sj−1, aj, sj) (3.9)

The expected distinctiveness ED(π̂) of a partial policy π̂ is the expected distinctiveness cost

of its trajectories,
∑

~τ Pπ̂(~τ)DC(~τ).

The worst case distinctiveness of a stochastic GR problem P is:

wcd(P ) = max
π̂∈Π̂G

ED(π̂) where Π̂G =
⋃
g∈G

Π̂k
g (3.10)

Two notes are in order here. First, for an empty trajectory (i = 0), distinctiveness cost is 0.

Second, DC(~τ) and ED(π̂) are well-defined for proper policies (Section 2.2.1, p. 15).

Example 2. To illustrate the influence of each setting in the value of wcd, consider Figure 3.4

where all action costs are 1. If the states and actions are fully observable, and the agent is

optimal, wcd = 0 because there is only one optimal policy for each goal (the arrows’ thickness

distinguishes individual policies). POS-GRD will have wcd = 1.2 as it is not possible to know

the action taken from O1 to O2 nor the executed actions in O2. The agent reveals its real

goal only at its arrival (the observations’ subindices mark possible goals), and goal g1 demands

the highest expected cost. Note that by Definition 17 (Eq. 3.9), the cost of the last action (a6)
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Figure 3.4: Assumptions of S-GRD Models. OS-GRD considers only optimal policies (black
edges) and observes all states (white nodes). SS-GRD suboptimal policies (all edges) and full
observability (white nodes). POS-GRD considers only optimal policies (black arrows) and
obfuscated observations (green shades, dashed arrows). POSS-GRD joins POS-GRD and
SS-GRD assumptions.

does not add to the value of wcd. The value of wcd increases to 2.9 for SS-GRD models

with k = 3 when the agent chooses actions a1, a4, a6 since the only distinctive actions, in this

case, are the gray arrows. Likewise, in the case of POSS-GRD with k = 3, there could be

two projected sequences: 〈O1, O2, O4, O3〉, or 〈O1, O2, O3, O4〉. In both cases, the first three

observations are non-distinctive and the value wcd = 2.9. The sequences of observations also

show that the distinctiveness of O3 and O4 depends on the trajectory.

3.1.4 Stochastic Goal Recognition Design Model

We model an S-GRD problem with a tuple:

T = 〈P0,D〉 (3.11)

56



where P0 is the initial stochastic GR model to be analyzed and D is the design model, which

specifies the rules to generate alternative stochastic GR models P by applying modification

sequences to P0.

The objective of a S-GRD problem is to find a sequence of modifications ~m = 〈m1 . . .mn〉,

such that ~m is feasible (i.e., φ(~m) = >), and which minimizes the wcd of the resulting model

P∆
0 := (Pm1

0 )...mn :

~mo = argmin
~m∈ ~M

f(P0) (3.12)

s.t. φ(~m) = > (3.13)

| ~m | ≤ µ (3.14)

where f is the objective criterion or measure chosen for the design optimization. In this

thesis, f(P0) = wcd(P0). Other terms defined in Section 3.1 maintain their meaning.

3.2 Discussion

In this section, we will compare the equivalences and differences of the general model for

GRD in deterministic environments (Keren, A. Gal, et al., 2019) and the S-GRD model

proposed in previous section.
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Both models have two main components, one for the GR and one for the design problem. Keren,

A. Gal, et al., 2019 define a GR problem as PD = 〈P ,G, leg, O, S〉, where:

• P is a classical planning problem without goals.

• G is the set of possible goals.

• leg : ~Π×G→ {0, 1} is an indicator that specifies the legal paths to each possible goal.

• O is a set of observation tokens.

• S : A→ 2O \ ∅ is a sensor model mapping actions to observation tokens.

In both cases, the GR model contains the specification of the environment dynamics and a set

of possible goals. There is some discrepancy between models due to differences in the specific

assumptions of suboptimality and partial observability. Keren, A. Gal, et al., 2019 have an

indicator to validate the set of allowed or legal paths instead of the degree of suboptimality

(k) for the S-GRD case. To model partial observability, Keren, A. Gal, et al., 2019 define a

set of observation tokens representing the set of possible projected observations and a sensor

model mapping actions to observation tokens. Our model captures partial observability using

the sensor function N . Additionally, S-GRD assumes the cost of observing actions could be

different from the execution cost, while the deterministic model PD assumes the same cost.

The argument is that observer and agent might have unrelated priorities. An agent could

use a lot of energy executing one action or execute several actions using the same power in

total. However, as long as each action takes the same amount of time (non-durative), an
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observer would prefer shorter trajectories (i.e., fewer actions) regardless of the cost they have

for the agent. This decision will affect the solution when using costs different to 1, and it

also affects the wcd definition. S-GRD considers the observer cost function Co. In contrast,

GRD considers the agent cost function C.

The design model for S-GRD has two additional components: the cost per modification and

the budget of allowed modifications. Keren, A. Gal, et al., 2019 assume uniform modification

cost for clarity. However, they discuss changes in the algorithms to tackle different costs.

Regarding the budget, Keren, A. Gal, et al., 2019 model it as part of the constraint indicator

function φ.
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Chapter 4

Worst-Case Distinctiveness (wcd)

“Take advantage of the ambiguity in the world.

Look at something and think what else it might be.”

– Roger von Oech

The previous chapter described and formally modeled the S-GRD framework. Similar

to GRD problems, our solution approach to solve S-GRD problems considers two stages:

(1) Computing the measure (wcd) to evaluate the initial stochastic GR problem; and (2)

Optimizing the design by finding the sequence of modifications that minimize wcd. This

chapter focuses on the first stage and analyzes properties and challenges specific to each

setting. Starting with the Optimal S-GRD version, we gradually relax different assumptions

to end with the POSS-GRD variant.
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4.1 Optimal S-GRD (OS-GRD)

The intuition behind the worst case distinctiveness (wcd) is that it measures the longest

ambiguous trajectory, i.e., a path with the highest observed cost an agent can take without

revealing its goal.

s0
s3

g1

a0

a4

a3

a6

s1

s2

g0

g2

Figure 4.1: OS-GRD example with two possible ambiguous trajectories (green and orange)

Example 3. Consider Figure 4.1, where the agent starts at state s0 and has one of three

possible goals g0, g1, or g2. All actions have the same cost of 1 for the agent and the observer.

All of them are deterministic except for action a0 out of s0, which can transition to either s1

or s2 with equal probability. In this example, there are two possible trajectories, each with two

actions, that the agent can take before revealing its goal with the third action.

For the first (green) trajectory, starting at s0, the agent has to take action a0 as it is the only

action available. If it transitions to s1, then it can take action a1 to transition to s2. At this

point, its goal can be either g1 or g2. From s2, it reveals its goal to be g1 if it takes action a2

and goal g2 if it takes action a3. Note that its goal cannot be g0 as it would otherwise have

taken action a4 instead of a1 when it was in s1.
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For the second (orange) trajectory, starting at s0, the agent may transition to s2 after taking

action a0. Then, it can take action a3 to transition to s3, at which point its goal can be either

g0 or g2. From s3, it reveals its goal to be g0 if it takes action a5 and goal g2 if it takes action

a6.

Note that the cost of both trajectories is 2 since they both have two actions each. Consequently,

the wcd of this problem should be 2 intuitively.

4.1.1 Analyzing the GRD Strategy for S-GRD

Keren, A. Gal, et al., 2014 use a pairwise approach to compute wcd. They find the largest

path common to two goals for all possible combinations of goal pairs, and the maximum

value corresponds to the wcd of the problem. Since we deal with the expected distinctiveness

cost of trajectories, we cannot use the same approach unless all non-distinctive policies have

Property 1.

Property 1. Given a non-distinctive policy π̂ with trajectories ~τπ̂i
.If ∀~τπ̂1 6= ~τπ̂2 :

(
|G(~τπ̂1)| ≤

|G(~τπ̂2)|)→
(
G(~τπ̂1) ⊆ G(~τπ̂2)

)
, we say that π̂ satisfies the same subset of goals.

Theorem 1. If all non-distinctive policies in a stochastic GR model P = 〈M,G, k,N , Co〉

satisfy Property 1, then

wcd(P ) = max
g1,g2∈G|g1 6=g2

wcd(P ′) (4.1)

where P ′ = 〈M, {g1, g2}, k,N , Co〉.
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Proof. By Definition 17 (p. 55), every non-distinctive trajectory has at least two goals.

Property 1 guarantees that non-distinctive trajectories for the same number of goals satisfy

the same set of goals, and a larger set of goals satisfying any other non-distinctive trajectories

are a superset of those goals. Therefore, if a set of goals G′ satisfy a non-distinctive trajectory

~τ (denoted G′(~τ)), any combination of pair of goals in G′ satisfy the same trajectory ~τ .

Hence, all non-distinctive trajectories that contribute to wcd(P ) correspond to non-distinctive

trajectories used to compute the largest wcd for some pair of goals. �

Unfortunately, Property 1 does not apply to all scenarios. For instance, in Figure 4.1, the

green trajectory satisfies G′ = {g1, g2} while the orange trajectory satisfies G′′ = {g0, g2}.

Since G′ 6= G′′, wcd(P ) using Eq. 4.1 fails to capture the intuitive trajectories of cost

2. The longest non-distinctive policy for goals 〈g0, g2〉 has two trajectories 〈s0, a0, s1〉 and

〈s0, a0, s2, a3, s3〉, and the expected cost of this policy prefix is 1.5 (= 0.5 *1+0.5*(1 + 1)).

The expected cost for goals 〈g0, g1〉 is 1 (with trajectories 〈s0, a0, s1〉 and 〈s0, a0, s2〉). Lastly,

the longest ambiguous trajectories for goals 〈g1, g2〉 are 〈s0, a0, s1, a1, s3〉 and 〈s0, a0, s2, a3, s3〉

with an expected cost of 1.5. The wcd of this problem using Equation 4.1 is thus 1.5, the

largest expected cost over all pairs of goals.

4.1.2 The All-Goals Strategy

We now propose a new method to compute wcd that captures the above scenario and is more

consistent with its intuitive definition. This method considers all goals at the same time
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and finds the largest expected cost among all possible non-distinctive trajectories, which is

equivalent to the wcd when all trajectories of a policy with maximal expected distinctiveness

(Definition 17, p. 55) have distinctiveness costs larger or equal than trajectories of any other

policy 3.

In addition to the need to consider all goals simultaneously instead of pairs of goals, we also

make another key observation: that the set of possible goals for a particular state can differ

based on the observed path to reach that state. Using Figure 4.1 as an example again, if

the agent arrives at state s3 through the orange trajectory, then its goal is either g0 or g2.

However, if it arrives at state s3 through trajectory 〈s0, a0, s1, a1, s2, a3, s3〉, then its goal is

definitely g2. This observation causes a challenge. Unlike the previous method, the set of

possible goals of the agent in this new approach is no longer Markovian as it depends on the

entire history of states visited. We address this challenge by incorporating the history into

the state definition and model the problem using augmented MDPs instead of regular MDPs.

4.1.3 Augmented MDP

An augmented MDP adds a Boolean variable posg for each possible goal g, to keep track

of whether g has been eliminated as a possible goal or not. The terminal states of

this MDP are those where all successors have less than two possible goals, with tran-

sitions defined according to the original MDP. Formally, given a stochastic GR model
3Subsection 4.1.5 (p. 74) presents a method to compute wcd for all cases
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P = 〈M = 〈S, s0,A, T , C〉,G, k,N , Co〉, with k = 0 for OS-GRD, the augmented MDP

Πaug = 〈S′, s′0,A′, T ′, C ′o,G′〉 is defined as follows:

• S′ = S× {T, F}|G|: for each s ∈ S we create 2|G| possible states, corresponding to all

subsets of possible goals.

• s′0 = s0 · 〈T . . . T 〉: initially all goals are possible.

• A′ = A, as action labels are the same.

• T ′(s · 〈pos1 . . . posn〉, a, s′ · 〈pos′1 . . . pos′n〉) =

T (s, a, s′) (∃i 6= j : pos′i = pos′j = T )∧

∀i ∈ {1 . . . n}pos′i =
(
posi ∧ (∃π ∈ Π0

gi
| π(s) = a)

)
0 otherwise

When executing action a in state s, the flag pos′i indicating whether goal gi is possible

becomes false if a is not an optimal policy with respect to gi (or remains false if it was

already false). States with less than two possible goals are no longer reachable.

• C ′(s · 〈pos1 . . . posn〉, a, s′ · 〈pos′1 . . . pos′n〉) = Co(s, a, s′): we wish to find policies with

maximal cost for the observer.

• G′ =
{
s · 〈pos1 . . . posn〉 | ∀π(s) : π ∈ ΠG =⇒ T ′(s · 〈pos1 . . . posn〉, π(s), s′ ·

〈pos′1 . . . pos′n〉) = 0
}
.

Augmented goal states are those where all original actions from those states will

transition to an augmented state with one or no goals.
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Lemma 3. All policies in Πaug from s′0 to a terminal state are non-distinctive.

Proof. All states in the original MDP have augmented versions in Πaug, and by the condition

of augmented goals, the last reachable terminal states have two or more possible goals. The

transition function guarantees that a discarded goal cannot become possible again. Hence,

there are not augmented states with less than two goals that are reachable through a legal

(optimal) policy , which by Definition 16 makes all policies non-distinctive. �

Lemma 4. Let π be a non-distinctive legal policy in the regular MDP. Then ∀π, ∃π̂ ∈ Πaug :

Vπ(s0) = Vπ̂(s
′
0) where Vπ(s0), Vπ̂(s

′
0) are the expected costs of policies π and π̂ at their starting

states.

Proof. A trajectory ~τπ = 〈s0, a1, . . . , am, sm〉 has the same cost of trajectory ~τπ̂ = 〈s′0,

a1, . . . , am, s
′
m〉 ⇐⇒ ∀si, s′i : s′i = si · 〈pos1 . . . posn〉. Let ~τπ be a valid trajectory in π, i.e.,

∀i ∈ {0, . . . ,m}, si ∈ S =⇒ ai = π(si−1), then by construction of the augmented MDP and

Lemma 3, it is always possible to find ~τπ̂ in the augmented MDP. Further, the probability of

each trajectory ~τπ has the same probability of its equivalent ~τπ̂. Therefore, policy π̂ exists in

Πaug and has the same expected cost as policy π. �

Lema 4 ensures that all non-distinctive policies of the regular MDP have equivalent policies

in the augmented MDP Πaug with the same expected cost.

Theorem 2. Given the set ~T of all trajectories in the augmented MDP, if ~T π̂max is the set

of valid trajectories of π̂max ∈ Πaug, where π̂max is maximal, and if ∀~τ ∈ ~T \ ~T π̂max, ~τπ̂max ∈
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~T π̂max : Cost(~τ) ≤ Cost(~τπ̂max), then the expected cost Vπ̂(s
′
0) of π̂max ∈ Πaug at the starting

state s′0, corresponds to the wcd of the original GR model P .

Proof. By Lemma 3, any policy in the augmented MDP is non-distinctive. Hence, the policy

π̂max ∈ Πaug with the maximum cost is also non-distinctive. Lemma 4 implies that there is a

policy π̂′ ∈ Πaug with the same expected cost as the non-distinctive policy with the highest cost

in the regular MDP M . We need to show that Vπ̂max(s0) = Vπ̂′(s0). First, Vπ̂max(s
′
0) 6< Vπ̂′(s′0)

as both policies exist in Πaug, and Vπ̂max(s
′
0) is already the maximum. Since Vπ̂′(s′0) is equal

to the highest non-distinctive cost in M and there are not trajectories with costs larger than

any trajectory of πmax, πmax would need to have trajectories or transition probabilities that

do not exist in M . However, the augmented transition function limits the reachable states

and actions to those corresponding to valid non-distinctive trajectories in M . Therefore,

Vπ̂max(s0) = Vπ̂′(s0) and Vπ̂max(s0) = wcd(P ) by Definition 17 (Eq. 3.10). �

4.1.4 Computing wcd: Algorithms

Recall that wcd is the maximal cost overall legal (optimal in this case) partial policies that

aimed at more than a single goal (Definition 17, Eq. 3.10). The number of augmented

states is O(|S| × 2|G|), which is exponential in the number of model goals. However, not all

augmented states are reachable, which provides us with an opportunity not to generate all

when computing wcd. Next, we offer a method to precisely generate the augmented states

needed for wcd computation.
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The proposed method has the following four steps: (1) Find all optimal policies; (2) Construct

the augmented MDP for reachable states; and (3) Solve this augmented MDP to compute

the wcd. We next provide details of each of these steps.

Finding Optimal Policies

To identify ΠG, we separately solve an MDP for each goal. Using V ∗(s0), the optimal expected

cost at the starting state, we identify all optimal policies per goal. Figure 4.2 shows one

optimal policy per goal, marked in black, for the original example shown in Figure 4.1 (p. 61).
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Figure 4.2: Legal Policies for OS-GRD (marked in black). (a) Optimal policy for goal g0. (b)
Optimal policy for goal g1. (c) Optimal policy for goal g2.

Constructing Augmented MDP for OS-GRD

To generate the reachable augmented state space and the corresponding augmented transition

function, we use an iterative 3-step procedure: (1) Augment the initial state with all possible

goals and add it to a stack; (2) For each immediately connected successor: intersect the goals

of the predecessor with the set of goals that satisfy the action; if the resultant intersection
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contains more than one goal and the augmented state was not created before, augment the

successor state with that set; (3) Update the transition function.

s0
a0

a1s1

s2 S3

S2

a3

{g0,g1,g2}

{g1,g2}

{g0,g2}

Figure 4.3: Reachable Augmented MDP for the OS-GRD running example.

To illustrate the procedure, consider Figure 4.2. The start sate s0 is augmented with goals

g0, g1, and g2 (Step 1). All actions are also augmented with the set of goals for which they

are optimal (Step 2). For example, action a1 is optimal for goals g1 and g2 as shown in

Figure 4.2(b) and (c). States s1, and s2 are generated and since action a0 and state s0 are

each augmented with all goals, both states are also augmented with all candidate goals.

When s2 is explored, the procedure generates goal g1 and state s3; s3 is augmented with

{g0, g1, g2} ∩ {g0, g2} = {g0, g2}. Since g1 is distinctive, it is left unexplored. Exploring s3

produces goals g0 and g2, which are no longer ambiguous, thus they are no further explored.

A similar procedure explores and expands state s1. Every time a state is explored, the

augmented transition function is updated (Steps 2 and 3). Figure 4.3 shows the resultant

augmented MDP, where the set of possible goals augmenting states and actions are color-coded

and terminal states are marked with double circles.

Algorithm 1 presents a pseudocode for constructing an augmented MDP for OS-GRD that

follows the 3-step procedure described before. The algorithm receives as input the regular

MDP parameters, the set of candidate goals, a set of optimal policies, and a parameter l that
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Algorithm 1: AugMDP-OS-GRD(s0,S, T ,G, l,ΠG)
1 G′,S′, Stack ← ∅; T ′ ← null
2 S′ ← S′ ∪ {s′0 ← s0 · 〈G〉}
3 Stack.push(s′0)
4 while Stack 6= ∅ do
5 s′ ← s · 〈Ĝ〉 ← Stack.pop()
6 Goals← Atemp ← ∅
7 foreach T (s, π(s), ss) > 0 s.t. |Ĝ′(π(s))| > 0 do
8 Atemp ← Atemp ∪ {π(s)}
9 s′s ← ss · 〈Ĝ ∩ Ĝ′〉

10 if |Ĝ ∩ Ĝ′| > l then
11 if s′s /∈ S′ then Stack.push(s′s);
12 S′ ← S′ ∪ {s′s}
13 T ′(s′, π(s), s′s)← T (s, π(s), ss)

14 else
15 Goals← Goals ∪ {s′}
16 T ′(s′, π(s), s′s)← 0

17 if ∀π(s) ∈ Atemp : T (s′, π(s), •) = 0 then G′ ← G′ ∪Goals;
18 return (〈s′0,S′, T ′,G′〉)

limits the number of possible goals. Note that the parameter l is always 1 for OS-GRD, but

may change when used with other models.

The algorithm first initializes the output variables and a stack (line 1). It uses a stack to

find successors in a DFS-fashion (lines 4-17). Initially, the start state is augmented with all

candidate goals, added to the set of augmented states, and pushed to the stack (lines 2-3).

For each augmented state explored, the algorithm analyzes all its successors (lines 7-16) to

determine whether it is an augmented goal or not. First, a successor is augmented with

the set of possible goals given its trajectory (line 9). If it is not distinctive, push it to the

stack if it was not created before, add it to the set of augmented states, and update the

transition function (lines 10-13). Otherwise, the explored state is marked as an augmented
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goal (lines 14-16). If this explored state has 0 probability of transitioning to any other

augmented state, it is added to the set of augmented goals (line 17). Finally, the augmented

parameters are returned (line 18).

Determining wcd

As stated before, to find the wcd, we need to find the maximum expected cost in the augmented

MDP, that is:

wcd(P ) = max
π̂∈Πaug

Vπ̂(s
′
0) (4.2)

Vπ̂(s
′) =

∑
s′′∈S

T (s′, π̂(s′), s′′)
[
C ′(s′, π̂(s′), s′′) + Vπ̂(s

′′)
]

(4.3)

where Πaug is the set of augmented policies in the augmented MDP, s′0 = s0 · 〈T . . . T 〉 is

the augmented initial state, s′ = s · 〈pos1 . . . posn〉 is an augmented state, and Vπ̂(s
′
0) is the

expected cost for s′0 with augmented policy π̂ computed recursively using Equation 4.3.

Observe that Equation 4.2 is analogous to the brute force algorithm to solve an MDP (Mausam

and Kolobov, 2012) that performs a policy evaluation over all enumerated policies to return

the best policy. To avoid policy enumeration, we propose to consider all optimal policies

simultaneously by creating a single augmented MDP and maximize the expected cost instead of

minimizing it (as in MDPs). Since Value Iteration (VI) is faster than Policy Iteration

in regular MDPs, we aim to also optimize over the value function space in augmented MDPs.
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This value function optimization can be done using a Bellman-like equation:

V ∗(s′) = max
a′∈A′

∑
s′′∈S′

T ′(s′, a′, s′′)
[
C ′(s′, a′, s′′) + V ∗(s′′)

]
(4.4)

but note that it uses the maximization operator instead of the minimization operator for

regular MDPs. This difference will cause an issue if there are infinite-cost cycles, which are

cycles in the graph where the optimal policy is to stay in the cycles and accumulate an infinite

cost. Fortunately, our augmented MDP does not have infinite-cost cycles, and Equation 4.4

will thus return the correct finite value upon convergence. These properties are formalized in

Lemma 5 and Theorem 3.

Lemma 5. The augmented MDP does not have infinite-cost cycles.

Proof. We prove that an infinite-cost cycle cannot exist by contradiction. Assume that such

a cycle exists. Thus, ∃s′a ∈ S′, π̂a ∈ Πaug :
∑m

i=1 P (s′i|π̂a(s
′
a), s

′
a) = 1∧ ∃i = 1, . . . ,m : s′i 6= s′a,

also ∀s′i 6= s′a : P (s′a|π̂i, s
′
i) = 1 and π̂a 6= π̂i. In words, an infinite-cost cycle cannot contain

only one state as it would mean that π̂a contains an infinite-cost cycle, and that is not possible

for optimal policies of SSP-MDPs (Mausam and Kolobov, 2012). It also means that at least

two different augmented policies form the infinite cycle.

By condition of the augmented transition function (discussed in Subsection 4.1.3, p. 64),

if T ′(s · 〈pos1 . . . posn〉, π(s), s′ · 〈pos′1 . . . pos′n〉) > 0 then ∀i ∈ {1, . . . , n} : posi = F =⇒

pos′i = F , that is, no discarded goal can become possible again. Hence, all states in the

cycle have the same set Gc ⊆ G′ of possible goals, and G(ˆ̂πa) ∩i=1,...,m G(π̂i) ∩Gc = Gc,
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i.e., any policy that form the infinite-cost cycle satisfies those goals. Let g ∈ Gc be one of

the possible goals. Then, s′a transitions to s′i through π̂a(s
′
a), optimal for g, and every π̂i

(i = 1, . . . ,m), also optimal for g, reaches s′a with 100% of probability. Therefore, policies

optimal for g form an infinite-cost cycle, which is not possible as it contradicts the principle

of optimality (Bellman, 1957). �

Theorem 3. wcd = V ∗
π̂ (s0), which can be computed recursively via Equation 4.4.

Proof. Equation 4.4 is, like the original Bellman equation Bellman, 1957, a contracting

operator. As such, it will eventually converge to the true optimal value. The only exception

is if there are infinite-cost cycles, which will cause the value of some states to converge to

infinity. However, since there are no infinite-cost cycles in our augmented MDP (Lemma 5),

they will converge to finite values. �

To compute the wcd of each problem, one can use a VI-like algorithm that runs iterations of

the Bellman-like update of Eq. 4.4. Additionally, we make the observation that the augmented

state space of the augmented MDP can often be segmented into strongly connected components

(SCCs) — each SCC contains the augmented states with the same set of possible goals, and

the set of possible goals is non-increasing. Therefore, we also propose a TVI-like algorithm

that uses Tarjan’s algorithm (Tarjan, 1972) to segment the augmented state space into SCCs

first before running VI on each SCC in reverse topological order. This should significantly

speed up the solving time if there are large numbers of SCCs, but may have the opposite

effect if there are few SCCs due to the overhead incurred by Tarjan’s algorithm.
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4.1.5 Using Policy Enumeration

Subsections 4.1.2 to 4.1.4 (p. 63 – 68) presented a method (the All-Goals strategy) to compute

wcd. The All-Goals strategy is useful because it avoids policy enumeration. However, there

are cases where that strategy will not find the wcd value, but an upper bound. The next

subsections present a method that finds the wcd value in all cases.

(a) (b)

Figure 4.4: OS-GRD Example: all actions (arrows) have unitary costs. Distinctiveness is
color-coded (see legend). (a) Original problem. (b) Non-distinctive actions.

Example 4. Consider Figure 4.4, where bold arrows represent non-distinctive actions. A

multi-head bold black arrow denotes the only action with stochastic outcomes (action a0). All

actions have unitary costs, and the set of possible goals at each state (node) is color-coded.

There are four achievable goals and one proper policy to reach each one of them. Figure 4.4(a)

presents the original problem and Figure 4.4(b) the state space reached by non-distinctive

actions, which in this case, is equivalent to an augmented MDP as defined in Subsection 4.1.3.

Figure 4.5 shows all legal policies identified with red numbers.
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Example 4 violates the All-Goals strategy’s condition; that is, not all trajectories of policies

with the largest expected distinctiveness (ED) have higher distinctiveness costs (DC) than

other trajectories. In our case, all policies share the maximum ED: policies containing

actions marked in orange have the same expected cost of policies with actions marked in

green. However, not all trajectories with the highest DC belong to the same policy; that is,

the All-Goals strategy cannot correctly solve it: Assuming T (s0, a0, s1) = T (s0, a0, s2) = 0.5,

the maximum expected cost at the initial state in Figure 4.4(b) is V (s0) = 3. On the other

hand, the largest ED, i.e., the wcd according Definition 17 is wcd = 2.5. Note that when

the trajectory with the highest DC has significantly higher probability to be executed than

others, the value found using the All-Goals strategy is closer to the wcd of the problem.

Assuming T (s0, a0, s1) = 0.9 and T (s0, a0, s2) = 0.1, wcd = 2.9 and the maximum expected

cost at the initial state in Figure 4.4(b) does not change.

Since the reasons to account for all goals detailed in Subsection 4.1.2 remain true, one solution

would be to:

1. Create one augmented MDP per goal gi similar to the one specified in Subsection 4.1.4

without creating states augmented with sets of goals that do not contain gi.

2. Find the maximum expected cost V (s0) for each one of them.

3. Find the maximum above all.
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Nevertheless, we decided to enumerate all legal policies and keep track of them. In few cases

the number of legal policies will be smaller than the number of possible goals. However, when

keeping track of the policies, we can easily generalize the method to account for suboptimal

settings and we can exploit more properties to optimize our algorithms for design 4. The

following subsections present the policy enumeration approach. Keeping track of the legal

policies requires to define a new MDP augmented with policy IDs. To evaluate the ED of a

policy, we consider only the augmented space reachable by that policy. In our example, to

evaluate the DC of policy 1 (Figure 4.5(a)) we only consider states s0, s1, s2, s3, s6, and s7.

(a) (b) (c) (d)

Figure 4.5: OS-GRD Example: all optimal policies. Red numbers denote the policy IDs.
Non-distinctive partial policies are colored. (a) Optimal policy for goal g0. (b) Optimal policy
for goal g1. (c) Optimal policy for goal g2. (d) Optimal policy for goal g3.

4.1.6 Policy-Aware Augmented MDP

The augmented states of a policy-aware augmented MDP for OS-GRD contain a Boolean

variable posgρ corresponding to each legal policy πρ for goal g, keeping track of non-discarded

policies and, indirectly, goals. The terminal states of this MDP are those where all successors

have less than two possible goals, with transitions defined according to the original MDP.
4Section 4.3 (p. 105) presents the approach for SS-GRD and Chapter 5 (p. 118) discuses the design

methods.
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Formally, given a stochastic GR model P = 〈M = 〈S, s0,A, T , C〉,G, k,N , Co〉 (with k =

0 restricting to optimal policies), a policy-aware augmented MDP for OS-GRD Πaug =

〈S′, s′0,A′, T ′, C ′o,G′〉 is defined as follows:

• S′ = S× {T, F}|ΠG|: for each s ∈ S we create 2|ΠG| augmented states, corresponding

to all subsets of possible legal policies.

• s′0 = s0 · 〈T . . . T 〉: initially all legal policies are possible.

• A′ = A, as action labels are the same.

• T ′(s · 〈pos11 . . . posgρ〉, a, s′ · 〈pos′11 . . . pos′gρ 〉) =

T (s, a, s′) (∃i 6= j,m 6= n : pos′mi = pos′nj = T )∧

∀ρ ∈ {1 . . . |ΠG|} : pos′gρ =

(
posgρ ∧ πρ ∈ Πk

g ∧ πρ(s) = a ∧ id(πρ) = ρ
)

0 otherwise

where id : ΠG → Z+ is a function mapping legal policies to policy IDs. When executing

action a in state s, the flag pos′gρ , indicating whether a policy πρ is possible, becomes

false if a is not part of the legal policy πρ for goal g (or remains false if it was already

false). States with less than two possible goals are no longer reachable.

• C ′(s · 〈pos11 . . . posgρ〉, a, s′ · 〈pos′11 . . . pos′gρ 〉) = Co(s, a, s′): we want to find policies with

maximal cost for the observer, and
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• G′ =
{
s · 〈pos11 . . . posgρ〉 | ∀π(s) : π ∈ ΠG =⇒ T ′(s · 〈pos11 . . . posgρ〉, π(s), s′ ·

〈pos′11 . . . pos′gρ 〉) = 0
}

Augmented goal states are those where any applicable action will transition to an

augmented state with less than two goals.

A resultant policy-aware augmented MDP for Example 4 has the structure shown in Fig-

ure 4.4(b), where black states and actions are augmented with policies 1 through 4, orange

denotes states and actions augmented with policies 1 and 2, and green indicates states and

actions augmented with policies 3 and 4.

4.1.7 Computing wcd: Algorithms

We first provide a high-level description of our approach to compute wcd for OS-GRD

problems using policy enumeration. Initially, all legal policies per goal are identified by

finding (and marking) all optimal policies. Next, we evaluate the expected distinctiveness of

each policy using its reachable augmented state space, avoiding to recompute policies that

share its entire non-distinctive prefix with an already assessed policy. For instance, since

policy 1 and 2 share the same non-distinctive prefix (orange portion in Figures 4.5(a) and

(b)), the algorithm will only evaluate one of them. Finally, the wcd is the largest expected

cost found. Since this evaluation is costly, we store all partial results in a priority queue to

minimize recomputation during design.
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Computing wcd: Practical Considerations

As stated before, the highest expected cost at the starting state of an augmented MDP

for OS-GRD is not always equivalent to the wcd of the problem. Therefore, we need to

evaluate the non-distinctive prefix of every legal policy. There is no need to generate all 2|ΠG|

augmented states, just the reachable states using the policy to be evaluated. While building

this smaller augmented MDP, we keep track of all policies that share all non-distinctive

trajectories and group the ones sharing their maximum non-distinctive prefixes; the wcd is

equivalent to the maximum expected cost among all groups. In the worst case, we will need

to evaluate individually all | ΠG | policies.

Procedure CommonNDPoliciesFO presents the steps we follow to group augmented

policies for evaluation and to build the partial augmented MDP. CommonNDPoliciesFO

receives a policy ID ρ ∈ f, the set of all policy IDs f, the initial state s0, the set of states S,

the set of marked legal policies Πf
G, and the transition function T as input parameters; each

legal action π(s) is augmented with a set of policy IDs corresponding to all policies that use

π(s). We use πρ to identify a marked policy with ID ρ, f(π(s)) to denote the set of policy

IDs that use action π(s), and G(f) to represent all goals of policies with IDs in f.

First, all variables are initialized and the starting state is augmented with the set of all

policy IDs and pushed to a stack (Lines 19-21). Then, we traverse the original MDP in a

DFS fashion to find all reachable states using policy π̂ρ and create the partial augmented

MDP (Lines 22-36). We keep track of valid policy IDs by intersecting the set corresponding
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Procedure CommonNDPoliciesFO(ρ,f, s0,S,Πf
G, T )

19 Stack ← ∅;S′ ← ∅;fi ← f, T ′ ← null,G′ ← ∅
20 sf0 ← 〈s0,f〉
21 Stack.push(sf0 )
22 while Stack 6= ∅ do
23 sf

′
= 〈s,f′〉 ← Stack.pop

24 if s /∈ S′ then
25 S′ ← S′ ∪ {sf′}
26 f′′ ← ∅
27 foreach T (s, π̂ρ(s), ss) > 0 | π̂ρ ∈ Πf

G do
28 f′′ ← f′ ∩ f(π̂ρ(s))
29 if |G(f′′)| > 2 then
30 Stack.push(sf

′′ ← 〈ss,f′′〉)
31 T ′(sf

′
, π̂ρ(s), s

f′′
s )← T (s, π̂ρ(s), ss)

32 else
33 T ′(sf

′
, π̂ρ(s), s

f′′
s )← 0

34 if f′′ = ∅ ∨ T ′(sf
′
, π̂ρ(s), •) = 0 then

35 G′ ← G′ ∪ {sf′}
36 fi ← fi ∩ f′

37 fi ← removeND(fi,G′,Πf
G, T )

38 return 〈fi,S′, T ′,G′〉

to the current state with the action’s respective set (Line 28). If the resulting set contains

policies for more than two goals, the procedure pushes the augmented successors to the

stack and updates the augmented transition function (Lines 29-33). All augmented states

that cannot transition to any other state are identified as augmented goals and the policies

common to all these goals are saved (Lines 34-36). The function removeND checks if the

common policies could have longer non-distinctive prefixes and in case they do, removes them

from fi (Line 37). The final set fi signals policies with the same non-distinctive trajectories

that can be combined when computing the maximum expected value. Finally, the procedure
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returns fi and the components of an augmented MDP useful to evaluate the group of policies

with IDs in fi (Line 38).

The solution of the augmented MDP generated using Procedure CommonNDPoliciesFO

gives the expected cost of the largest non-distinctive prefix of all policies Πfi with IDs

indicated in fi. The wcd is then computed using:

wcd(P ) = max
i=1...n

VΠfi (s′0) (4.5)

VΠfi (s′) =
∑
s′′∈S′

T ′(s′, π(s′), s′′)[C ′(s′, π(s′), s′′) + VΠfi (s′′)] (4.6)

where: π ∈ Πfi and
n⋃

i=1

fi = f ∧
n⋂

i=1

fi = ∅

We use a TVI-like algorithm that runs iterations of Eq. 4.6 for groups of policies with the

same non-distinctive trajectories, and find the maximum among all using Eq. 4.5.

4.2 Partially-Observable S-GRD (POS-GRD)

In this section, we extend the definition of the worst-case distinctiveness measure to account

for partial observability (of an observer) in stochastic environments. The model, which

we call Partially-Observable S-GRD (POS-GRD), assumes that the agent’s actions are no

longer observable, and agent’s states are partially observable, so that several states may be

indistinguishable from one another. The degree of observation uncertainty is related to the

resolution of sensors in the problem.
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Example 5. To illustrate the setting of this work, we present an example in Figure 4.6; the

fully-observable version is shown in Figure 4.6(a). Due to low sensor resolution, more than

one state can be mapped to the same observation, as in Figure 4.6(b), where states S2 and S1

are perceived as only one. In this example, all actions have cost of 1; we represent states as

annotated nodes, unobservable actions with annotated dashed edges, and observations using

annotated shaded areas. Goals are marked with double-lined circles. Each edge is labeled

with an action name, and an action with a stochastic outcome is represented by a multi-head

arrow, with probabilities associated with each arrow head. We also mark the intended goal of

an action using arrow width, where thin arrows represent intended goal g0 and thick arrows

represent intended goal g1.

The observation model we propose is different from others such as HMM or POMDP as we

assume actions are not observable at all. The observer only observes a transition between

two states that are associated with different observations. Any transition between states

that are mapped to the same observation is undetectable. This is suitable for sensors that

produce a continuous reading of the observed state and settings in which the agent can spend

an arbitrary amount of time in each state.

Note that the OS-GRD version of the example has a wcd=0 as each policy satisfies optimally

only one goal, and as soon as the agent executes an action reveals its goal. However, with a

sensor configuration as in Figure 4.6(b), an observer is not able to disambiguate the goals

until the agent arrives at its target. We now present algorithms to find wcd under these

conditions.
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Figure 4.6: POS-GRD Assumptions. (a) OS-GRD. (b) POS-GRD: Non-observable actions
and states are only partially observable (green shades).

Subsections 4.2.1 to 4.2.3 (p. 83 – 94) present algorithms that allow us to find the largest

expected cost among all possible non-distinctive observable trajectories, which is equivalent to

compute wcd when all observable trajectories of a policy with maximal expected distinctiveness

(Definition 17, p. 55) have distinctiveness costs larger or equal than trajectories of any other

policies. Subsections 4.2.4 to (p. 100) present a method to compute wcd for all cases.

4.2.1 Augmented MDP for POS-GRD

The sets of possible goals at specific states demonstrate a non-Markovian behavior, which

depends not just on the current state but also on what we have observed in the past. Intuitively,

once goal g has been eliminated as a possible goal (by observing the agent performing an

action that is not part of an optimal policy with respect to g), then g never becomes a

possible goal again, even if the agent executed an action that is optimal with respect to g.

We, therefore, propose the use of augmented MDPs to capture the non-Markovian behavior

in a partial observability setting.
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Let P = 〈M,G, k,N , Co〉 be a partially-observable goal recognition model with stochastic

action outcomes, (Definition 1, p. 45), with k = 0 for optimal agents, M = 〈S, s0,A, T , C, ∅〉

being an MDP with positive costs C for the agent and no goal. An augmented MDP adds a

Boolean variable posg for each possible goal g, to keep track of whether g has been eliminated

as a possible goal or not. The terminal states of this MDP are those that have less than two

possible goals, with transitions and costs defined according to the original MDP. To comply

with Definition 17 (p. 55), the cost of an action transitioning to a terminal state is 0.

We account for partial observability by overlaying a sensor model on the augmented MDP.

We first define a notion of connectivity in which an agent can transition from state s to state

s′, while following a policy that is optimal with respect to some goal g ∈ G, without being

observed.

Definition 18. State s is unobservably connected to state s′ with respect to a set of possible

goals G if there exists a policy π ∈ ∪g∈GΠ0
g, and a trajectory ~τ = 〈s0, π(s0), s1, π(s1), . . . , sn〉

with s = s0 and s′ = sn, such thatN (s0) = N (s1) = . . . = N (sn), and with T (si, π(si), si+1) >

0 for 0 ≤ i ≤ n.

We denote by ucG(s) the set of states s′ such that s is unobservably connected to s′ with

respect to G, e.g., in Figure 4.6(b), ucG={g0,g1}(s1) = {s1, s2}.

In an OS-GRD setting, a transition from s to s′ using an action a that is not part of an

optimal policy to goal g, results in the removal of g from the set of possible goals. However, if

N (s) = N (s′), the transition cannot be observed and g cannot be eliminated. Moreover, even
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when N (s) 6= N (s′), there may be another transition from ŝ ∈ uc{g}(s) to ŝ′ using action

â, such that T (ŝ, â, ŝ′) > 0, N (s) = N (ŝ), N (s′) = N (ŝ′), and â is an optimal action at ŝ

with respect to g. In this case, an observer cannot distinguish between the two transitions

and as a result g still cannot be eliminated from the set of possible goals. As an example,

consider Figure 4.6(a) where actions a3 and a4 (compensating actions for the stochasticity of

actions a1 and a2, respectively) reveal the agent’s goal since each one is optimal for only one

(different) goal. In the partially-observable scenario of Figure 4.6(b), actions a3 and a4 are

not observed as N (s2) = N (s1) and even though N (s0) 6= N (s1), if a1 is executed, goal g1

cannot be eliminated because a2, optimal for g1, also transitions from N (s0) to N (s1) and

they cannot be distinguished.

Taking into account the observation above, the augmented MDP for POS-GRD Πaug =

〈S′, s′0,A′, T ′, C ′o,G′〉 is defined as follows:

• S′ = S× {F, T}|G|: for each s ∈ S we create 2|G| possible states, corresponding to all

subsets of possible goals. We use w(s′) = s to denote that s is the state of the world at

s′ ∈ S′.

• s′0 = s0 · 〈T . . . T 〉: initially all goals are possible.

• A′ = A (action labels remain unchanged).

• T ′(s · 〈pos1 . . . posn〉, a, s′ · 〈pos′1 . . . pos′n〉) =

85





T (s, a, s′) ∀i ∈ {1 . . . , n}(pos′i = (posi∧ (4.7)(
N (s) = N (s′) (4.8)

∨(∃π ∈ Π0
gi
| π(s) = a) (4.9)

∨(∃π ∈ ΠG ∧ ∃ŝ : N (s) = N (ŝ)∧ (4.10)

∃ŝ′ | T (ŝ, π(ŝ), ŝ′) > 0∧ (4.11)

N (s′) = N (ŝ′))
)
)) (4.12)

0 otherwise (4.13)

To compute whether the probability that executing action a when in state s with

〈pos1 . . . posn〉 (where posi indicates whether goal gi is possible) leads to state s′ with

〈pos′1 . . . pos′n〉 is equal to T (s, a, s′), we test the observer belief regarding each gi

according to the following cases. A goal cannot become possible (Line 4.7). A goal

remains possible if s′ is unobservably connected (Definition 18) to s (Line 4.8) or a is

optimal with respect to the goal (Line 4.9). Finally, lines 4.10-4.12 cover the case of

undistinguishable actions discussed above.

• C ′(s · 〈pos1 . . . posn〉, a, s′ · 〈pos′1 . . . pos′n〉) =


Co(s, a, s′) ∀(s′ · 〈pos′1 . . . pos′n〉) 6∈ G′

0 otherwise
We want to find policies with maximal cost for the observer without including the cost

that transitions to a terminal state.
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• G′ =
{
s · 〈pos1 . . . posn〉 | ∃posi∀j 6= i : posj = F : terminal states are those with less

than two possible goals.

Lemma 6. Let π′ be any policy for the augmented MDP Πaug, and define the non-distinctive

partial policy π̂ for P by:

π̂(s) =



a π′(s′) = a ∀s′ ∈ S′ : w(s′) = s

∧ ∃s′s ∈ S′ : T ′(s′, π′(s′), s′s) > 0 ∧ s′s 6∈ G′

⊥ otherwise

(4.14)

Then Vπ′(s′0) = ED(π̂), that is, the expected value of policy π′ in Πaug at s′0 is equal to the

expected distinctiveness of π̂ in P .

Proof. Let Sπ̂ be the set of states reached by any non-distinctive trajectory of π̂ and S′
π′ the

set of states reached by policy π′ ∈ Πaug. By Definition 17 (p. 55), the expected distinctiveness

of a non-distinctive policy π̂ is its expected cost. From Eq. 4.14, π̂ starts at s0 = w(s′0)

and ends at states sn = w(s′n) | ∀s′s ∈ S′ : T ′(s′n, π
′(s′n), s

′
s) > 0 =⇒ s′s ∈ G′. Therefore,

ED(π̂) = Vπ̂(s0), where:

Vπ̂(s) =


0 if π̂(s) = ⊥

∑
ss∈Sπ̂

T (s, a, ss)
[
Co(s, a, ss) + Vπ̂(ss)

]
Otherwise

(4.15)
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By Eq. 3.9 (p. 55), the expected distinctiveness will not include costs of non distinctive

trajectories. Hence, Eq. 4.15 considers only successors reachable by non-distinctive trajectories.

On the other hand, Vπ′(s′0) can be evaluated using:

Vπ′(s′) =


0 if s′ ∈ G′

∑
s′s∈S′

π′
T (s′, a, s′s)

[
C ′(s′, a, s′s) + Vπ′(s′s)

]
Otherwise

(4.16)

By construction of the augmented MDP, ∀s′, s′s ∈ S′
π′ ,∃s, ss ∈ Sπ̂ : s = w(s′) ∧ ss =

w(s′s) ∧ T (s′, a, s′s) = T (s, a, ss). Additionally, if s = w(s′) ∧ ss = w(s′s) ∧ s′s 6∈ G′ then

C ′(s′, a, s′s) = Co(s, a, ss), else C ′(s′, a, s′s) = 0. In words, transitioning to an augmented

goal is possible, but the cost of that transition is 0. If s′ ∈ G′ then s = w(s′) 6∈ Sπ̂, that

is, s is not part of any non-distinctive trajectory, nor is the action reaching s. Therefore,

Eqs. 4.15 and 4.16 provide the same values for all states s ∈ Sπ̂ and s′ ∈ Sπ′ . Hence,

Vπ̂(s0) = ED(π̂) = Vπ′(s′0). �

Lemma 6 connects the expected distinctiveness cost of a partial policy value to the expected

value from a policy in the augmented MDP. Next, we define legal augmented policies where S

represent the set of states in the regular MDP and S′ the set of augmented states.

Definition 19. Let π′ be any policy for the augmented MDP Πaug with trajectories T =

{~τ = 〈s′0, a0, . . . , s′n−1, an−1, s
′
n〉 | ∀i ∈ {0, . . . , n} : ai = π′(s′i)}. π′ is a legal augmented

policy if and only if there exists a non-distinctive policy π̂ ∈ ΠG in the regular MDP M
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with trajectories T̂ = {~τ = 〈s0, a0, . . . , sn−1, an−1, sn〉 | ∀i ∈ {0, . . . , n} : ai = π̂(si)} and

∀si ∈ S,∃s′i ∈ S′ : w(s′i) = si ∧ ai = π̂(si) = π′(s′i)

The following corollary establishes the connection to the wcd, leading to the algorithm to be

detailed next for efficiently computing the wcd for optimal agents.

Corollary 1. Let π′ be a maximal legal augmented policy, and let π̂ be as defined in Eq. 4.14,

then Vπ′(s0) is equal to the wcd.

Proof. By Definition 19, there exists a non-distinctive policy π̂ in the regular MDP that

has trajectories equivalents to π′. Lemma 6 guarantees that both policies have the same

expected cost. Since π′ is maximal, π̂ should also be maximal, therefore, the expected cost

Vπ̂(s0) = wcd = Vπ′(s0). �

4.2.2 Augmented MDP for POS-GRD: Practical Considerations

Similar to the All-Goals strategy for OS-GRD, we would like to construct an augmented MDP

where finding the maximal expected cost does not require to evaluate individual policies over

all enumerated augmented policies. To avoid policy enumeration, we propose to consider all

augmented policies simultaneously and maximize the expected cost instead of minimizing it

(as in MDPs). However, we need to be careful of infinite-cost cycles, that is, cycles in the

graph where the optimal policy is to stay in the loop and accumulate an infinite cost. Next,

we analyze the possible existence of those types of loops.
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Infinite-Cost Cycles in the Augmented MDP for POS-GRD

Finding the maximum expected cost in an MDP is equivalent to finding the wcd only if there

are no infinite-cost cycles. By Lemma 5, an augmented MDP for OS-GRD does not have

that type of cycles, thus, it must be the case that they are caused by partial observability.

We will characterize those cases and show how to remove infinite-cost cycles.

Definition 20. We formally define an infinite-cost cycle in the augmented MDP as follows:

∃s′a, s′i ∈ S′, πa ∈ ΠG :
∑m

i T ′(s′a, πa(s
′
a), s

′
i) = 1 ∧ ∃i = 1, . . . ,m : s′i 6= s′a and ∀s′i ∈ S′ :

T ′(s′a, πa(s
′
a), s

′
i) > 0,∃Πi ⊆ ΠG : P (s′a | Πi, s

′
i) = 1.

Note that any state in an infinite loop must reach other states in the loop with a 100%

probability. Further, by construction, all actions used in the reachable part of the augmented

MDP are optimal actions in the regular MDP (augmented transition, Lines 4.11, and 4.12).

Therefore, by Lemma 7 below, infinite-cost cycles in the augmented MDP cannot contain

only actions in policies optimal to the same set of goals. Additionally, an infinite-cost cycle

cannot have only one state, as that would imply one optimal policy with an infinite loop,

which contradicts the principle of optimality (Bellman, 1957).

Lemma 7. Let s′a be a state in an infinite-cost cycle as defined in Definition 20 and πa(s
′
a)

an applicable legal action. If ∀s′i : T ′(s′a, πa(s
′
a), s

′
i) > 0, ∃Πi : P (s′a | Πi, s

′
i) = 1, then(

∃(s′i | T ′(s′a, πa(s
′
a), s

′
i) > 0), π ∈ Πi, g ∈ G

)
:
(
g 6∈ G(πa) ∩G(π) ∧ g ∈ G(πa) ∪G(π)

)
.

90



Proof. We prove it by contradiction, that is, assume ∀(s′i | T ′(s′a, πa(s
′
a), s

′
i) > 0), π ∈ Πi, g ∈

G′ : g ∈ G(πa) ∩G(π) ∨ g 6∈ G(πa) ∪G(π). If g 6∈ G(πa) ∪G(π), then g is not considered

in the infinite-cost cycle, else if g ∈ G(πa) ∩G(π), P (s′a | {π, πa}, s′a) = 1, that is, there

is a 100% probability that policies π and πa have an infinite loop. Also, by Lemma 6,

if P (s′a | Πi, s
′
i) = 1, then P (w(s′a) | Πi, w(s

′
i)) = 1.Thus, combining both statements, if

w(s′a) = sa, we have that ∀g ∈ Ĝ, ∃π ∈ Π0
g : P (sa | {π, πa}, sa) = 1; that is, there are

policies, both optimal for goal g that form an infinite-cost cycle in the regular MDP. This is

not possible as it contradicts the principle of optimality (Bellman, 1957). �

Moreover, by construction of the augmented transition function for POS-GRD, a goal cannot

become possible after it is discarded (Line 4.7). Hence, all states in the infinite cycle (s′ ∈ S′
c)

have the same set of possible goals, i.e., ∀s′1 6= s′2 ∈ Sc : s′1 = s1 · 〈pos1 . . . posn〉 ∧ s′2 =

s2 · 〈pos′1 . . . pos′n〉 =⇒ ∀i ∈ {1, . . . , n} : posi = pos′i.

We will now consider the possible cases of partial observability under the POS-GRD assump-

tions:

1. Fully-observable states and non-observable actions; and

2. Partially-observable states and non-observable actions.

For the first case, let Gc be the set of possible goals of all states s′ ∈ S′
c, the set of actions

applicable in state s′a is Πs′a = {π(s′a) | π ∈ ΠG ∧ ∀s′a ∈ S′
c : T ′(s′a, π(s

′
a), •) > 0}, and

GΠs′a
=

⋃
π(s′a)∈Πs′a

G(π(s′a)) is the set of all goals satisfied by all those applicable actions.
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Since all states are fully-observable, we have that ∀s′a, s′b ∈ S′
c, π(s

′
a) ∈ Πs′a : T ′(s′a, π(s

′
a), s

′
b) >

0 =⇒ G′
c = G′

c ∩GΠs′a
, that is, all states in the infinite-cost cycle are reachable through

actions satisfying each goal g ∈ G′
c. This contradicts Lemma 7 as G′

c 6= ∅. Hence, infinite-cost

cycles must occur in the second case.
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a2
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Figure 4.7: POS-GRD (cont.)(a) Infinite-cost cycle in POS-GRD. (b) Cycle-free MDP.

Example 6. Figure 4.7(a) shows an example of an infinite-cost loop formed by actions a3

and a4, each from policies satisfying different sets of goals. States S1 and S2 are unobservably

connected (Definition 18, p. 84) and visually represented in the same green shape. Also,

subindexes in each observation Oi, denote the set of possible goals of all unobservably connected

states.
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Removing Infinite-Cost Cycles

To remove infinite-cost cycles caused by partially-observable states, we propose to apply

first a modified version of the augmented MDP rules for OS-GRDs (Subsection 4.1.3, p. 64),

specifically, use the following augmented transition function:

T ′′(s · 〈pos1 . . . posn〉, a, s′ · 〈pos′1 . . . pos′n〉) =
T (s, a, s′) pos′i =

(
posi ∧ (∃π ∈ Π0

gi
| π(s) = a)

)
0 otherwise

(4.17)

The resultant MDP is then augmented following the rules for partial observability.

Lemma 8. Eq. 4.17 breaks infinite-cost cycles.

Proof. Let s′ denote a state in the augmented MDP, and s = w(s′) represent the corresponding

state in the regular MDP. By Lemma 7, there must be at least two policies, with different

satisfying sets of goals, that form the infinite-cost cycle as defined in Definition 20. Given

a state s′a ∈ S′
c, from Lemma 7, ∀s′b ∈ S′

c : T ′(s′a, πa(s
′
a), s

′
b) > 0, ∃πb ∈ Πb, g ∈ G : P (s′a |

Πb, s
′
b) > 0∧ g ∈ G(πb)∪G(πa)∧ g 6∈ G(πb)∩G(πa). Eq. 4.17 adds information of the set of

goals satisfying policies into the states of a regular MDP. Below, we identify the new states

with a circumflex accent.
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If T (sa, πa(sa), sb) > 0, then ∀i = 1, . . . , | G |: (ŝa = sa · 〈posg1 , . . . , posg|G|〉, ŝb = sb ·

〈pos′g1 , . . . , pos
′
g|G|
〉∧posgi = T ∧gi ∈ G(πa)) =⇒ pos′gi = F , that is, the set of possible goals

of ŝb does not contain goals in ŝa that belong to G(πa); therefore, P (ŝa | Πb, ŝb) = 0. �

In essence, Eq. 4.17 breaks cycles that the agent will never take as they correspond to policies

satisfying different sets of goals.

4.2.3 Computing wcd: Algorithms

The number of augmented states of an augmented MDP for POS-GRD is O(|S|× 2|G|), which

is exponential in the number of model goals. Since not all augmented states are reachable,

there is no need to generate them all when computing wcd.

The proposed method generates exactly the augmented states needed for wcd computation,

solving a single augmented MDP, and has four main steps: (1) Find all optimal policies;

(2) Join them and remove infinite cycles to avoid computing the expected distinctiveness

cost for each policy; (3) Construct the augmented MDP for reachable states taking partial

observability into account; (4) Solve this augmented MDP to compute the wcd. We next

provide details of each of these steps.

Finding Optimal Policies

To identify the set of legal policies ΠG, we separately solve an MDP for each goal. Using

V ∗(s0), the optimal expected cost at the starting state, we identify all optimal policies per
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goal. Figure 4.7(a) shows two optimal policies, one per goal, using two different edge widths

(optimal policy for g1 is marked in bold).

Removing Cycles

Combining all optimal policies into a single augmented MDP may create infinite-cost cycles

resulting from joining two or more policies that reach undistinguishable states. Solving such

an augmented MDP leads to optimal policies that choose to remain within the cycle to

achieve an infinite maximum expected cost. For example, Figure 4.7(a) contains a cycle

of actions a3 and a4, which belong to different optimal policies and therefore will never be

executed together by an optimal agent. Therefore, we eliminate such cycles.

As a first step, we model the agent’s true behavior using Eq. 4.17, which is similar to

the transition function for OS-GRDs. This step guarantees that there are no infinite

loops (Lemma 8, p. 93). For each augmented state, the set of goals becomes part of the state

ID to keep the MDP structure free of infinite-cost cycles. In what follows, we refer to this

MDP as cycle-free MDP and to the sets of possible goals as FO possible goals.

For example, consider Figures 4.7(a)-(b). State S0 is augmented with goals g0 and g1 (denoted

as subindex 01), then each action is analyzed to generate successors. When a1 (optimal for

goal g0) is examined, states S1 and S2 are augmented with goal g0, and when action a2

(optimal for goal g1) is analyzed, S1 and S2 are augmented with goal g1. Later, when action

a3 is analyzed, no new state needs to be generated as S1 augmented with goal g0 was already
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created; a similar situation occurs with a4. It is worth noting that all the augmented states

generated from the same state ( e.g., S1 or S2) project to the same observation. Also, the

resulting cycle-free MDP has separate distinguished paths for each goal.

Constructing Augmented MDP for POS-GRD

To generate the components of the final augmented MDP from the cycle-free MDP, we use

an iterative 7-step procedure: (1) Augment the initial state with all possible goals; (2) Find

all unobservably connected states and augment them with the same set of goals; (3) Find

all immediately connected states projecting successors not belonging to the unobservably

connected states; (4) Group them according to their observations; (5) Augment states in each

group; (6) Keep non-duplicated augmented states; and (7) Update the transition function.

S001

S20

g0

g1

a1

a2

a5

0.9 0.1

S11

S21 a6

0.2

O101
O201

O41

O30

Figure 4.8: POS-GRD (cont.) Reachable Augmented MDP for POS-GRD.

To illustrate the procedure, consider the resulting augmented MDP in Figure 4.8. Possible

goals for a state are shown as indices to the ID of their observations. The start sate S001 is
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augmented with goals g0 and g1 (Step 1). States S10, S20, S11, and S21 are generated and

since (1) actions a0 and a1 are each optimal for different goals; (2) both of them transition

from O1 to O2; and (3) they are non-observable, then all these states are augmented with

goals g0 and g1 (Steps 3 to 5). The transition function in this case does not change (Step 7).

When S1 and S2 are examined, all their unobservably connected states should be first

generated and augmented with the same set of goals. However, in this case, no new state

needs to be created. Later, other connected states not projecting both g0 and g1 are generated

and augmented following the same procedure. Note that the cost of actions a6 and a5 is 0

and is not used to compute the wcd since goals g0 and g1 are distinctive.

Algorithm 2 presents a pseudocode for constructing an augmented MDP for POS-GRD,

receiving as input a goal recognition model and a set of optimal policies. The algorithm

initially builds a cycle-free MDP (lines 39-41) by calling Algorithm 1 with limit l = 0 to

account for distinctive states as well, and initializes the output variables and a stack (line 42).

Then, the 7-step procedure starts. Step 1 is executed in line 43 and the stack is used to find

successors in a DFS-fashion (lines 44-68). Each augmented state in the stack is explored to

generate its immediate successors (lines 46-47). Following steps 2 and 3, the algorithm finds

and augments successors (lines 49-50). The set of possible goals to temporarily augment a

successor found in step 3 corresponds to the intersection of its predecessors’ goals with the set

of goals for which the action executed to arrive at it is optimal (line 52). Next, successors are

grouped as specified in step 4 (lines 53-54) and the final set of goals per group is generated

(lines 57-58). The algorithm uses this set to augment states in that group (step 5, line 60).
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Algorithm 2: AugMDP-PO(s0,S, T , Co,G, N,ΠG)
39 〈ŝ0, Ŝ, T̂ , Ĝ〉 ← AugMDP -FO(s0,S, T ,G, 0,ΠG)

40 foreach ŝ ∈ Ŝ do
41 if ŝ = s · 〈pos1 . . . pos|G|〉 = s · 〈G′〉 then N (ŝ)← N (s);
42 G′,S′, Stack ← ∅; T ′ ← null

43 s′0 ← ŝ0 · 〈Ĝ〉
44 Stack.push(s′0)
45 while Stack 6= ∅ do
46 s′ ← ŝ · 〈Ĝ′〉 ← Stack.pop()
47 Keys← ∅;Map← null

48 foreach T̂ (ŝ, π(ŝ), ŝ′) > 0 do
49 Ĝ′′ ← G(π)

50 if N (ŝ) = N (ŝ′) then s′′ ← ŝ′ · 〈Ĝ′〉;
51 else
52 s′′ ← ŝ′ · 〈Ĝ′ ∩ Ĝ′′〉
53 Keys← Keys ∪ {N (s′′)}
54 Map(N (s′′))←Map(N (s′′)) ∪ {〈s′, π(ŝ), s′′〉}

55 foreach k ∈ Keys do
56 Goals← ∅
57 foreach 〈s′, π(ŝ), ŝ′′ · 〈Ĝ′′〉〉 ∈Map(k) do
58 Goals← Goals ∪ Ĝ′′

59 foreach 〈s′, π(ŝ), ŝ′′ · 〈, Ĝ′′〉〉 ∈Map(k) do
60 s′′ ← ŝ′′ · 〈Goals〉
61 if |Goals| > 1 then
62 if s′′ /∈ S′ then Stack.push(s′′);
63 S′ ← S′ ∪ {s′′}
64 C′(s′, π(ŝ), s′′)← Co(ŝ, π(ŝ), ŝ′)
65 else
66 G′ ← G′ ∪ {s′′}
67 C′(s′, π(ŝ), s′′)← 0

68 T ′(s′, π(ŝ), s′′)← T (ŝ, π(ŝ), ŝ′)

69 return (〈s′0,S′, T ′,G′, C′〉)
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If the newly augmented state was not explored before, it is added to the stack for future

exploration (step 6, line 62), and to the set of augmented states if it is distinctive (line 63).

If the set of goals per group has less than two goals, the explored state is an augmented goal

(lines 65-66). The augmented cost function is updated in both cases (lines 64,67). Finally,

the augmented transition function is updated (line 68), and once the algorithm explores all

reachable expanded states, it returns all augmented parameters. The resultant augmented

MDP contains only legal augmented policies (Definition 19, p. 88).

Determining wcd

Exactly as in OS-GRDs (Section 4.1, p. 71), the maximum expected cost can be found using a

TVI-like algorithm (Dai, D. S. Weld, et al., 2011) to solve the augmented MDP where instead

of using Eq. 2.1, we use Eq. 4.4 that replaces the minimization condition with a maximization.

Algorithm 2 removes possible infinite-cost cycles caused by partial observability; therefore,

the resultant augmented MDP does not have infinite-cost cycles, and Equation 4.4 will thus

return the correct finite value upon convergence. Theorem 3 (p. 73) is valid for POS-GRD as

well.

The wcd for our example in Figure 4.8 is 1.2, corresponding to the thickest policy satisfying

goal g1.
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4.2.4 Using Policy Enumeration in POS-GRD

The last subsections presented a method to compute wcd for POS-GRD while avoiding policy

enumeration. Although the method is useful in many cases, it can only find an upper bound

in cases where the policy with maximal expected distinctiveness has trajectories with lower

distinctiveness costs than trajectories of other policies. The following subsections present a

method to compute wcd in all cases.

(a) (b) (c) (d)

Figure 4.9: POS-GRD Example. (a) Original problem. (b) Optimal policy for goal g0. (c)
Optimal policy for goal g1. (d) Annotated augmented MDP.

Example 7. Consider Figure 4.9(a), where dotted arrows represent unobservable actions

of unitary costs and nodes denote states. A multi-head arrow depicts the only action with

stochastic outcomes and double-lined circles symbolize possible goals. Due to sensor resolution,

multiple states can map to one observation, marked as a green shaded area. There is only

one policy to reach each goal and each legal policy has two possible trajectories. Figure 4.9(d)

highlights non-distinctive observable actions in bold, the graph structure is equivalent to an

MDP augmented with goal information as described in Subsection 4.2.1 (p. 83). Gray arrows

correspond to actions with cost 0 in such augmented MDP.
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Example 7 presents a case where evaluating the maximum expected cost in an augmented

MDP provides an upper bound instead of the wcd value as specified in Definition 17 (p. 55).

Similar to OS-GRD, we decided to enumerate all legal (optimal) policies and keep track of

them. Figures 4.9(b) and (c) show policies 1 and 2, optimal for goals g0 and g1, respectively.

In this case, however, we need to account not only for policies that share the same actions,

but also for policies sharing the same observable trajectories.

4.2.5 Policy-Aware Augmented MDP for POS-GRD

Let P = 〈M,G, k,N , Co〉 with k = 0 be a partially-observable goal recognition model with

stochastic action outcomes (Definition 1, p. 45), M = 〈S, s0,A, T , C, ∅〉 is an MDP with

positive costs C for the agent and no goal. The states of an augmented MDP add a Boolean

variable posgρ per possible policy to keep track of its validity given an observed trajectory.

Note that each policy with ID ρ also serves to keep track of possible goals since they are

legal for a specific goal g. Terminal states of this MDP are those that have less than two

possible goals, with transitions and costs defined according to the original MDP. To comply

with Definition 17 (p. 55), the cost of an action transitioning to a terminal state is 0.

The policy-aware augmented MDP for POS-GRD Πaug = 〈S′, s′0,A′, T ′, C ′o,G′〉 is defined as

follows:
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• S′ = S× {T, F}|ΠG|: for each s ∈ S we create 2|ΠG| augmented states, corresponding

to all subsets of possible legal policies. We use w(s′) = s to denote that s is the state

of the world at s′ ∈ S′.

• s′0 = s0 · 〈T . . . T 〉: initially all policies are possible.

• A′ = A (action labels remain unchanged).

• T ′(s · 〈pos11 . . . posgρ〉, a, s′ · 〈pos′11 . . . pos′gρ 〉) =



T (s, a, s′) (∃i 6= j,m 6= n : posmi = posnj = T )∧ (4.18)

∀i ∈ {1 . . . , |ΠG|}(pos′gi = (posgi∧ (4.19)(
N (s) = N (s′) (4.20)

∨(πi ∈ Πk
g ∧ πi(s) = a ∧ id(πi) = i) (4.21)

∨(∃π ∈ ΠG ∧ ∃ŝ : N (s) = N (ŝ)∧ (4.22)

∃ŝ′ | T (ŝ, π(ŝ), ŝ′) > 0∧ (4.23)

N (s′) = N (ŝ′))
)
)) (4.24)

0 otherwise (4.25)

where id : ΠG → Z+ is a function mapping legal policies to policy IDs. The probability

of transitioning from state s with 〈pos11 . . . posgρ〉 to state s′ with 〈pos′11 . . . pos′gρ 〉 (where

posmi , pos
′m
i indicate whether policy with ID i, legal for goal m is possible) depends

on multiple factors. The transition probability from a state where the true goal was

revealed is 0 (Line 4.18). Once discarded, a policy cannot become possible (Line 4.19).
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A policy remains possible if s′ is unobservably connected (Definition 18, p. 84) to s

(Line 4.20) or action a is part of policy πi with ID i (Line 4.21). Finally, Lines 4.22-4.24

cover the case of undistinguishable actions discussed for our example and, in more

detail, in Subsection 4.2.1 (p. 84).

• C ′(s · 〈pos11 . . . posgρ〉, a, s′ · 〈pos′11 . . . pos′gρ 〉) =


Co(s, a, s′) ∀(s′ · 〈pos′11 . . . pos′gρ 〉) 6∈ G′

0 otherwise
We want to find policies with maximal cost for the observer without including the cost

of actions that transition to a terminal state, and

• G′ =
{
s · 〈pos11 . . . posgρ〉 | (∃posmi ,∀j 6= i, n 6= m : posnj = F )}: terminal states are

those with less than two possible goals.

Figure 4.9(d) shows the resultant policy-aware augmented MDP where states are augmented

with policy IDs (signaled by red numbers, as defined in Figures 4.9(b) and (c)).

4.2.6 Computing wcd: Algorithms

The computation of wcd for POS-GRD implies finding legal policies and accounting for the

observer’s partial observability as defined at the beginning of this section. We find and mark all

legal (optimal) policies per candidate goal. Next, we use Procedure CommonNDPoliciesPO

to find groups of policies sharing all their observable non-distinctive trajectories and to

build a partial augmented MDP to evaluate them. In this Procedure, N represents the set

of possible observations given a sensor configuration defined by the function N . Function
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O : N → P (S′) is a mapping from N to the power set of augmented states that models

augmented states grouped by their projected observations.

Procedure CommonNDPoliciesPO(ρ,f, s0,S,Πf
G, T ,N )

70 Stack ← ∅;S′ ← ∅;fi ← f, T ′ ← null,G′ ← ∅;O ← null
71 sf0 ← 〈s0,f〉
72 Stack.push({sf0 });S′ ← S′ ∪ {sf0 }
73 while Stack 6= ∅ do
74 S0 ← Stack.pop
75 〈fi, T ′,G′,S′,O〉 ← UnobsConnStates(S0, T ,N , ρ,fi, T ′,G′,S′)
76 foreach N (s) ∈ N | O(N (s)) 6= null do
77 S′′ ← O(N (s))
78 Stack ← S′′

79 return 〈fi,S′, T ′,G′〉

At a high level, the procedure represents each unobservably connected set of states as a node

and traverses these nodes in a DFS fashion. It receives as arguments the policy ID ρ to be

evaluated, the set f of all policy IDs, the initial state s0, the set S of original states, the

set Πf
G of all legal policies marked with their respective IDs, the original transition function

T , and the sensor configuration modeled by the sensor function N . First, all variables are

initialized and the start state s0 is augmented with the set of all policy IDs f (Lines 70-

71). Next, a set containing the augmented initial state is pushed to a stack and the set of

augmented states is updated (Line 72). Each stack entry is a set of augmented states emitting

the same observation and whose predecessors emit a different observation. The Procedure

UnobsConnStates updates the augmented MDP components and the set of policies fi that

share all observable trajectories of policy with ID ρ while traversing unobservably connected
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sates (Lines 73-78). Finally, the procedure returns fi and the components of an augmented

MDP useful to evaluate the group of policies with IDs in fi (Line 79).

The solution of the augmented MDP generated using Procedure CommonNDPoliciesPO

gives the expected cost of the largest non-distinctive prefix of all policies Πfi with IDs

indicated by fi. The wcd is then computed using:

wcd(P ) = max
i=1...n

VΠfi (s′0) (4.26)

VΠfi (s′) =
∑
s′′∈S′

T ′(s′, π(s′), s′′)[C ′(s′, π(s′), s′′) + VΠfi (s′′)] (4.27)

where: π ∈ Πfi and
n⋃

i=1

fi = f ∧
n⋂

i=1

fi = ∅

We use a TVI-like algorithm that runs iterations of Eq. 4.27 for groups of policies with the

same non-distinctive trajectories, and find the maximum among all using Eq. 4.26.

4.3 Suboptimal S-GRD (SS-GRD)

Previous sections consider the worst-case distinctiveness measure under the assumption of

optimal agents. However, even if the agent is rational, it may not act optimally in many

real-world scenarios. Moreover, as in any other design optimization problem, the effectiveness

of GRD depends on accurately modeling the agent’s interaction with the environment. Many

intelligent agents use human prediction models, studied in psychology and economics, among

other fields (Rosenfeld and Kraus, 2018). Nonetheless, there is no consensus on the degree of
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human rationality. There are multiple examples of studies supporting both theories (Rahnev

and Denison, 2018), including the work of two Nobel laureates in 2002 showing the opposite

results (Rosenfeld and Kraus, 2018).

Assuming an utterly irrational agent might cause an infinite wcd. Additionally, it is unlikely

that an agent with a goal or purpose presents such behavior. Therefore, we decided to

consider a boundedly rational agent. Specifically, we find a set of policies with up to k

suboptimal actions that acting agents could take. Like humans, artificial agents cannot

account for every aspect of world dynamics, and it is also problematic to optimize a decision

for multiple objectives such as utility, risk, or other preferences. Therefore, accounting for

slightly suboptimal policies arguably improves the model since there is a higher probability

that one of them will be the best for all criteria. This decision also aligns with work on

goal recognizers using top-k planners to improve goal recognition in domains with unreliable

observations (Riabov et al., 2020; Sohrabi et al., 2016) (reviewed in Subsection 2.3.1, p. 26).

In this section, we propose algorithms to compute wcd for settings where the agent is

boundedly rational. The problem we call Suboptimal S-GRD (SS-GRD) assumes an agent

with suboptimal behavior and both agent and observer with full observability.

4.3.1 Handling Suboptimality

Let P = 〈M,G, k,N , Co〉 be a suboptimal stochastic GR model (Definition 1, p. 45), where

M is an MDP with positive costs and no goal; G is a set of possible goals of M ; k ≥ 0
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represents the maximum number of suboptimal actions per policy; N in this case models an

ideal sensor that allows full observability; and Co is the cost function that represents costs for

the observer every time an agent executes an action.

In Sections 4.1 and 4.2, we observed that the set of possible goals for a particular state in

stochastic environments is not Markovian as it depends on the observed trajectory of the

agent to that state. When considering a set of allowed or legal suboptimal policies, we need

to keep track not only of the possible goals, but also of the possible followed policies.

S0

S1

S2

g0

g1

a0

a3

a
2a
1

a4

a
5

a
6

(a)

S0

S1

S2

g0

g1

a0 a
1

a4
1

(b)

S0

S1

S2

g0

g1

a0

a3

a4

a
6

2

(c)

S0

S1

S2

g0

g1

a0

a3

a
2 a
6

3

(d)

S0

S1

S2

g0

g1

a0

a3

a
2

4

(e)

S0

S1

S2

g0

g1

a0

a3

a4

a
5

5

(f)

S0

S1

S2

g0

g1

a0 a
1

a4

a
5

6

(g)

S0

S1

S2

g0

g1

a0

a3

a
2a
1

a4

(h)

Figure 4.10: Running example for SS-GRD: (a)Original problem. (b - g) All possible proper
policies. (b,c) Optimal policies for g0. (d) Suboptimal policy for g0. (e,f) Optimal policies for
g1.(g) Suboptimal policy for g1. Red numbers represent the policy ID. (h) Non-distinctive
actions.

Example 8. To illustrate the SS-GRD setting, consider Figure 4.10(a), where the start state

is s0 and there are two possible goals: g0 and g1. All actions are deterministic except for

action a0, which has the same probability to transition from s0 to states s1 or s2. The cost

of executing an action is 1. Figures 4.10(b)–4.10(g) enumerate all possible proper policies

an agent could take to reach either goal g0 or g1. A red number identifies each policy. In
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this example, k = 1 as there is only one suboptimal policy per goal. Figure 4.10(h) shows all

non-distinctive actions, and it also corresponds to an augmented MDP that keeps track of

goals as in the OS-GRD case. Note that actions a1 and a2 form an infinite loop, where a1 is

optimal for goal g0 and suboptimal for goal g1 (Figures 4.10(b) and (g)), and a2 is optimal

for goal g1 and suboptimal for goal g0 (Figures 4.10(d)and (e)). Therefore, the policy with

the largest expected cost of an augmented MDP as shown in Figure 4.10(h) will not provide

the wcd value.
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Figure 4.11: Policy Tracking: MDP of running example augmented with policy IDs. Circles in
bold represent states with two possible goals and bold arrows denote non-distinctive actions.
The largest trajectories marked in green correspond to different sets of policies

Since actions forming an infinite-cost loop cannot be part of any proper static policy, keeping

track of the policies breaks those loops. However, augmenting states with policy IDs may

create maximal augmented policies that do not correspond to any legal policy. For instance,

Figure 4.11 shows the resultant MDP of our running example after augmenting states and

actions with policy IDs. The policy marked in green highlights the largest augmented policy;

note that each trajectory maps to different pairs of policy IDs ({1, 6} and {3, 4}). Due to

this problem, we evaluate the non-distinctive part of a policy only in the augmented space
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reachable by that policy. To evaluate policy 1, for instance, we do not consider augmented

states {〈S2, {3, 4}〉, 〈g1, {3, 4}〉, 〈g1, {2, 3, 4, 5}〉}.

4.3.2 Augmented MDP for SS-GRD

An augmented MDP for SS-GRD is almost identical to the policy-aware augmented MDP

described in Subsection 4.1.6 with the only difference that k ≥ 0 defining the maximum

number of suboptimal actions allowed.

4.3.3 Computing wcd: Algorithms

We first provide a high-level description of our approach to compute wcd for SS-GRD problems.

Initially, all legal policies per goal are identified by finding all policies with up to k suboptimal

actions. The implied assumption here is that the policies are stationary and proper, that is,

the agent will not change policy until its goal is reached. Next, we proceed as in the OS-GRD

case with the policy enumeration approach; that is, we evaluate the expected distinctiveness

of each policy using its reachable augmented state space, avoiding to recompute policies that

share its entire non-distinctive prefix with an already assessed policy. Finally, the wcd is the

largest expected cost found.
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Finding Policies with up to k Suboptimal Actions

Inspired by the algorithm to find the best k policies (Dai and Goldsmith, 2010) (discussed in

Subsection 2.2.6, p. 22), we propose Algorithm 3 to find all policies with up to k suboptimal

actions. As Dai and Goldsmith (2010) mention, there are usually multiple “trivially extended

policies” that differ from another only in a non-reachable state, which is not useful in our case.

Therefore, we make sure that policies differ from the previous one in one of their reachable

states.

Algorithm 3 shows the procedure of finding and marking all legal policies for one goal. At a

high level, it first finds all optimal policies and marks the one that has all actions with the

lowest lexicographical order and only in the reachable states. Next, it finds and marks a

policy that differs in one reachable state. Finding (and marking) the next policy from an

already marked policy π requires (1) Fixing a prefix that reaches a state s from the starting

state s0 following π; (2) Changing to the next available action a in s (where optimal actions

are prioritized), and (3) Following policy π (as much as possible) from there. In case the new

policy reaches a state not reached by π, the algorithm chooses an optimal action with the

lowest lexicographical order. Note that forcing two policies to differ in exactly one action

can cause infinite loops if there are suboptimal actions. The algorithm detects and does not

consider policies with infinite loops.

We now describe the pseudocode in more detail. Algorithm 3 receives as parameters the

original MDP, one of the possible goals, and the maximum number of suboptimal actions
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Algorithm 3: LegPol(M = 〈s0,S,A, T , C〉, g, k)
80 n← 0; p← 0;Πg ← ∅
81 (V (s0),Π

∗)← V I ′(M, g)
82 (•, π0

g |π0
g ∈ Π∗, π0

g(s0))← mark(•, s0, •, p, n)
83 Sπ ← reach(s0, π

0
g)

84 Q← (s0, π
0
g(s0), p); p++

85 while Q 6= ∅ do
86 (s, ai ← πi

g(s), i)← Q.dequeue

87 if Sπ = ∅ then Sπ ← reach(s, πi
g);

88 foreach sπ ∈ Sπ do
89 π̃ ← prefix(sπ, πi

g)

90 do
91 (n, πp

g , •)← mark(π̃, sπ, ai, p, n)
92 if πp

g 6= null then Q← (sπ, ai, p); p++ ;
93 ai ← ai+1

94 while (ai+1 ∈ A(sπ));
95 Sπ ← ∅

allowed. After variable initialization, the algorithm finds all optimal policies and their

expected cost using a modified version of VI (Lines 80-81). It then marks the first optimal

policy (π0
g) and retrieves the action at the initial state s0 used in this policy (Line 82).

Next, the algorithm retrieves all reachable states following π0
g , stores the initial state, the

retrieved action, and the current policy ID in a queue, and increases the counter p of policies

(Lines 83-84). The function reach finds the reachable states starting from the received state.

The enqueued information is useful to find the next legal policy: the state-action pair (s, ai)

signals the point from which the new policy can deviate, and the policy ID i signals the

policy used as reference. The algorithm then finds the set of reachable states if necessary

(Lines 85-87) and each reachable state is used as a next point of deviation (Line 88). For

each reachable state sπ, the algorithm finds the prefix of policy πi
g until sπ and uses function

mark to (1)find the next state-action pair to consider, (2)find the policy that follows that
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state-action pair and optimally reaches g, and (3) mark the new policy with ID p in case it

is a proper policy that contains at most n suboptimal actions. If a policy was successfully

marked, the algorithm enqueues the state-action pair found in point (1) together with the

policy ID used and increases the policy counter (Lines 89-92). New policies are marked using

the same prefix while there are available actions applicable in state sπ (Lines 93-94). Finally,

the set of reachable states is cleared before reading the next entry of the queue (Line 95).

When Algorithm 3 finishes, all actions to reach goal g were marked with the set of legal

policies that use them.

Note that the policies found are proper, that is, they reach the goal with probability 1.

Therefore, these policies do not contain infinite-cost loops. In our example of Figure 4.10(a),

the policy formed by actions a0, a1, a2 is not proper as it does not reach a goal.

Computing wcd: Practical Considerations

As stated before, the highest expected cost at the starting state of an augmented MDP for

SS-GRD is not equivalent to the wcd of the problem. Therefore, we need to evaluate the

non-distinctive prefix of every legal policy. There is no need to generate all 2|ΠG| augmented

states, just the reachable states using the policy to be evaluated. While building this smaller

augmented MDP, we keep track of all policies that share all non-distinctive trajectories and

group the ones sharing their maximum non-distinctive prefixes; the wcd is equivalent to the

maximum expected cost among all groups. For instance, in our running example, Figure 4.10

shows that policies 1 and 6 share all their non-distinctive trajectories, thus, we will have one
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computation for both policies. In the worst case, we will need to evaluate individually all

| ΠG | policies.

Similar to OS-GRD, we use Procedure CommonNDPoliciesFO (p. 80) to group augmented

policies for evaluation and to build the partial augmented MDP. The solution of the augmented

MDP generated using this procedure gives the expected cost of the largest non-distinctive

prefix of all policies Πfi with IDs indicated in fi.

We use a TVI-like algorithm that runs iterations of Eq. 4.6 (p. 81) for groups of policies with

the same non-distinctive trajectories, and find the maximum among all using Eq. 4.5 (p. 81) .

4.4 Partially-Observable Suboptimal S-GRD

(POSS-GRD)
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g1

g0
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a4

a 5
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O2 O3

O4

a6 a7

Figure 4.12: POSS-GRD Running Example: Original MDP

POSS-GRD is the most general model of our framework, it combines the assumptions of

POS-GRD and SS-GRD models. POSS-GRD assumes a boundedly rational agent and an
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observer that does not perceive executed actions, just current states. Further, due to sensor

resolution, some states cannot be distinguished from each other.

Example 9. To illustrate, consider Figure 4.12, where nodes represent states, dashed arrows

denote non-observable actions, and green bubbles stand for observations (O1 through O4)

that group undistinguishable states. All actions have a cost of execution equal to 1; agents

executing action a1 have 90% probability to succeed and agents executing action a2 have the

same probability of transitioning in states s2 or s3. An observer only perceives sequences of

observations, and the acting agent could execute one of the multiple legal trajectories. In our

example, the sequence 〈O1, O2〉, will not provide any new information. An observer will not

know whether the agent executed action a1 or a2, nor could she discern whether the agent

transitions between states S2 and S3.

Remember that due to the offline property of GRD problems, we need to account for all

possible sequences of observations generated by a rational agent. Moreover, we require that

an agent selects only proper policies, and assume the policies are stationary. Therefore,

policies including actions a3 and a4 or actions a7 and a8 are not allowed.

Figure 4.13 shows all possible proper policies for each goal, which contain up to k = 1

suboptimal actions. Policy 1 is optimal for goal g0 and policy 2 is optimal for goal g1. Policies

with ID 3 and 4 are suboptimal policies for goal g1.

Similar to other S-GRD models, the set of goals that are still valid at a given state depends

on the observed trajectory, thus, we need to keep track of possible goals. However, our
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Figure 4.13: POSS-GRD(cont.): All possible proper policies. (a) Optimal policy for g0. (b)
Optimal policy for g1. (c, d) Suboptimal policies for g1. Red numbers represent the policy
ID.

assumptions of partial observable states can create conditions of infinite-cost loops when all

non-distinctive policies are considered together, thus, eliminating the possibility to compute

the wcd by evaluating one augmented MDP. Figure 4.14(a) shows all non-distinctive actions

and observations, keeping track of the possible goals (shown as subindices). The largest

expected cost at the initial state in such MDP is infinite due to the loop formed by actions

a6 and a7.

Since suboptimality requires to evaluate policies individually, we can proceed exactly as for

POS-GRD when using policy enumeration. We need to account not only for policies that

share the same actions, but also for policies sharing the same observable trajectories. For

instance, consider Figure 4.13. When evaluating the ambiguity of policy 1, no legal policy

for goal g1 shares actions a1 or a3. However, all other policies share part of its observable
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Figure 4.14: POSS-GRD(cont.). (a) Non-distinctive observations. (b) Augmented MDP

trajectory (~τ = 〈O1, O2〉). To improve the naïve approach, we can find groups of policies

that share their largest ambiguous prefixes and, to avoid infinite loops, consider only policies

that share actions. For example, in Figure 4.13, we cannot evaluate together policies 3 and 4.

4.4.1 Augmented MDP for POSS-GRD

An augmented MDP for POSS-GRD is almost identical to the policy-aware augmented MDP

described in Subsection ?? for POS-GRD. The only difference is that k ≥ 0 to account for

the number of suboptimal actions allowed.

Figure 4.14(b) shows the resultant augmented MDP for k = 1 where states are augmented

with policy IDs (signaled by red numbers, as defined in Figure 4.13). Augmented goals

(g0 · 〈T, F, F, F 〉 and g1 · 〈F, T, T, T 〉) are terminal and the cost of the last actions to reach

them is 0, indicated by gray arrows.
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4.4.2 Computing wcd: Algorithms

The computation of wcd for POSS-GRD implies finding legal policies and accounting for the

observer’s partial observability as defined for POS-GRD models. We use Algorithm 3 (p. 111)

to find legal policies per candidate goal. Each policy contains at most k suboptimal actions

to account for boundedly suboptimal agents. Next, we proceed exactly as in POS-GRD when

using policy enumeration:

We use Procedure CommonNDPoliciesPO (p. 104) to find groups of policies sharing

all their observable non-distinctive trajectories and to build a partial augmented MDP to

evaluate them. The solution of the resultant augmented MDP gives the expected cost of the

largest non-distinctive prefix among all policies. A TVI-like algorithm runs iterations to solve

Eq. 4.27 (p. 105) for groups of policies with the same non-distinctive trajectories, and the

wcd value corresponds to the maximum among all (Eq. 4.26, p. 105).
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Chapter 5

Design: Minimizing wcd

“Design can be art. Design can be simple.

That’s why it’s so complicated.”

– Paul Rand

The solution procedure of an S-GRD problem has two stages: (1) Computing a measure

to evaluate the initial stochastic GR problem; and (2) Optimizing the design by finding a

minimal set of modifications that minimize the chosen measure. Chapter 4 focused on the

first stage and provided methods to compute wcd for each model in our framework. This

chapter analyzes the optimization problem of changing the environment to support a faster

GR, which corresponds to the second stage of the solution.
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Keren, A. Gal, et al., 2018 cast the design process as a graph search in the space of

modification sequences, where the root denotes the original GR model, each other node in the

graph represents a modified GR model. Direct edges connect vertices differing in only one

modification, where tail nodes are modified head node versions. A basic approach to solve

this search problem is to traverse the graph using BFS as explained in Chapter 2 (p. 35).

This process is equivalent to enumerate all sequences of modifications and evaluate the

model described by each sequence, that is, compute wcd for each case. Our design model

D = 〈M, δ, φ, Cm, µ〉 (Definition 2, p.46) contemplates µ, a user-defined parameter that

specifies the maximum number of allowed modifications, and would limit the number of levels

reached by the BFS traversal. Similar to GRD problems, we have the constraint that a valid

sequence of modifications should not increase the original cost of reaching a goal.

We consider two types of modifications, namely action removal (applicable to all models),

and sensor refinement for partially-observable settings. For these types of modifications, the

order in a sequence is not important.

5.1 Action Removal (AR)

Action removal was first proposed by Keren, A. Gal, et al., 2014 as a method to modify GRD

models. The naïve approach consists of removing each combination of up to µ state-action

pairs and computing the measure (wcd) for each of the resultant GR models to find the set

of removed actions that minimize its value. However, the number of state-action pairs is
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usually so large in mid-size instances, that even µ = 2 can generate an unfeasible number of

combinations. For simplicity in this Chapter, we will refer to state-action pairs as actions.

Consider Figure 5.1(b), which shows an augmented MDP for the problem represented in

Figure 5.1(a) when k = 1. The naïve approach for µ = 2 will examine
(
7
1

)
+

(
7
2

)
= 28

possibilities. We use Lemmas 9-12 as heuristics to prune the search space of removed actions.
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Figure 5.1: Action removal in POSS-GRD: (a) Original problem: action a1 has 90% probability
of success and action a2 has 50% probability to reach states S2 or S3. (b) Augmented MDP
of the original problem (wcd=1.5). (c) Augmented MDP after removing actions a6 and a7
(wcd=1.1). Grey arrows have a cost of 0.

Lemma 9. Removing actions not used in a legal policy does not reduce wcd.

Proof. The wcd of an S-GRD model is defined for legal policies (π ∈ ΠG) (Definition 17, p. 55).

Therefore, removing action π(s) where s ∈ S and π 6∈ ΠG, will not affect its value. �

Hence, it is safe to consider the removal of only legal actions.

Lemma 10. If removing action π(s) causes an unreachable goal using a legal policy, then

removing any modification sequence containing π(s) will also cause an unreachable goal.
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Proof. If there is no legal policy that can reach a goal g , then the expected cost c to reach g

is infinite. Additionally, removing an action cannot reduce the expected cost to reach a goal.

Thus, removing a second action cannot change the infinite cost. �

The next corollary extends Lemma 10 to a set of removed actions.

Corollary 2. If removing a set of actions A′ causes an unreachable goal, then removing any

modification sequence containing all actions in A′ will cause an unreachable goal too.

Lemma 11. Let Ŝ be the set of unreachable states after removing action π(s), and Â =

{π̂(ŝ) | ŝ ∈ Ŝ ∧ π̂ ∈ ΠG} be the set of legal actions applicable in those unreachable states.

Then, removing π(s) and π̂(ŝ) is not different than removing π(s) alone.

Proof. Actions applicable in unreachable states do not contribute to any policy’s expected

cost; therefore, removing them will not cause any change. �

Lemma 11 implies that we can prune combinations of one action with any legal action of

unreachable states. We extend this Lemma to account for sets of removed actions in the

following corollary:

Corollary 3. Let Ŝ be the set of unreachable states after removing the set of actions A′, and

Â = {π̂(ŝ) | ŝ ∈ Ŝ ∧ π̂ ∈ ΠG} be the set of legal actions of those unreachable states. Then,

removing A′ ∪ {π̂(ŝ)} is not different than removing A′ alone.

Corollary 3 implies that removing any superset Ã of A′ ∪ {π̂(ŝ)} has the same effect of

removing only Ã\{π̂(ŝ)}. Therefore, we can safely prune those supersets.
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We can prune the search space a bit further using Lemma 12 below, where we use Πdis(P ) to

represent the set of distinctive policies that do not have ambiguous prefixes and msr(P ) to

indicate a measure to evaluate P . Lemma 12 states that removing those distinctive policies

does not affect the value of that measure, for instance, wcd.

Lemma 12. Let P ′ and P n, be two stochastic GR models s.t. P ′ = δ(mn−1, . . . , δ(m1, P0)) and

P n = δ(mn, P
′), where P0 is the original stochastic GR setting and mn is the action to remove

in P ′. If Πdis(P
′) = {π

∣∣(π(s0) is observable ∧ |G(π(s0))| < 2) ∨ (π(s0) is not observable ∧

∀s′ ∈ S, ~τ = 〈s0, π(s0), s′〉 : |G(obs(~τ))| < 2} and Πm(P
′) = {π̂ | ∀s ∈ S : π̂(s) = mn}, then

Πm(P
′) ⊆ Πdis(P

′) =⇒ msr(PM) = msr(P ′).

Proof. By Eq. 3.10 in Definition 17 (p. 55), wcd(P ′) is the maximum expected cost over

non-distinctive policies. Therefore, a policy π ∈ Πdis(P
′) is never considered to compute wcd.

Further, if all policies using action mn are distinctive, removing it will not change wcd(P ′).

Any other measure defined only for non-distinctive policies will have the same property. �

ReduceMeasure-AR uses Lemmas 9-12 and Corollaries 2-3 to prune the search space. The

algorithm receives as parameters the original stochastic GR problem P0 and the maximum

number of actions to be removed µ. First, it evaluates the original stochastic GR problem

using the selected measure (retrieving in the process the set of legal policies ΠG and the set of

distinctive policies Πdis(P0)) (Line 96). Next, the algorithm initializes some variables: (1) M̄,

denoting a set of groups of actions that can be pruned (as well as any set of actions containing

any of those groups); (2) M∗, the set of actions that need to be removed to optimize the
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Algorithm 4: ReduceMeasure-AR(P0, µ)
96 〈msr,ΠG,Πdis(P0)〉 ← computeMsr(P0)
97 M̄ ← ∅;M∗ ← ∅; Π← ΠG\Πdis(P0); Π̄← ∅
98 Q← enqueue(〈{∅},Π〉)
99 SΠ ← reachable(P0)

100 while Q 6= ∅ do
101 〈M,Π〉 ← dequeue(Q); Π← Π\Π̄
102 foreach s ∈ SΠ, π ∈ Π | π(s) 6∈ M do
103 M←M∪ {π(s)}
104 if ∀Mf ∈ M̄ : M 6⊇Mf then
105 PM

0 ← δ(M, P0)
106 Sπ̂ ← reachable(PM

0 )

107 if ∃g ∈ G |
[
g 6∈ Sπ̂ ∨ unrch(g, PM

0 ) = >
]

then
108 if |M |= 1 then Π̄← Π̄\{π | π(s) ∈M};
109 else M̄ ← M̄ ∪ {M};
110 else
111 Su ← SΠ\(SΠ ∩ Sπ̂)
112 foreach s ∈ Su, π̂(s) ∈ A do
113 M̄ ← M̄ ∪ {M ∪ {π̂(s)}}
114 〈msrt, •, •,Πdis(P

M)〉 ← computeMsr(PM
0 )

115 if |M |< µ then Q← enqueue(〈M,ΠG\Πdis(P
M)〉);

116 if msr > msrt then
117 msr ← msrt
118 M∗ ←M

119 return 〈msr,M∗〉

design, i.e., to minimize the measure; (3) A set Π containing valid policies; (4) A set Π̄ of

policies that can be removed (Line 97); (5) A queue Q initialized with a set containing an

empty set representing the original model P0, and with the set of valid policies (Line 98);

and (6) SΠ with the set of reachable states using all valid policies (Line 99). For each set

of actions in the queue, ReduceMeasure-AR adds a new action and evaluates whether

the resultant set M is a superset of any set of actions in M̄, i.e., it evaluates if M should be

pruned (Lines 100-104). If M is valid, then the algorithm removes all actions in M from the
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original GR model (Line 105) and checks whether all goals are reachable (Lines 106-107). Two

things may happen if a goal is not reachable: (1) If the removed set contains only one action,

then all policies using that action are marked to be removed from the set of valid policies in

future iterations (Lines 108 and 101); this is because the number of possible combinations of

up to µ actions maybe so large, that even just checking for their validity is impossible when

µ > 2. (2) If the removed set contains more than one action, M and all its supersets can be

pruned the next iterations (Line 109). If all goals are reachable in the modified model PM
0 ,

then the algorithm marks all sets containing all actions in M and one legal action of each

unreachable state to be pruned in future iterations (Lines 110-113). Basically, we can prune

every combination of actions with actions applicable in unreachable states (Corollary 3). The

measure for the modified model is computed (Line 114), then every set containing less than µ

actions paired with the set of policies that if removed could reduce the measure are enqueued

(Line 115). Then, the minimum value of the measure found so far, together with the set

of actions removed to find it are saved (Lines 116-118). Finally, the algorithm returns the

minimum value of the selected measure (wcdin this case) and the set of removed actions that

optimize the design (Line 119).
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5.1.1 Optimization for wcd Reduction with Action Removal when

Using Policy Enumeration

Algorithm 4 makes clear that the time complexity of solving an S-GRD problem is dominated

by the design. Therefore, we need to prune the number of state-action pairs as much as

possible.

Note that the removal of action a effectively removes all policies that use a. If the largest

non-distinctive policy is not a sub-policy of a removed policy, then wcd will not reduce.

Lemma 13 formalizes this notion using Πwcd(P ) to represent the set of policies in P that

contribute to wcd, and Sπ to denote the set of reachable states using policy π.

Lemma 13. Given two stochastic GR models P ′ and PM s.t. P ′ = δ(mn−1, . . . , δ(m1, P0))

and PM = δ(mp, . . . , δ(mn, P
′)), where P0 is the original stochastic GR setting and M =

{mn, . . . ,mp} is the set of actions to remove from P ′, we have that ∀π ∈ Πwcd(P
′), s ∈ Sπ :

π(s) 6∈M =⇒ wcd(PM) ≥ wcd(P ′).

Proof. PM is a modified model from P ′, thus, every policy removed from P ′ does not exist

in PM. By Eq. 3.9 in Definition 17 (p. 55), wcd(P ′) is defined as the maximum expected

cost over non-distinctive policies in P ′; if none of those policies is removed, the wcd will not

reduce. �
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Remarks: Lemma 13 considers GR problems derived one from the other. In general, when

comparing two modified GR settings, it is only possible to know that wcd(P ′) will not change

if no π ∈ Πwcd(P
′) is removed, but if it changes, we do not know whether the wcd value will

increase or decrease. Additionally, knowing that the wcd(P ′) will not reduce does not imply

that any modified GR problem derived from P ′ will not have a smaller wcd.

To apply Lemma 13, the computation of wcd needs to identify the policies that contribute

to wcd(P ). Algorithm 3, used to find legal policies for suboptimal agents (SS-GRD and

POSS-GRD), already identifies each policy and Procedures CommonNDPoliciesFO and

CommonNDPoliciesPO evaluate policies with the same non-distinctive prefix, therefore,

there is not additional work to return policies in Πwcd(P ).

Additionally, in the computation of wcd(P0) we can store the evaluation of each group of

policies Πfi found using Eq. 4.27 in a priority queue and apply Lemmas 14 and 15 to improve

the recomputation of wcd for each modified model.

Lemma 14. Let P ′ and P n, be two stochastic GR models s.t. P ′ = δ(mn−1, . . . , δ(m1, P0))

and P n = δ(mn, P
′), where P0 is the original stochastic GR setting and mn is the action

to remove in P ′. If π ∈ ΠG is a policy whose expected distinctiveness is EDP ′(π), then

after removing action mn, its expected distinctiveness EDP ′(π) will not increase, that is,

EDPn(π) ≤ EDP ′(π).

Proof. Let Π′ be the set of policies that share the longest non-distinctive prefix of π and thus,

contribute to EDP ′(π) (Definition 17, p. 55). Removing action mn is equivalent to remove
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all policies Πn that use mn. Therefore, if Π′′ = Π′ ∩ Πn = ∅ then EDPn(π) = EDP ′(π) else

EDPn(π) = EDP ′(π) ⇐⇒ ∃π′ ∈ Π′ : π 6= π′ ∧ π′ ∈ Π′′, otherwise, the non-distinctive prefix

of π will be shorter and hence EDPn(π) < EDP ′(π). �

Next, we prove Lemma 15 using Lemma 14:

Lemma 15. Removing an action does not increase wcd.

Proof. Let P ′ be a stochastic GR model s.t. P ′ = modFunc(m,P0)), where P0 is the

original stochastic GR setting and m is the action to remove in P0. We want to prove that

wcd(P0) ≥ wcd(P ′). Assume ΠP0
wcd = {π | EDP0(π) = wcd(P0)} is the set of policies whose

expected distinctiveness is equal to wcd(P0) and ΠP ′

wcd = {π | EDP ′(π) = wcd(P ′)} is the

set of policies whose expected distinctiveness is equal to wcd(P ′). Removing action m is

equivalent to remove all policies Πm that use m. Therefore, if Π′′ = ΠP0
wcd ∩ Πm = ∅ then

wcd(P0) = wcd(P ′), else by Lemma 14, ∀π ∈ Π′′ : EDP ′(π) ≤ EDP0(π). Therefore, there are

two cases:

Case 1: ∃π ∈ Π′′ : EDP ′(π) = EDP0(π). In this case, wcd(P0) = wcd(P ′).

Case 2: ∀π ∈ Π′′ : EDP ′(π) < EDP0(π). In this case, ∀π ∈ ΠP ′

wcd : EDP ′(π) < wcd(P0), thus,

wcd(P0) > wcd(P ′). �

Corollary 4 generalizes Lemma 15.

Corollary 4. Removing a set of actions does not increase wcd.
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Proof. Let mi represent the action to remove, P0 the original stochastic GR model, and

M = {m0, . . . ,m|S|×|A|} the set of all possible modifications, that is, actions to remove.

Following Definition 3 (p. 47), we apply one removal at a time, PM = δ(m|S|×|A|, . . . δ(m0, P0))

and each time, Lemma 15 guarantees the ED will not increase for any partial policy π̂ of

Pi. �

Procedure recomputeWCD applies Lemma 14 and Corollary 4 to avoid evaluating all

policies when computing wcd for suboptimal settings. Line 113 in Algorithm 4 uses Proce-

dure recomputeWCD instead of computeMsr(PM
0 ) and the set of policies enqueued in

Line 114 are replaced by the set Π̂ when |M−µ |= 1. Π̂ contains all policies whose expected

distinctiveness is equal to the new wcd.

The Procedure receives as arguments a priority queue Q containing groups of policies that

share all their longest non-distinctive trajectories and their respective expected distinctiveness

values, a set of policies to be removed ΠR, the set of legal policies ΠG, and the modified GR

problem PM. The high-level idea is to take advantage of the information in Q and reevaluate

only groups of policies that change after the modification or contain only one member since

their expected distinctiveness will not change otherwise. Additionally, groups of policies with

lower priorities are pruned; specifically, we stop when the current wcd is higher than the

top value in Q. First, the variables are initialized and the set of valid policies Π is updated

(Lines 120-121). If some goal is unreachable using Π, then return values signaling that it

is not possible to perform the proposed modification (Line 122). Otherwise, the Procedure

128



Procedure recomputeWCD(Q,ΠR,ΠG, PM)
120 nwcd← −1; Π̂← ∅; Πdis ← ∅
121 Π← ΠG \ ΠR

122 if | G(Π) |6=| G | then return 〈∞, null, ∅〉;
123 while Q 6= ∅ do
124 〈cost,Πc〉 ← Q.dequeue
125 if Πc ∩ ΠR 6= ∅∨ | Πc |= 1 then
126 foreach π ∈ Πc \ ΠR do
127 〈Πi, costi〉 ← evaluate(π, PM)
128 if costi = 0 then Πdis ← Πdis ∪ Πi;
129 if costi > nwcd then nwcd← costi; Π̂← Πi ;
130 else if costi = nwcd then Π̂← Π̂ ∪ Πi;
131 else
132 if cost > nwcd then nwcd← cost; Π̂← Πc;
133 else if cost = nwcd then Π̂← Π̂ ∪ Πc;
134 if Q 6= ∅ then
135 〈cost′,Π′〉 ← Q.peek

136 if cost′ < nwcd then return 〈nwcd, Π̂,Πdis〉;

137 return 〈nwcd, Π̂,Πdis〉

analyzes the entries in Q; each entry contains the expected distinctiveness cost cost of all

policies in Πc and the policies themselves (Line 124). If any policy in Πc was removed or if

|Πc| = 1 then evaluate each remaining policy and update the set of distinctive policies, new

wcd (nwcd), and policies that contribute to nwcd when appropriate (Lines 125-130). If it is

not required to reevaluate the policies in Πc, the Procedure uses the entry in Q to update

nwcd and Π̂ (Lines 131-133). If the cost of the next groups of policies in Q is less than nwcd,

return nwcd, the set of policies Π̂ with expected distinctiveness equal to nwcd, and the set of

distinctive policies Πdis (Lines 134-136). In case the whole queue is processed, return nwcd, Π̂

and Πdis (Line 137).
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For our example of Figure 5.1(a), (the same analyzed in Section 4.4), only policies 3 and 4

contribute to the wcd value (Figure 4.13, p.4.13) and removing actions a1, a2 or a3 causes

unreachable goals. Hence, when µ = 2, we need to examine
(
7
1

)
+
(
4
2

)
= 13 possibilities, less

than half of the possibilities contemplated with a naïve approach.

5.2 Sensor Refinement (SR)

Partial observability reduces an observer’s ability to distinguish agent states. The design

objective is thus to identify sensors whose refinement yields measure (wcd) reduction under

budget constraints. At the extreme, refining all sensors leads to fully-observable states, yet

we note that in our model, even with all sensors refined actions are still unobservable.
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Figure 5.2: POS-GRD Design: (a) Original problem with 90% probability of success for each
stochastic action, k = 1 (wcd=1.5). (b) Sensor Refinement. (c) Augmented MDP for the
refined model (wcd=0.1). Gray arrows have a cost of 0.

We consider a sensor refinement modification that refines a single state to make it fully

observable (Definition 6, p. 48). Hence, if an agent is in any of the refined states, its

state is known with full certainty. Figure 5.2(a) shows the POSS-GRD problem used in
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Section 4.4 (p. 113). Figure 5.2(b) depicts the problem after S1 is refined and mapped to a

new observation O5, allowing the observer to distinguish it from S2 and S3. Figure 5.2(c)

shows the resultant augmented MDP when k = 1. Each state is augmented with the set

possible policies shown in red numbers and for the reader’s facility, the sets of possible goals

are shown as subindices of the observation IDs. Actions with cost 0, i.e. actions leading to

distinctive states, are represented by gray arrows.

Note that after refinement, all distinctive states (S1, S2, and S3) are terminal, thus, actions

depicted in gray do not contribute to the measure value. Also, the cost of taking an action is

given per successor (as defined in Section 4.3.2, p. 109). For example, the cost of action a1

transitioning to state S1 is 0 but the cost of action a1 transitioning to state S0 is 1. The

observer’s knowledge is represented through the set of possible goals, which may change

according to the observed sequence.

5.2.1 Analyzing the Effects of Sensor Refinement

Understanding how trajectories change after refinement provides insight to prune the space

of modifications. In this subsection, we study the cases of trajectories affected by sensor

refinement. Specifically, we use Definition 15 (p. 52) to analyze the cases where sensor

refinement potentially reduces the set of possible goals and then we link it to the reduction

of the expected distinctiveness (ED) of all non-distinctive policies.
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Let sr represent the state to refine, P = 〈M,G, k,N , Co〉 and Pm = 〈M,G, k,Nm, Co〉 denote

two stochastic GR models such that m is a sensor refinement modification and Pm = δ(P ).

Given a feasible trajectory ~τ = 〈s0, . . . , sn〉, we can define sub trajectories ~τ1 = 〈s′0, . . . , s′i−1〉

and ~τ2 = 〈s′0, . . . , , s′i−1, ai, s
′
i〉 such that ∀j ≤ i : sj = s′j to identify each case. For ease

of reading, we copy below Eq. 3.8 (p. 52), used in the computation of goals that satisfy a

trajectory.

G′ =
⋃

π(s)|∃s′:T (s,π(s),s′)>0∧N (s)=N (si−1)∧N (s′)=N (si)

G(π(s)) (5.1)

Case 1:si = sr ∧ ∀(j < i) : N (sj) 6= N (sr). In this case, G(obs(~τ1)) = G1 and

G(obs(~τ2)) = G1 ∩ G′ = G2, where G′ is given by Eq. 5.1. After refinement, Nm(si) 6=

Nm(si−1),G(obs(~τ1)) = G1, and G3 = G(obs(~τ2)) = G1 ∩ G′′, where G′′ = G(π(si−1) =

ai) = G2. Therefore, clearly G′ ⊇ G′′, which implies G2 ⊇ G3 (Eq. 3.6 in Definition 15,

p. 52).

Case 2: si 6= sr ∧N (si) = N (sr)∧ ∀(j < i) : N (sj) 6= N (sr). In this case, G(obs(~τ1)) = G1

and G(obs(~τ2)) = G1 ∩G′ = G2, where G′ is given by Eq. 5.1. After refinement, Nm(si) 6=

Nm(si−1),G(obs(~τ1)) = G1, and G3 = G(obs(~τ2)) = G1 ∩G′′, where G′′ is given by Eq. 5.1.

Even though G′ and G′′ are computed using the same equation, the policies evaluated before

refinement potentially include π′ if ∃π′ : T (si−1, π
′(si−1), sr) > 0, which is not included after

refinement. Therefore, G′ ⊇ G′′, which implies G2 ⊇ G3 (Eq. 3.6 in Definition 15, p. 52).
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Case 3: si = sr. In this case, G(obs(~τ1)) = G1 and G(obs(~τ2)) = G2; if N (si−1) =

N (si),G2 = G1, else G2 = G1 ∩ G′, where G′ is given by Eq. 5.1. After refinement,

Nm(si) 6= Nm(si−1),G(obs(~τ1)) = Gm
1 ⊆ G1, since ~τ1 includes Case 1 or 2. G(obs(~τ2)) =

Gm
2 = Gm

1 ∩ G′′, where G′′ = G(π(si−1) = ai). Therefore, G′ ⊇ G′′, which implies

G2 ⊇ Gm
2 (Eq. 3.6 in Definition 15, p. 52).

Case 4: si 6= sr ∧ N (si) = N (sr). In this case, G(obs(~τ1)) = G1 and G(obs(~τ2)) = G2. If

N (si−1) = N (si),G2 = G1, else G2 = G1∩G′, where G′ is given by Eq. 5.1. After refinement,

G(obs(~τ1)) = Gm
1 ⊆ G1 since ~τ1 includes Case 1 or 2, and G(obs(~τ2)) = Gm

2 = Gm
1 ∩G′′.

If si−1 = sr,G′′ = G(π(si−1) = ai), else if si−1 6= sr ∧ N (si−1) = N (si),G′′ = Gm
1 , else G′′

is given by Eq. 5.1. Similar to Case 2, even though G′ and G′′ are computed using the

same equation when N (si−1) 6= N (si), the policies evaluated before refinement potentially

include π′ if ∃π′ : T (s′i−1, π
′(s′i−1), sr) > 0, which is not included after refinement. Therefore,

G′ ⊇ G′′, which implies G2 ⊇ Gm
2 (Eq. 3.6 in Definition 15, p. 52).

The cases analyzed only consider states projecting the same observation as sr because the

goals satisfying a trajectory that does not contain any of those states do not change after

refinement (Lemma 16 below). Case 1 analyzes the occurrence of observing sr before observing

any other state s with N (s) = N (sr), and Case 2 the instance where state s 6= sr but with

N (s) = N (sr) is observed for the first time. Cases 3 and 4 do not make assumptions about

sub trajectory ~τ1 except that it has a prefix that follows the assumptions of Case 1 or Case 2.
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Lemma 16. A trajectory ~τ = 〈s0, . . . , sn〉 such that ∀i : 0 ≤ i ≤ n =⇒ si 6= sr ∧ N (si) 6=

N (sr), where sr is the state to refine, does not reduce its distinctiveness cost (DC(~τ)) after

refinement.

Proof. Given a problem P = 〈M,G, k,N , Co〉, obs(~τ) = o = 〈N (s0), . . . ,N (sn)〉 (Defini-

tion 13, p. 51). The set of goals satisfying the observed sequence G(o) is found using

Definition 15 (p. 52). Hence, ∀i : N (si−1) 6= N (si) =⇒ G(obs(〈s0, π(s0), . . . , si−1〉)) ∩G′,

where G′ is computed using Eq. 5.1. After refinement, Pm = δ(P ) = 〈M,G, k,Nm, Co〉, and

obs(~τ) = om = 〈Nm(s0), . . . ,Nm(sn)〉 = o since ∀i : 0 ≤ i ≤ n =⇒ (si 6= sr ∧ N (si) 6=

N (sr)) =⇒ N (si) = Nm(si). Also, G(om) = G(o) because none of the values used in

Eq. 5.1 changed. Therefore, DC(~τ) does not change after refinement (Eq. 3.9 in Definition 17,

p. 55). �

Eq. 3.9 links the distinctiveness cost (DC) of a trajectory ~τ with the number of goals that

satisfy ~τ . By reducing the number of possible goals of an observed trajectory, sensor refinement

potentially reduces DC(~τ) and by doing so, the expected distinctiveness (ED) of a policy

containing ~τ (Definition 17, p. 55). Lemma 17 below ensures that ED(~τ) does not increase

after applying sensor refinement to a stochastic GR model P .

Lemma 17. Refining state s ∈ S does not increase the expected distinctiveness ED(π̂) of

any partial policy π̂ that satisfies a goal g ∈ G.
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Proof. By Definition 6 (p. 48), refining a state does not change the set of legal policies ΠG,

nor any component of the model besides the sensor function N ; therefore, it does not change

any feasible trajectory, only its projected observation. We will show that after refinement, no

trajectory increases its distinctiveness cost (DC) and since their probabilities do not change,

no policy increases its expected distinctiveness (Definition 17, p. 55).

Let P = 〈M,G, k,N , Co〉 and Pm = 〈M,G, k,Nm, Co〉 represent two stochastic GR models

such that m is a sensor refinement modification and Pm = δ(P ). We can model the refinement

of s as a partition of O = {s′′ | N (s) = N (s′′) = o}, where {s} and S′ = O\{s} are the

elements of the partition. Additionally, ∀s′ ∈ S′ : Nm(s′) = o and by Definition 1 (p. 45),

∀s′′ 6= s : Nm(s) 6= Nm(s′′).

Consider a feasible trajectory ~τ = 〈s0, . . . sn〉, where s0 is the initial state in M and sn =

g ∈ G, then ∃i : ~τ1 = 〈s0, . . . , si〉∧ | G(o(~τ1)) |≥ 2 ∧ ~τ2 = 〈si+1, . . . , sn〉∧ | G(o(~τ2)) |< 2.

Note that DC(~τ) = DC(~τ1), to increase it after refinement, there should be a trajectory

~τm = 〈s0, . . . , s′j, . . . , s′m〉 such that ∀j : o(〈s0, . . . , s′j〉) 6= o(〈s0, . . . , si〉) before refinement and

∃k : o(〈s0, . . . , s′k〉) = o(〈s0, . . . , si+1〉) after it. Since ~τm should have existed before refinement,

the observable sequence of either ~τ , ~τm, or both must have changed to match their observable

prefixes.

We prove now that changing the observable sequences does not increase DC(~τ). By Defini-

tion 13 (p. 51), o(~τ) only changes if s is in ~τ and to possibly match the non-distinctive prefix

of ~τm, s must be in ~τ1 or s = si+1. Since o(s) = Nm(s) is unique, s must be in ~τm as well.

135



Hence, the only possible case is that both, ~τ and ~τm change after refinement. However, the

only observable change is N (s) = o to Nm(s) = s, other observable parts in both trajectories

remain unchanged. Therefore, o(〈s0, . . . , si+1〉) is equal to o(〈s0, . . . , s′j〉) after refinement,

only if ∃j : o(〈s0, . . . , s′j〉) = o(〈s0, . . . , si〉) before refinement, which contradicts the original

assumption. Hence, DC(~τ) does not increase, and consequently, no partial policy increases

its expected distinctiveness after refining s. �

Corollary 5 generalizes Lemma 17.

Corollary 5. Refining all states will not increase the expected distinctiveness (ED) of any

partial policy π̂.

Proof. Letmi represent the refinement of state si, P0 the original stochastic GR model without

refinement, and M = {m0, . . . ,m|S|} the set of all possible SR modifications. Following

Definition 3 (p. 47), we apply one refinement at a time: PM = δ(m|S|, . . . δ(m0, P0)) and each

time, Lemma 17 guarantees the ED will not increase for any partial policy π̂ of Pi. �

From the analysis at the beginning of the subsection, refining a state can reduce the ED of

some policies, hence, we achieve an optimal reduction by refining all states.
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5.2.2 wcd Reduction with Sensor Refinement

A naive approach for using sensor refinement involves finding all sets of up to µ states to

refine, evaluate each refined problem with the selected measure, wcd in our case, and choose

the set that minimizes wcd.

We can use the results of the previous subsection to prune the modification space and improve

scalability. However, since our algorithms compute a measure using augmented MDPs, we

first establish the relationship between the set of goals satisfied by an observed sequence with

the set of possible goals of an augmented state.

Let Πaug = 〈S′, s′0,A′, T ′, C ′o,G′〉 be the augmented MDP of a POS-GRD problem. We use

w(s′) = s to denote that s is the state of the world of s′ ∈ S′ and G(s′) to represent the set

of possible goals of s′, that is, ∀ 0 ≤ i ≤ |G| : gi ∈ G(s′) ⇐⇒ (s′ = s · 〈posg0 , . . . , posg|G|〉 ∧

posgi = T ) ∨ (s′ = s · 〈posg00 , . . . , pos
g|G|
ρ 〉 ∧ ∃j : posgij = T ).

Lemma 18. ∀~τ = 〈s0, . . . , sn〉, 0 ≤ i ≤ n,∃ 0 ≤ j ≤ m : s′j ∈ S′ ∧ w(s′j) = si ∧G(obs(~τ =

〈s0, . . . , si〉)) = G(s′j).

Proof. We will prove it by induction.

Base Case: By construction of Πaug given in Subsections 4.2.1 and 4.4.1 , G(s′0) = G, which

is equal to G(obs(〈so〉)) (Eq. 3.4 in Definition 15, p. 52).
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Induction Step: Assume that G(obs(〈s0, . . . , sk−1〉)) = Gk−1 = G(s′m−1) such that w(s′m−

1) = sk−1. We need to prove that G(obs(〈s0, . . . , sk〉)) = Gk = G(s′m) when w(s′m) = sk.

There are two cases:

Case 1: N (sk−1) = N (sk). By Eq. 3.5 in Definition 15, Gk = G(obs(〈s0, . . . , sk〉)) = Gk−1 =

G(obs(〈s0, . . . , sk−1〉)) and by Eq. 4.7 and Eq. 4.8, G(s′m−1) = G(s′m), then G(s′m) = Gk

when w(s′m) = sk.

Case 2: N (sk−1) 6= N (sk). By Eq. 3.6 in Definition 15, G(obs(〈s0, . . . , sk〉)) = Gk = Gk−1 ∩

G′, where G′ is given by Eq. 5.1 with i = k, and G(s′m) is found using Eqs. 4.7, 4.9, 4.10-4.12.

Eq. 4.7 is equivalent to Gk−1 and G′ is equivalent to Eqs. 4.10-4.12 when w(s′m) = sk.

Therefore, Gk = G(s′m). �

Lemma 18 verifies that augmented states carry the set of possible goals given the observed

trajectory used to reach them. Now we are ready to present Algorithm 5 which minimizes wcd

more efficiently (although it could support any other measure based on ambiguous policies).

Initially, the algorithm computes the measure value msr for the original problem, retrieving

as well the set of augmented states S′, and the partition O of the regular state space S such

that O = {O1, . . . ,On} and ∀s, s′ ∈ S : N (s) = N (s′) ⇐⇒ ∃i : s, s′ ∈ Oi (Line 138). We

leverage the fact that the best solution is a fully-refined model. Therefore, the algorithm

computes the measure for a fully-refined problem, msrFR, retrieving at the same time the set

of augmented states for that case (Line 139). If msr equals the value of msrFR, Algorithm 5

returns the measure’s value and a set with an empty set denoting that no refinement will
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Algorithm 5: ReduceMeasure-SR(P0, µ)
138 〈msr,S′,O〉 ← computeMsr(P0)
139 〈msrFR,SFR, •〉 ← computeMsr(P FR)
140 M̄ ← ∅;M∗ ← {∅}
141 if msr = msrFR then return 〈msr,M∗〉;
142 foreach Oi ∈ O do
143 if ∃s ∈ Oi : w(s

′) = s ∧ s′ ∈ S′ ∪ SFR ∧ s′ 6∈ S′ ∩ SFR then
144 POi ← δ(Oi, P0)
145 〈msri, •, •〉 ← computeMsr(POi)
146 if msri = msr then M̄ ← M̄ ∪Oi;
147 else O← O\Oi;
148 Q← enqueue({∅})
149 while Q 6= ∅ do
150 M← dequeue(Q)
151 foreach Oi ∈ O do
152 foreach s ∈ Oi do
153 if M = {∅} ∨Oi 6∈ M̄ ∨ ∀ŝ ∈M : ŝ 6∈ Oi then
154 M←M∪ {s}
155 if |M |< µ then Q← enqueue(M);
156 if |M |> 1 ∨Oi 6∈ M̄ then
157 PM ← δ(M, P0)
158 SM ← AugStates(PM)
159 if ∃s ∈ Oi : w(s

′) = s ∧ s′ ∈ S′ ∪ SM ∧ s′ 6∈ S′ ∩ SM then
160 〈msr′, •, •〉 ← computeMsr(PM)
161 if msr′ < msr then
162 msr ← msr′;M∗ ←M
163 if msr = msrFR then return 〈msr,M〉;

164 else break;

165 return 〈msr,M∗〉
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further reduce msr (Lines 140-141). Next, the algorithm selects states projecting the same

observation, that is, states in one set Oi of the partition O, and compares all their augmented

versions in both the original and the fully-refined model (Lines 142-147). If the augmented

states are different, it means their set of possible goals changed and so, the measure value

could change. In that case, the algorithm refines all states projecting the same observation

and if the measure does not reduce, all combinations of those states are marked to be pruned

(Lines 143-146). On the other hand, if the set of goals for the augmented states of interest is

the same as in the fully-refined model, we can prune the corresponding set of regular states

(Line 147).

Algorithm 5 uses a queue Q of modifications represented by sets of states to refine. Q is

initialized with a set containing the empty set, which represents the original stochastic GR

model (Line 148). Each time a set of modifications from the queue is studied, we check

if adding a new state does not generate any pair of states whose combination should be

pruned (Line 153). After a new combinations of states is generated, it is enqueued for future

additions if the maximum budget µ allows it (Lines 154-155). If the new set of modifications

contains only one state, that state should not be refined if it belongs to a set of combinations

marked for pruning, since it is guaranteed not to reduce the measure’s value (Line 156).

Otherwise, the new modification set is applied to the original model and the algorithm

computes the selected measure for the modified problem if some augmented states change

with the modification (Lines 157-160). Lemma 16 guarantees that we only need to inspect

augmented versions of states projecting the same observation. The measure value found is
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compared against the current minimum and the smallest one is stored together with the

set of refined states that generated it (Lines 161-163). Finally, the algorithm returns the

minimum measure and the set of modifications used to find it (Line 165).

5.2.3 wcd Reduction with Sensor Refinement when Using Policy

Enumeration

Algorithm 5 requires storing the set of augmented states when computing wcd, which is not

suitable with our method to find wcd when using policy enumeration. Similar to the case

of action removal, we can avoid re-evaluating all policies of a refined model by storing the

evaluation of each group of policies Πfi found using Eq. 4.27 in a priority queue and applying

Lemma 17 and Corollary 5.

Algorithm 6 reduces the wcd value when policy enumeration is used to compute it. The

algorithm receives as arguments the initial stochastic GR problem P and the budget µ of

allowed modifications. Initially, it computes wcd of the original problem retrieving as well a

priority queue Q′, and a partition O of the regular state space S, where O = {O1, . . . ,On}

and ∀s, s′ ∈ S : N (s) = N (s′) ⇐⇒ ∃i : s, s′ ∈ Oi (Line 166). Each entry in Q′ contains a

set of policies that share all their largest non-distinctive trajectories and their non-distinctive

cots. We leverage the fact that the best solution is a fully-refined model and that the

refinement does not increase the value of wcd. Therefore, the algorithm recomputes wcd for a

fully-refined problem, wcdFR, retrieving at the same time the set of policies that produce
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Algorithm 6: ReduceWCD-SR(P0, µ)
166 〈wcd,Q′,O〉 ← computeWCD(P0)
167 〈wcdFR,ΠFR〉 ← recomputeWCDPO(Q′, P FR, ∅)
168 M̄ ← ∅;M∗ ← {∅}; i← 0
169 if wcd = wcdFR then return 〈wcd,M∗〉;
170 foreach Oi ∈ O do
171 POi ← δ(Oi, P0)
172 〈wcdi,Πi〉 ← recomputeWCDPO(Q′, POi , ∅)
173 if wcdi = wcd then M̄ ← M̄ ∪Oi;
174 i++

175 Q← enqueue({∅}, ∅)
176 while Q 6= ∅ do
177 〈M,ΠQ〉 ← dequeue(Q)
178 foreach Oi ∈ O do
179 foreach s ∈ Oi do
180 if M = {∅} ∨Oi 6∈ M̄ ∨ ∀ŝ ∈M : ŝ 6∈ Oi then
181 M←M∪ {s}
182 if |M |> 1 ∨Oi 6∈ M̄ then
183 PM ← δ(M, P0)
184 〈wcd′,Π′〉 ← recomputeWCDPO(Q′, PM,ΠQ)
185 if |M |< µ then Q← enqueue(M,Π′);
186 if wcd′ < wcd then
187 wcd← wcd′;M∗ ←M
188 if wcd = wcdFR then return 〈wcd,M〉;

189 else if |M |= 1 ∧ µ > 1 then Q← enqueue(M, ∅);
190 else break;

191 return 〈wcd,M∗〉
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wcdFR(Line 167). If wcd equals the value of wcdFR, Algorithm 6 returns the new wcd value

and a set with an empty set denoting that no refinement will further reduce wcd (Line 169).

Next, the algorithm refines all states projecting the same observation, recomputes the wcd,

and if the value does not reduce, all combinations of those states are marked to be pruned

(Lines 170-174).

Algorithm 6 uses a queue Q with sets of states to refine and all policies that contribute to the

wcd value. Q is initialized with a set containing the empty set, which represents the original

stochastic GR model and with an empty set of policies (Line 175). Each time an entry from

the queue is analyzed, the algorithm checks if adding a new state does not generate any pair

of states whose combination should be pruned (Line 180). After a new combination of states

is generated, if the new set of modifications contains only one state, that state should not

be refined if it belongs to a set of combinations marked for pruning, since it is guaranteed

not to reduce the measure’s value (Lines 181-182). Otherwise, the new modification set is

applied to the original model and the algorithm recomputes the wcd for the modified problem

(Lines 183-184). The wcd value found is compared against the current minimum and the

smallest one is stored together with the set of refined states that generated it (Lines 186-187).

If the new wcd equals the value found for the fully-refined model, the algorithm returns this

value and the corresponding set of refined states (Line 188). A new entry is enqueued if the

budget allows it (Lines 185, 189). Finally, the algorithm returns the minimum wcd and the

set of modifications used to find it (Line 191).
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Procedure recomputeWCDPO(Q,PM,Π)
192 nwcd← −1; Π̂← ∅; toRemove← ∅; flag ← T
193 while Q 6= ∅ do
194 do
195 〈cost,Πc〉 ← Q.dequeue
196 while Π ∩ Πc = ∅ ∧ flag = T ;
197 flag ← F
198 foreach π ∈ Πc do
199 if π /∈ toRemove then
200 〈costi,Πi〉 ← evaluate(π, PM)
201 toRemove← toRemove ∪ Πi

202 if costi > nwcd then nwcd← costi; Π̂← Πi ;
203 else if costi = nwcd then Π̂← Π̂ ∪ Πi;

204 if Q 6= ∅ then
205 〈cost′,Π′〉 ← Q.peek

206 if cost′ < nwcd then return 〈nwcd, Π̂〉;

207 return 〈nwcd, Π̂〉

Procedure recomputeWCDPO receives as arguments a max priority queue Q with sets of

policies and their non-distinctive expected costs, a refined stochastic GR problem PM, and

a set of policies Π. If M = {m0 . . .mm} and M− 1 = {m0 . . .mm−1}, Π contains the set of

policies that contribute to wcd(PM−1). The idea is to evaluate policies that originally had

the largest expected distinctiveness (ED), recompute their distinctiveness after modification,

and stop when the new ED is larger than the next value in Q since it is guaranteed that it

will not increase after refinement (Lemma 17).

First, the procedure initializes the new wcd value nwcd, the set of policies Π̄ that will

contribute to that value, and other support variables (Line 192). Next, it traverses Q until a

policy in Π is found (Lines 194-197). Later, the ED of each group of policies per entry is
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evaluated in the refined model, keeping track of the largest value found so far (Lines 198-203).

If the next value in Q is lower than nwcd, the procedure returns nwcd and Π̄ (Lines 204-206).

In the worst case, the whole queue will be traversed and all policies will be evaluated, returning

at the end nwcd and Π̄ (Line 207).
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Chapter 6

Empirical Evaluation

“True genius resides in the capacity for evaluation of uncertain,

hazardous, and conflicting information.”

– Winston Churchill

The objective of the empirical evaluation presented in this chapter is to evaluate the usefulness

of our methods and the scalability of the proposed algorithms. We describe the domains and

settings used and present and analyze the experimental results.

6.1 Data and Settings

Data: We evaluate our algorithms on five domains:
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• Room is a grid world where the actions as well as the transition probabilities are

determined individually for each state and each action may have up to 6 possible

successors. Instances of this domain are named using the x- and y-dimensions of the

room and the number of possible goals. The initial setting for partial observability

defines four contiguous states mapping to the same observation. Room was used in

the Non-Deterministic Track of the 2006 ICAPS International Planning Competition

(IPC).5

• Grid-Navigation is a grid world where the agent has a 90% probability to succeed

when moving to an adjacent cell. The initial setting for partial observability defines a

mapping of four contiguous states to the same observation. Instances’ names indicate

the horizontal and vertical dimensions of the grid and the number of possible goals.

• Attack-Planning is a cybersecurity domain where hosts on a network have stochas-

tically assigned vulnerabilities and a subset of hosts has files that an attacker may want

to access (Vorobeychik and Pritchard, 2020). Initially, the attacker has random user

credentials. Possible actions:

(a) Exploit: Gives read access to the target file or, in case of failure, compromises the

host. The success probability is derived from the Common Vulnerability Scoring

System, an industry standard from NIST (Mell et al., 2007).

(b) Update: Gives remote network access. Success probability: 80%.
5http://idm-lab.org/wiki/icaps/ipc2006/probabilistic/
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(c) Access: Allows access to a target file if attacker has read access. Success probability:

100%.

The initial setting for partial observability hides the outcomes of a random subset of

actions applicable in a set of hosts. Instances’ names indicate the number of hosts, the

initial setting of partial observability, and the number of possible goals.

• Blocksworld is the traditional domain with a 25% probability of slippage each time

a block is picked up or put down; the goal state defines the last position of every block.

We use the Colored-Blocksworld version, a modification of this domain where

each block has a color and the goal is specified in terms of colors. Thus, more than one

state can represent the same goal. The initial configuration of partial observability maps

partial block arrangements to different orders or settings. Instances in this domain

are named using the number of blocks, number of colors, the initial configuration for

partial observability, and number of goals.

• Boxworld is a modified Logistics domain where the only action that introduces

noise is “drive-truck” and there is a 20% probability that the truck ends up in one

of three wrong cities. Each instance name in this domain is defined by the number

of boxes, trucks, airplanes, cities and goals. Partial observability assumes a confused

observer that misidentifies trucks and/or cities.

Blocksworld and Boxworld were used in the Probabilistic Track of 2004 ICAPS

IPC.6
6http://www.cs.rutgers.edu/~mlittman/topics/ipc04-pt/
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Settings: We ran a total of 1,886 experiments in 39 instances. We used a budget µ of up to

3 modifications and allowed up to 2 suboptimal actions (k = 1 and k = 2). Experiments were

conducted on a 2.10 GHz machine with 16 GB of RAM and a timeout of 52 hours. The number

of reachable states varies from 16 to 16,384, with 12 to 527,866 legal policies in suboptimal

settings and 2 to 9,645 policies in optimal settings. Tables present times rounded up to the

next second. The source code is available at https://github.com/cwayllace/POS-GRD.

6.2 Computing wcd

Table 6.1 presents a comparison of wcd values and runtime (measured in seconds) across

all configurations. For optimal settings, we evaluated approaches that avoid or use policy

enumeration (marked ¬PE and PE, respectively). There are 7 cases (marked in bold

numbers) where the approach that avoids policy enumeration provides an upper bound

instead of the wcd value. While it is possible to have a similar case in OS-GRD, we did

not encounter it in our experiments. Although running times are higher when using policy

enumeration, the difference is small in most cases (less than 1sec). As expected, the wcd

value increases with the number of relaxed assumptions. In general, suboptimal settings

present higher wcd values.

Our approach for suboptimal settings was only able to compute wcd for the smallest instance

in the room domain, we suspect it is due to the branching factor (up to 6 successors per

action), which causes huge augmented state spaces.
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OS-GRD POS-GRD SS-GRD POSS-GRD

k = 1 k = 2 k = 1 k = 2

Domain wcd Runtime wcd Runtime wcd Runtime wcd Runtime wcd Runtime wcd Runtime wcd Runtime wcd Runtime
Instances (¬PE) (s) (PE) (s) (¬PE) (s) (PE) (s) (PE) (s) (PE) (s) (PE) (s) (PE) (s)

ro
om

4-4-3 3.4 1 3.4 1 4.0 1 4.0 1 5.8 1 7.8 1 7.4 1 14.5 2
8-8-2 15.0 1 15.0 1 16.0 1 15.9 1 - t-o - t-o - t-o - t-o
8-8-3 6.2 1 6.2 1 9.6 1 9.6 1 - t-o - t-o - t-o - t-o
12-12-3 11.7 1 11.7 1 15.8 1 15.8 1 - t-o - t-o - t-o - t-o
16-16-3 1.4 1 1.4 1 9.3 1 9.3 1 - t-o - t-o - t-o - t-o
20-20-3 38.1 1 38.1 1 45.7 1 45.2 1 - t-o - t-o - t-o - t-o
24-24-3 12.0 1 12.0 1 18.1 1 18.0 1 - t-o - t-o - t-o - t-o
32-32-2 39.8 1 - t-o 77.0 1 - t-o - t-o - t-o - t-o - t-o
32-32-3 86.6 1 - t-o 86.6 1 - t-o - t-o - t-o - t-o - t-o
32-32-3a 55.8 1 - t-o 61.2 1 - t-o - t-o - t-o - t-o - t-o
44-44-3 73.8 1 - t-o 91.7 2 - t-o - t-o - t-o - t-o - t-o

gr
id

-n
a-

vi
ga

ti
on

5-5-2 4.4 1 4.4 1 5.7 1 5.7 1 6.7 1 8.9 1 8.9 1 11.1 1
4-12-3 10.0 1 10.0 1 11.2 1 11.2 1 12.2 3 14.4 83 14.4 7 17.8 371
4-12-4a 5.6 1 5.6 1 7.9 1 7.9 1 7.8 1 10.0 2 10.1 1 13.3 4
4-12-4b 6.7 1 6.7 1 6.8 1 6.8 1 8.9 1 11.1 2 11.1 1 13.3 4
4-12-4c 6.7 1 6.7 1 7.9 1 7.9 1 8.9 1 11.1 1 10.1 1 12.3 2
4-12-6 13.3 1 13.3 1 13.4 1 13.4 1 15.6 10 17.8 1,350 16.7 16 18.9 2,487
6-19-3 4.4 1 4.4 1 7.9 1 7.9 1 6.7 1 8.9 4 12.2 2 14.4 21

at
ta

ck
-

pl
an

ni
ng

10-2-O1a 2.5 1 2.5 1 3.7 1 3.7 1 5.2 1 6.4 1 5.2 1 7.4 1
10-2-O1b 1.0 3 1.0 3 2.3 3 2.3 3 3.5 4 5.5 7 3.5 3 5.5 7
10-3-O1a 7.8 1 7.8 1 8.0 1 8.0 1 9.0 1 10.3 1 10.3 1 11.3 1
10-2-O2a 2.5 1 2.5 1 2.9 1 2.9 1 5.2 1 6.4 1 5.2 1 7.4 1
10-2-O2b 1.0 3 1.0 3 2.3 3 2.3 3 3.5 4 5.5 8 3.5 4 5.5 7
20-2-O1a 8.7 1 8.7 1 10.2 1 10.2 1 11.2 1 13.7 2 11.5 1 13.9 2

bl
oc

ks
-

w
or

ld

3-2-2-O1 2.8 1 2.8 1 8.7 1 8.7 1 5.0 1 5.7 1 12.0 1 12.0 1
3-2-2-O2 2.8 1 2.8 1 4.6 1 4.4 1 5.0 1 5.7 1 7.7 1 9.0 1
5-2-3-O1 4.8 1 4.8 1 9.5 1 8.9 1 8.1 5 12.0 371 13.3 15 23.4 2,001
5-2-3-O2 4.8 1 4.8 1 9.5 1 8.9 1 8.1 5 12.0 355 12.1 14 16.2 1,703
5-3-3-O1 7.6 1 7.6 1 8.7 1 8.7 1 10.9 2 16.8 48 12.8 2 18.1 97
5-3-3-O2 7.6 1 7.6 1 8.7 1 8.7 1 10.9 2 16.8 44 14.5 2 18.1 84
6-2-3-O1 14.6 1 14.6 127 19.8 1 19.8 373 21.7 879,043 - t-o - t-o - t-o
6-2-3-O2 14.6 1 14.6 127 19.8 1 19.8 550 - t-o - t-o - t-o - t-o

bo
xw

or
ld

2-1-2-4-3 0.0 1 0.0 1 3.2 1 3.2 1 3.2 1 7.1 15 5.2 1 16.5 60
2-2-0-4-3 4.4 1 4.4 1 5.7 1 5.7 1 6.4 643 - t-o 24.2 9,454 - t-o
2-2-1-4-2 3.9 1 3.9 1 5.1 1 4.9 1 5.9 721 - t-o 14.4 7,470 - t-o
2-2-1-4-3 3.9 1 3.9 1 5.4 1 5.4 1 5.9 823 - t-o 14.4 7,115 - t-o
2-2-2-4-3 4.1 1 4.1 1 5.2 1 5.2 2 25.2 5,240 - t-o 26.3 146,409 - t-o
3-1-1-4-2 0.0 1 0.0 1 2.1 1 2.1 1 3.2 1 12.1 21 5.3 2 16.7 52
3-2-2-4-3 1.0 2 1.0 2 3.3 2 3.3 2 4.2 19 - t-o 6.4 22 - t-o

Table 6.1: wcd Computation for all settings.
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6.3 Design: Minimizing wcd

In this section, we denote by Opt the optimized design version that prunes the search space

as explained in Chapter 5 (p. 118) and by ¬Opt the naïve version. Numbers in gray are

approximated running times computed by multiplying the time to find the original wcd

with the number of expected modifications according to the budget. We use those values

as a reference. Their values are an approximation because the time computing wcd for

each modified problem can change substantially, for example, in cases where goals become

unreachable due to lack of legal policies or when action removal causes infinite loops.

6.3.1 Action Removal

OS-GRD

Table 6.2 presents the results when selecting action removal to modify OS-GRD settings.

The wcd values are found constructing and solving the augmented MDP as described in

Subsection 4.1.4 (p. 67); that is, the approach that avoids policy enumeration 7. The wcd

value reduced in 19 instances with a budget of 1 (µ = 1), in 23 with µ = 2, and in 21 when

we used µ = 3. Additionally, 16 instances present a higher wcd reduction with µ = 2 than

with µ = 1, and 9 instances with µ = 3 (in relation to µ = 2).
7We chose to tabulate the ¬PE approach because it has the highest number of finished instances.
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OS-GRD µ = 1 µ = 2 µ = 3

Domain wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s)
Instances Reduction Opt. ¬Opt. Reduction Opt. ¬Opt. Reduction Opt. ¬Opt.

ro
om

4-4-3 3.4 → 3.4 1 1 3.4 → 3.4 1 4 3.4 → 3.4 1 18
8-8-2 15.0 → 15.0 1 5 15.0 → 15.0 1 262 15.0 → 15.0 1 7,479
8-8-3 6.2 → 6.2 1 5 6.2 → 6.2 1 78 6.2 → 6.2 1 1,059
12-12-3 11.7 → 11.7 1 8 11.7 → 11.7 15 805 11.7 → 11.7 153 35,078
16-16-3 1.4 → 1.4 5 32 1.4 → 1.4 5 4,461 1.4 → 1.4 5 335,125
20-20-3 38.1 → 38.1 3 122 38.1 → 38.1 3 21,597 38.1 → 38.1 3 3,982,695
24-24-3 12.0 → 12.0 2 60 12.0 → 12.0 37 8,057 12.0 → 12.0 957 695,234
32-32-2 39.8 → 39.8 22 299 39.8 → 39.8 1827 183,416 39.8 → 39.8 t-o 92,411,770
32-32-3 86.6 → 86.6 22 436 86.6 → 86.6 1967 260,114 86.6 → 86.6 t-o 94,529,799
32-32-3a 55.8 → 55.8 19 392 55.8 → 55.8 2781 194,539 55.8 → 55.8 t-o 71,634,007
44-44-3 73.8 → 73.8 480 1,597 73.8 → 73.8 498 1,653,626 73.8 → 73.8 501 1,090,720,836

gr
id

-n
a-

vi
ga

ti
on

5-5-2 4.4 → 0.0 1 2 4.4 → 0.0 1 21 4.4 → 0.0 1 286
4-12-3 10.0 → 10.0 1 3 10.0 → 8.9 1 54 10.0 → 8.9 6 1,628
4-12-4a 5.6 → 5.6 1 3 5.6 → 4.4 1 93 5.6 → 4.4 11 1,808
4-12-4b 6.7 → 5.6 1 4 6.7 → 4.4 1 76 6.7 → 4.4 11 3,063
4-12-4c 6.7 → 6.7 1 1 6.7 → 6.7 1 6 6.7 → 6.7 1 35
4-12-6 13.3 → 12.2 1 3 13.3 → 12.2 2 101 13.3 → 12.2 22 3,219
6-19-3 4.4 → 4.4 1 5 4.4 → 3.3 1 155 4.4 → 3.3 9 2,721

at
ta

ck
-

pl
an

ni
ng

10-2-O1a 2.5 → 2.5 1 2 2.5 → 0.0 1 12 2.5 → 0.0 1 51
10-2-O1b 1.0 → 0.0 3 23 1.0 → 0.0 3 142 1.0 → 0.0 3 507
10-3-O1a 7.8 → 7.8 1 2 7.8 → 7.8 1 9 7.8 → 7.8 1 42
10-2-O2a 2.5 → 2.5 1 2 2.5 → 0.0 1 13 2.5 → 0.0 1 50
10-2-O2b 1.0 → 0.0 3 24 1.0 → 0.0 3 148 1.0 → 0.0 3 487
20-2-O1a 8.7 → 6.2 1 9 8.7 → 6.2 1 90 8.7 → 6.2 1 600

bl
oc

ks
-

w
or

ld

3-2-2-O1 2.8 → 2.8 1 1 2.8 → 2.8 1 7 2.8 → 2.8 1 38
3-2-2-O2 2.8 → 2.8 1 1 2.8 → 2.8 1 12 2.8 → 2.8 1 36
5-2-3-O1 4.8 → 3.2 2 28 4.8 → 3.1 68 2,557 4.8 → 3.1 3917 171,958
5-2-3-O2 4.8 → 3.2 2 25 4.8 → 3.1 69 2,964 4.8 → 3.1 3930 151,244
5-3-3-O1 7.6 → 6.6 1 17 7.6 → 6.6 21 631 7.6 → 6.6 471 15,208
5-3-3-O2 7.6 → 6.6 1 11 7.6 → 6.6 21 564 7.6 → 6.6 481 20,910
6-2-3-O1 14.6 → 14.6 12 391 14.6 → 14.6 4791 179,478 14.6 → 14.6 t-o 50,338,605
6-2-3-O2 14.6 → 14.6 12 386 14.6 → 14.6 4830 169,345 14.6 → 14.6 t-o 52,580,582

bo
xw

or
ld

2-1-2-4-3 0.0 → 0.0 1 1 0.0 → 0.0 1 1 0.0 → 0.0 1 1
2-2-0-4-3 4.4 → 4.4 2 17 4.4 → 3.1 75 2,374 4.4 → 3.1 4579 97,042
2-2-1-4-2 3.9 → 3.9 1 17 3.9 → 0.0 1 1,174 3.9 → 0.0 1 46,351
2-2-1-4-3 3.9 → 3.9 1 26 3.9 → 0.0 1 1,987 3.9 → 0.0 1 68,178
2-2-2-4-3 4.1 → 4.1 2 34 4.1 → 0.0 34 1,987 4.1 → 0.0 39 92,975
3-1-1-4-2 0.0 → 0.0 1 1 0.0 → 0.0 1 1 0.0 → 0.0 1 1
3-2-2-4-3 1.0 → 1.0 2 43 1.0 → 1.0 4 697 1.0 → 1.0 16 9,876

Table 6.2: OS-GRD: Action removal avoiding policy enumeration.
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Additionally, we solved OS-GRD with AR using policy enumeration (PE). Our experiments

did not present differences between methods, except for the running times. As expected,

computing the wcd for the original problem took more time (a percentage increase of 1,978%

on average). However, thanks to the pruning and heuristics used, the gap reduced after

design (a percentage increase of 1,265% on average for a budget µ = 1, 24% for µ = 2, and

50% for µ = 3, not including instances that timed-out). Figure 6.1 compares both methods

for all instances (represented in the horizontal axis in the same order as in Table 6.2). The

vertical axes show running times in seconds on a logarithmic scale. Purple dots mark values

found while avoiding policy enumeration (¬PE), and yellow dots the corresponding values

for the policy enumeration approach (PE). Figure 6.1(a) shows that in almost all cases, ¬PE

outperforms PE when computing the wcd for the original stochastic GR problem. However,

when we consider design, ¬PE outperforms PE in 15 cases with a budget of 3 (Figure 6.1(d)).

In general, PE will not work well in cases with a high number of policies or states. In

our experiments, PE is inadequate (timed-out) for instances with those characteristics. In

one case, instances 8 to 11 belong to the room domain and the algorithm generates large

augmented state spaces. In the other case, PE failed to solve the problem due to a large

number of legal policies (instances 31 and 32 — blocks-world — have 9,645 policies and

7,057 reachable states each).
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POS-GRD µ = 1 µ = 2 µ = 3

Domain wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s)
Instances Reduction Opt. ¬Opt. Reduction Opt. ¬Opt. Reduction Opt. ¬Opt.

ro
om

4-4-3 4.0 → 4.0 1 1 4.0 → 4.0 1 7 4.0 → 4.0 1 29
8-8-2 16.0 → 16.0 1 12 16.0 → 16.0 1 446 16.0 → 16.0 1 13,567
8-8-3 9.6 → 9.6 1 8 9.6 → 9.6 1 137 9.6 → 9.6 1 2,366
12-12-3 15.8 → 14.4 1 18 15.8 → 14.4 15 1,461 15.8 → 14.4 143 54,225
16-16-3 9.3 → 9.3 6 49 9.3 → 9.3 6 6,091 9.3 → 9.3 6 602,148
20-20-3 45.7 → 45.7 4 128 45.7 → 45.7 4 33,710 45.7 → 45.7 4 4,577,620
24-24-3 18.1 → 18.1 2 82 18.1 → 18.1 49 9,907 18.1 → 18.1 1,321 943,056
32-32-2 77.0 → 48.0 28 515 77.0 → 47.8 2,338 254,306 77.0 → 77.0 t-o 114,835,408
32-32-3 86.6 → 86.6 32 642 86.6 → 86.6 2,897 347,854 86.6 → 86.6 t-o 138,149,531
32-32-3a 61.2 → 61.0 26 497 61.2 → 61.0 3,473 286,499 61.2 → 61.2 t-o 95,734,961
44-44-3 91.7 → 91.7 479 2,479 91.7 → 91.7 478 2,622,521 91.7 → 91.7 457 1,787,872,170

gr
id

-n
a-

vi
ga

ti
on

5-5-2 5.7 → 2.3 1 4 5.7 → 1.2 1 91 5.7 → 1.2 2 1,282
4-12-3 11.2 → 11.2 1 10 11.2 → 10.1 1 197 11.2 → 10.1 9 4,197
4-12-4a 7.9 → 6.8 1 7 7.9 → 5.7 2 225 7.9 → 4.6 15 5,783
4-12-4b 6.8 → 5.7 1 7 6.8 → 4.6 2 206 6.8 → 4.6 14 5,275
4-12-4c 7.9 → 7.9 1 2 7.9 → 7.9 1 14 7.9 → 7.9 1 88
4-12-6 13.4 → 13.4 1 7 13.4 → 13.4 2 271 13.4 → 12.3 31 9,308
6-19-3 7.9 → 6.8 1 7 7.9 → 5.7 2 251 7.9 → 5.7 15 6,494

at
ta

ck
-

pl
an

ni
ng

10-2-O1a 3.7 → 3.7 1 2 3.7 → 3.7 1 19 3.7 → 3.7 1 68
10-2-O1b 2.3 → 0.0 3 25 2.3 → 0.0 3 142 2.3 → 0.0 860,233 562
10-3-O1a 8.0 → 8.0 1 2 8.0 → 8.0 1 11 8.0 → 8.0 1 52
10-2-O2a 2.9 → 2.9 1 2 2.9 → 2.7 1 14 2.9 → 2.7 1 62
10-2-O2b 2.3 → 0.0 3 25 2.3 → 0.0 3 131 2.3 → 0.0 3 497
20-2-O1a 10.2 → 10.2 1 9 10.2 → 10.2 1 90 10.2 → 10.2 1 596

bl
oc

ks
-

w
or

ld

3-2-2-O1 8.7 → 8.7 1 2 8.7 → 6.9 1 12 8.7 → 6.9 1 53
3-2-2-O2 4.6 → 3.8 1 2 4.6 → 3.8 1 20 4.6 → 3.8 1 72
5-2-3-O1 9.5 → 6.9 2 35 9.5 → 4.9 73 3,308 9.5 → 3.9 3,879 227,545
5-2-3-O2 9.5 → 6.0 2 32 9.5 → 3.9 72 3,349 9.5 → 3.9 3,906 201,189
5-3-3-O1 8.7 → 7.4 1 18 8.7 → 7.4 21 681 8.7 → 5.6 488 26,671
5-3-3-O2 8.7 → 7.4 1 15 8.7 → 7.4 22 785 8.7 → 5.6 496 23,571
6-2-3-O1 19.8 → 19.8 17 500 19.8 → 18.0 6,886 195,145 19.8 → 19.8 t-o 54,047,916
6-2-3-O2 19.8 → 19.8 17 488 19.8 → 19.8 7,109 172,938 19.8 → 19.8 t-o 73,153,732

bo
xw

or
ld

2-1-2-4-3 3.2 → 3.2 1 7 3.2 → 3.2 1 119 3.2 → 3.2 1 1,457
2-2-0-4-3 5.7 → 5.4 2 31 5.7 → 3.1 87 2,753 5.7 → 3.1 5,124 177,417
2-2-1-4-2 5.1 → 5.1 1 35 5.1 → 1.0 6 1,938 5.1 → 1.0 155 67,366
2-2-1-4-3 5.4 → 5.1 1 30 5.4 → 0.1 7 2,240 5.4 → 0.1 199 82,612
2-2-2-4-3 5.2 → 4.3 3 43 5.2 → 4.2 78 2,572 5.2 → 0.9 2,313 100,138
3-1-1-4-2 2.1 → 1.1 1 8 2.1 → 1.1 1 171 2.1 → 1.1 1 1,703
3-2-2-4-3 3.3 → 3.3 2 35 3.3 → 3.3 4 670 3.3 → 3.3 15 7,596

Table 6.3: POS-GRD: Action removal avoiding policy enumeration.
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(a) (b)

(c) (d)

Figure 6.1: Comparison between approaches avoiding and using policy enumeration to solve
OS-GRD problems. Vertical axes show the running time in seconds on a logarithmic scale for
each instance in the horizontal axes. (a) wcd computation. (b) Design using AR and µ = 1.
(c) Design using AR and µ = 2. (d) Design using AR and µ = 3.

POS-GRD

Table 6.3 presents the information for POS-GRD settings when using action removal as a

design modification. The values of wcd shown in the table were computed using the approach

described in Section 4.4 (p. 113) that avoids policy enumeration. Similar to OS-GRD, no new

instances reduced their wcd values when using a budget of 3 compared with 2. Nevertheless,

more instances reduced the wcd value in this setting. We observe a wcd reduction in 28

instances when µ = 1 , in 29 instances when using µ = 2, and in 25 with a budget µ = 3.

Further, 19 instances present lower wcd values with µ = 2 (compared to µ = 1) and 11

instances with µ = 3 (in relation to µ = 2).
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The policy enumeration (PE) approach for AR in POS-GRD, has a lower performance than

the OS-GRD case. On average, the percentage increase in running time is 5456% for the wcd

computation without considering instances that timed-out; the gap reduces to an average

percentage increase of 85% when using µ = 1, 233% with µ = 2, and to 489% with µ = 3.

Figure 6.2 visualizes the running time in seconds on a logarithmic scale (vertical axes) for

every instance (horizontal axes). Purple markers present the information for ¬PE and the

yellow ones for PE. Stars along the horizontal axes signal the instances where ¬PE finds an

upper bound instead of the exact wcd value. Figure 6.2(a) shows the running-time difference

when computing wcd and Figures 6.2(b) to (d) compares total running times for solving

POS-GRD problems using AR and different budgets. Similar to OS-GRD, ¬PE outperforms

PE in almost all instances when computing only wcd and improves in some cases when solving

the complete problem. After refinement, PE outperforms ¬PE in 17 instances with a budget

of 3.

SS-GRD

Tables 6.4 and 6.5 present SS-GRD problems using AR with 1 and 2 suboptimal actions

and budgets ranging from 1 to 3. As expected, the original wcd values increase with the

number of suboptimal policies. After refinement, when considering k = 1, wcd reduced in 20

instances when using budgets of µ = 1 and µ = 2, and in 23 instances with µ = 3. However,

the reduction was higher with a larger budget. More precisely, 18 instances present a higher

reduction with µ = 2 and 11 instances with µ = 3. For SS-GRD problems with k = 2, wcd
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(a) (b)

(c) (d)

Figure 6.2: Comparison between approaches avoiding and using policy enumeration (¬PE
and PE) to solve POS-GRD. Vertical axes show the running time in seconds on a logarithmic
scale for each instance in the horizontal axes. Stars on the horizontal axes signal instances
where both methods differ. (a) wcd computation. (b) Design using AR and µ = 1. (c) Design
using AR and µ = 1. (d) Design using AR and µ = 1.
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SS-GRD µ = 1 µ = 2 µ = 3

Domain wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s)
Instances Reduction Opt. ¬Opt. Reduction Opt. ¬Opt. Reduction Opt. ¬Opt.

ro
om

4-4-3 5.8 → 3.4 1 16 5.8 → 3.4 1 89 5.8 → 3.4 1 2,003
8-8-2 - → - t-o t-o - → - t-o t-o - → - t-o t-o
8-8-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
12-12-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
16-16-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
20-20-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
24-24-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-2 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-3a - → - t-o t-o - → - t-o t-o - → - t-o t-o
44-44-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o

gr
id

-n
a-

vi
ga

ti
on

5-5-2 6.7 → 5.6 1 21 6.7 → 4.4 1 468 6.7 → 0.0 2 5,284
4-12-3 12.2 → 12.2 3 313 12.2 → 12.2 254 18,776 12.2 → 11.1 13,911 751,209
4-12-4a 7.8 → 7.8 1 59 7.8 → 6.7 9 3,561 7.8 → 6.7 428 87,409
4-12-4b 8.9 → 7.8 1 57 8.9 → 6.7 6 3,977 8.9 → 6.7 276 96,873
4-12-4c 8.9 → 7.8 1 18 8.9 → 6.7 1 454 8.9 → 6.7 8 3,653
4-12-6 15.6 → 14.4 10 1,201 15.6 → 14.4 288 75,549 15.6 → 14.4 15,042 3,073,031
6-19-3 6.7 → 6.7 1 102 6.7 → 5.6 25 9,060 6.7 → 5.6 2,372 431,749

at
ta

ck
-

pl
an

ni
ng

10-2-O1a 5.2 → 5.2 1 41 5.2 → 3.7 1 2,500 5.2 → 3.7 1 21,312
10-2-O1b 3.5 → 2.0 4 248 3.5 → 2.0 4 10,649 3.5 → 2.0 6 441,168
10-3-O1a 9.0 → 9.0 1 14 9.0 → 9.0 1 137 9.0 → 7.8 1 1,461
10-2-O2a 5.2 → 5.2 1 37 5.2 → 3.7 1 1,752 5.2 → 3.7 1 39,188
10-2-O2b 3.5 → 2.0 4 269 3.5 → 2.0 4 11,283 3.5 → 2.0 5 347,762
20-2-O1a 11.2 → 9.9 2 116 11.2 → 9.9 1 4,721 11.2 → 7.4 2 187,849

bl
oc

ks
-

w
or

ld

3-2-2-O1 5.0 → 3.5 1 3 5.0 → 2.8 1 26 5.0 → 2.8 1 218
3-2-2-O2 5.0 → 3.5 1 3 5.0 → 2.8 1 24 5.0 → 2.8 1 170
5-2-3-O1 8.1 → 7.1 6 2,066 8.1 → 6.3 80 506,399 8.1 → 5.3 8,007 80,509,437
5-2-3-O2 8.1 → 7.1 6 2,074 8.1 → 6.3 78 505,743 8.1 → 5.3 7,733 80,781,193
5-3-3-O1 10.9 → 9.9 2 406 10.9 → 9.9 6 63,785 10.9 → 8.4 326 5,926,924
5-3-3-O2 10.9 → 9.9 2 352 10.9 → 9.9 5 54,857 10.9 → 8.4 299 6,007,500
6-2-3-O1 21.7 → 17.7 902,301 37,798,820 - → - t-o t-o - → - t-o t-o
6-2-3-O2 - → - t-o t-o - → - t-o t-o - → - t-o t-o

bo
xw

or
ld

2-1-2-4-3 3.2 → 3.0 1 198 3.2 → 1.1 1 25,166 3.2 → 1.0 9 199
2-2-0-4-3 6.4 → 6.4 661 674,334 6.4 → 4.6 5,563 383,481,843 6.4 → - t-o 686,895
2-2-1-4-2 5.9 → 5.9 779 871,423 5.9 → 4.1 8,005 468,817,240 5.9 → - t-o 935,588
2-2-1-4-3 5.9 → 5.9 866 990,569 5.9 → 4.1 9,146 631,888,423 - → - t-o t-o
2-2-2-4-3 25.2 → 6.2 6,240 7,699,581 25.2 → 6.0 133,162 6,208,668,279 - → - t-o t-o
3-1-1-4-2 3.2 → 1.2 2 228 3.2 → 1.0 2 25,012 3.2 → 0.0 8 225
3-2-2-4-3 4.2 → 4.0 20 10,246 4.2 → 3.9 19 2,499,673 4.2 → 2.0 196 10,439

Table 6.4: SS-GRD: Action removal – 1 suboptimal action (k = 1)
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reduced in 16 instances with a budget of µ = 1 and 19 instances with µ = 2 and µ = 3. The

reduction amount increased in 14 instances from µ = 1 to µ = 2, and in 7 instances from

µ = 2 to µ = 3. Figure 6.3 visualizes the wcd reduction with different budgets. Markers map

each instance to its corresponding wcd value. Blue marks represent the wcd value for the

original stochastic GR problem, red, yellow, and green markers denote the final wcd values

for budgets of µ = 1, µ = 2, and µ = 3 respectively. Comparisons should happen among

markers in the same vertical line; the lower the mark, the smaller the wcd value.

(a)
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25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

wcd0      μ=1        μ=2        μ=3

(b)

Figure 6.3: SS-GRD: wcd reduction with AR using different budgets. Vertical axes show wcd
values for each instance in the horizontal axes. Allowed budget is color-coded. (a) k = 1. (b)
k = 2.

POSS-GRD

Tables 6.6 and 6.7 present experimental results for POSS-GRD problems using AR with 1

and 2 suboptimal actions, respectively, and budgets ranging from 1 to 3. Like SS-GRD, the

original wcd value increases with k in most cases; only four instances present the same wcd

values. POSS-GRD problems with k = 1 present a wcd reduction in 22 instances when µ = 1,
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SS-GRD µ = 1 µ = 2 µ = 3

Domain wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s)
Instances Reduction Opt. ¬Opt. Reduction Opt. ¬Opt. Reduction Opt. ¬Opt.

ro
om

4-4-3 7.8 → 3.9 1 29 7.8 → 3.5 2 26 7.8 → 1.5 14 30
8-8-2 - → - t-o t-o - → - t-o t-o - → - t-o t-o
8-8-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
12-12-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
16-16-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
20-20-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
24-24-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-2 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-3a - → - t-o t-o - → - t-o t-o - → - t-o t-o
44-44-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o

gr
id

-n
a-

vi
ga

ti
on

5-5-2 8.9 → 7.8 1 35 8.9 → 6.7 5 1,279 8.9 → 6.7 102 19,281
4-12-3 14.4 → 14.4 82 10,891 14.4 → 14.4 13,496 732,655 14.4 → - t-o 33,756,422
4-12-4a 10.0 → 10.0 2 166 10.0 → 8.9 71 10,515 10.0 → 8.9 4,464 435,455
4-12-4b 11.1 → 10.0 2 224 11.1 → 8.9 47 13,077 11.1 → 8.9 3,100 587,405
4-12-4c 11.1 → 10.0 1 76 11.1 → 8.9 49 2,920 11.1 → 7.8 1,859 91,925
4-12-6 17.8 → 16.7 1,343 183,968 17.8 → 16.7 66,880 12,731,161 17.8 → - t-o 582,739,225
6-19-3 8.9 → 8.9 4 667 8.9 → 7.8 499 70,807 8.9 → 6.7 60,752 4,883,973

at
ta

ck
-

pl
an

ni
ng

10-2-O1a 6.4 → 6.4 1 137 6.4 → 6.4 1 13,460 6.4 → 6.4 7 473,174
10-2-O1b 5.5 → 4.5 6 1,968 5.5 → 4.5 7 343,438 5.5 → 4.5 20 37,227,785
10-3-O1a 10.3 → 10.3 1 16 10.3 → 10.0 1 282 10.3 → 9.0 1 2,009
10-2-O2a 6.4 → 6.4 1 133 6.4 → 6.4 1 12,959 6.4 → 6.4 9 889,723
10-2-O2b 5.5 → 4.5 7 2,027 5.5 → 4.5 7 335,314 5.5 → 4.5 27 61,678,328
20-2-O1a 13.7 → 12.4 2 558 13.7 → 12.4 2 83,331 13.7 → 11.2 27 10,315,134

bl
oc

ks
-

w
or

ld

3-2-2-O1 5.7 → 3.5 1 3 5.7 → 2.8 1 26 5.7 → 2.8 1 172
3-2-2-O2 5.7 → 3.5 1 3 5.7 → 2.8 1 27 5.7 → 2.8 1 174
5-2-3-O1 12.0 → 8.5 447 342,983 12.0 → 7.9 2,798 134,866,774 12.0 → - t-o 34,811,318,624
5-2-3-O2 12.0 → 8.5 437 331,938 12.0 → 7.9 2,581 122,278,128 12.0 → - t-o 34,759,734,775
5-3-3-O1 16.8 → 13.2 48 25,806 16.8 → 10.7 113 6,867,090 16.8 → 10.7 4,228 1,589,864,429
5-3-3-O2 16.8 → 13.2 44 23,875 16.8 → 10.7 112 6,736,866 16.8 → 10.7 3,780 1,365,688,406
6-2-3-O1 - → - t-o t-o - → - t-o t-o -→ - t-o t-o
6-2-3-O2 - → - t-o t-o - → - t-o t-o - → - t-o t-o

bo
xw

or
ld

2-1-2-4-3 7.1 → 4.2 15 11,440 7.1 → 4.2 30 5,049,141 7.1 → 4.0 2,709 12,371
2-2-0-4-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
2-2-1-4-2 - → - t-o t-o - → - t-o t-o - → - t-o t-o
2-2-1-4-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
2-2-2-4-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
3-1-1-4-2 12.1 → 7.3 21 14,697 12.1 → 4.2 34 5,243,833 12.1 → 2.9 2,205 14,837
3-2-2-4-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o

Table 6.5: SS-GRD: Action removal – 2 suboptimal actions (k = 2)
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in 26 when µ = 2, and in 22 when µ = 3. The reduction amount increased in 18 cases from

µ = 1 to µ = 2, and in 16 cases from µ = 2 to µ = 3.

When considering k = 2, (Table 6.7), we observe a wcd reduction in 15 instances when µ = 1,

in 20 when µ = 2, and in 17 when µ = 3. A lower number of instances with a budget of

µ = 3 reduced their wcd value because some of them did not finish on time. The reduction

amount increased in 16 cases from µ = 1 to µ = 2, and in 5 cases from µ = 2 to µ = 3.

Figure 6.4 visualizes the reductions obtained in all cases. Markers map each instance to its

corresponding wcd value. Blue markers denote the wcd for the original stochastic GR problem,

red, yellow, and green markers denote the final wcd values for budgets of µ = 1, µ = 2, and

µ = 3 respectively. Comparisons should happen among markers in the same vertical line; the

lower the mark, the smaller the wcd value.

(a) (b)

Figure 6.4: POSS-GRD: wcd reduction with AR using different budgets. Vertical axes show
wcd values for each instance in the horizontal axes. Allowed budget is color-coded. (a) k = 1.
(b) k = 2.

Figure 6.5 summarizes the tendency of running time for instances in the grid-navigation

domain across all settings and configurations when µ = 1 and AR is used to modify the
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POSS-GRD µ = 1 µ = 2 µ = 3

Domain wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s)
Instances Reduction Opt. ¬Opt. Reduction Opt. ¬Opt. Reduction Opt. ¬Opt.

ro
om

4-4-3 7.4 → 5.3 1 13 7.4 → 5.1 1 125 7.4 → 5.1 2 1,355
8-8-2 - → - t-o t-o - → - t-o t-o - → - t-o t-o
8-8-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
12-12-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
16-16-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
20-20-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
24-24-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-2 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-3a - → - t-o t-o - → - t-o t-o - → - t-o t-o
44-44-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o

gr
id

-n
a-

vi
ga

ti
on

5-5-2 8.9 → 7.9 1 11 8.9 → 6.8 6 360 8.9 → 1.2 109 8,840
4-12-3 14.4 → 14.4 9 743 14.4 → 13.4 310 47,511 14.4 → 12.3 16,049 1,896,417
4-12-4a 10.1 → 9.0 1 65 10.1 → 9.0 6 3,927 10.1 → 7.9 277 167,446
4-12-4b 11.1 → 11.1 3 62 11.1 → 9.0 254 4,016 11.1 → 8.9 12,409 184,684
4-12-4c 10.1 → 9.0 1 10 10.1 → 8.9 1 212 10.1 → 8.9 11 3,786
4-12-6 16.7 → 15.6 58 1,725 16.7 → 15.6 4,953 115,835 16.7 → - t-o 4,795,860
6-19-3 12.2 → 10.1 3 163 12.2 → 9.0 158 12,103 12.2 → 7.9 9,697 690,033

at
ta

ck
-

pl
an

ni
ng

10-2-O1a 5.2 → 5.2 1 20 5.2 → 5.0 1 675 5.2 → 5.0 3 30,403
10-2-O1b 3.5 → 3.3 4 259 3.5 → 3.3 4 10,679 3.5 → 3.3 5 280,700
10-3-O1a 10.3 → 9.3 1 8 10.3 → 9.0 1 184 10.3 → 9.0 2 1,403
10-2-O2a 5.2 → 5.2 1 26 5.2 → 4.2 1 666 5.2 → 4.2 3 19,263
10-2-O2b 3.5 → 3.3 3 245 3.5 → 3.3 4 12,144 3.5 → 3.3 5 300,837
20-2-O1a 11.5 → 11.4 1 71 11.5 → 11.4 2 4,023 11.5 → 11.4 11 171,500

bl
oc

ks
-

w
or

ld

3-2-2-O1 12.0 → 6.2 1 2 12.0 → 5.7 1 17 12.0 → 5.3 1 151
3-2-2-O2 7.7 → 6.3 1 2 7.7 → 4.4 1 18 7.7 → 3.1 1 119
5-2-3-O1 13.3 → 9.4 16 6,705 13.3 → 8.4 117 1,611,361 13.3 → 7.5 15,120 276,687,652
5-2-3-O2 12.1 → 9.0 15 6,401 12.1 → 8.2 87 1,539,115 12.1 → 6.5 9,237 261,363,479
5-3-3-O1 12.8 → 10.9 2 502 12.8 → 10.9 8 83,385 12.8 → 9.6 341 8,215,463
5-3-3-O2 14.5 → 10.9 2 466 14.5 → 10.9 5 75,284 14.5 → 9.7 218 7,718,705
6-2-3-O1 - → - t-o t-o - → - t-o t-o - → - t-o t-o
6-2-3-O2 - → - t-o t-o - → - t-o t-o - → - t-o t-o

bo
xw

or
ld

2-1-2-4-3 5.2 → 4.2 1 208 5.2 → 4.2 2 28,767 5.2 → 3.8 10 2,771,581
2-2-0-4-3 24.2 → 12.9 9,507 10,137,789 24.2 → 5.8 15,680 5,185,174,627 24.2 → - t-o 2,175,871,874,052
2-2-1-4-2 14.4 → 13.5 7,151 8,526,916 14.4 → 6.2 19,730 5,416,952,567 14.4 → - t-o 2,318,875,923,732
2-2-1-4-3 14.4 → 14.4 7,145 8,632,698 14.4 → 6.4 19,955 4,747,455,910 - → - t-o t-o
2-2-2-4-3 26.3 → 11.3 154,967 233,133,410 26.3 → - t-o 143,290,330,007 - → - t-o t-o
3-1-1-4-2 5.3 → 4.2 2 250 5.3 → 3.1 3 28,369 5.3 → 2.2 57 2,142,614
3-2-2-4-3 6.4 → 5.3 28 14,562 6.4 → 5.1 23 2,702,301 6.4 → 4.9 812 552,766,536

Table 6.6: POSS-GRD: Action removal – 1 suboptimal action (k = 1)
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POSS-GRD µ = 1 µ = 2 µ = 3

Domain wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s)
Instances Reduction Opt. ¬Opt. Reduction Opt. ¬Opt. Reduction Opt. ¬Opt.

ro
om

4-4-3 14.5 → 9.3 2 86 14.5 → 5.7 4 2,043 14.5 → 4.9 24 30,792
8-8-2 - → - t-o t-o - → - t-o t-o - → - t-o t-o
8-8-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
12-12-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
16-16-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
20-20-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
24-24-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-2 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-3a - → - t-o t-o - → - t-o t-o - → - t-o t-o
44-44-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o

gr
id

-n
a-

vi
ga

ti
on

5-5-2 11.1 → 11.1 2 33 11.1 → 10.1 37 1,147 11.1 → 10.1 681 37,815
4-12-3 17.8 → 17.8 4,201 50,306 17.8 → - t-o 3,399,891 17.8 → - t-o 140,089,770
4-12-4a 13.3 → 12.3 8 497 13.3 → 11.2 452 35,049 13.3 → 11.2 23,780 1,584,580
4-12-4b 13.3 → 13.3 48 457 13.3 → 11.2 4,510 33,184 13.3 → - t-o 1,383,771
4-12-4c 12.3 → 11.2 3 116 12.3 → 11.1 99 5,278 12.3 → 11.1 3,621 175,531
4-12-6 18.9 → 18.9 5,051 340,149 18.9 → - t-o 25,066,102 18.9 → - t-o 1,075,926,501
6-19-3 14.4 → 14.4 562 4,372 14.4 → 11.2 78,982 449,277 14.4 → - t-o 30,704,874

at
ta

ck
-

pl
an

ni
ng

10-2-O1a 7.4 → 7.4 1 132 7.4 → 6.4 2 9,673 7.4 → 6.4 48 686,654
10-2-O1b 5.5 → 4.5 7 2,132 5.5 → 4.5 9 355,631 5.5 → 4.5 281 37,539,919
10-3-O1a 11.3 → 10.3 1 10 11.3 → 10.3 1 193 11.3 → 9.3 3 2,076
10-2-O2a 7.4 → 7.4 1 121 7.4 → 6.4 2 9,414 7.4 → 6.4 41 605,462
10-2-O2b 5.5 → 4.5 7 2,265 5.5 → 4.5 9 333,112 5.5 → 4.5 313 40,308,656
20-2-O1a 13.9 → 12.7 3 515 13.9 → 12.7 18 83,388 13.9 → 12.7 2,254 9,815,335

bl
oc

ks
-

w
or

ld

3-2-2-O1 12.0 → 8.5 1 2 12.0 → 6.2 1 20 12.0 → 5.4 1 148
3-2-2-O2 9.0 → 6.8 1 2 9.0 → 4.4 1 18 9.0 → 3.8 1 150
5-2-3-O1 23.4 → 10.5 1,971 1,653,560 23.4 → 9.9 3,764 683,305,216 23.4 → 9.9 170,318 213,503,283,541
5-2-3-O2 16.2 → 12.4 1,744 1,422,045 16.2 → 12.0 6,338 624,551,690 16.2 → - t-o 164,887,063,677
5-3-3-O1 18.1 → 15.1 104 57,128 18.1 → 11.8 241 15,622,121 18.1 → 11.8 18,887 3,229,062,349
5-3-3-O2 18.1 → 15.9 90 49,053 18.1 → 13.2 206 14,029,759 18.1 → 13.2 15,862 2,621,568,211
6-2-3-O1 - → - t-o t-o - → - t-o t-o - → - t-o t-o
6-2-3-O2 - → - t-o t-o - → - t-o t-o - → - t-o t-o

bo
xw

or
ld

2-1-2-4-3 16.5 → 13.1 59 48,060 16.5 → 13.1 104 18,689,391 16.5 → 13.1 3,562 5,482,474,519
2-2-0-4-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
2-2-1-4-2 - → - t-o t-o - → - t-o t-o - → - t-o t-o
2-2-1-4-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
2-2-2-4-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
3-1-1-4-2 16.7 → 14.1 52 36,154 16.7 → 13.1 84 12,788,228 16.7 → 13.1 6,217 3,049,322,144
3-2-2-4-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o

Table 6.7: POSS-GRD: Action removal – 2 suboptimal actions (k = 2)
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original model. Lines only allows us to visually connect the values for the same instance.

Greenish markers plot the values obtained for the optimized versions. In general, settings

with a higher number of suboptimal actions (k = 2) require more time to find a solution

since they handle the highest number of legal policies.

(a)

Figure 6.5: Running time of grid-navigation instances across different settings when using
AR and µ = 1. Vertical axis: running time in seconds (logarithmic scale).

6.3.2 Sensor Refinement

POS-GRD

Table 6.8 presents the results when SR is used to modify POS-GRD settings and the wcd

computation avoids policy enumeration 8. The wcd reduced in 27 instances with µ = 1, in 34

with µ = 2, and in 27 with µ = 3. In the last case, seven instances that had reduced their
8We chose to tabulate the ¬PE approach because it has the highest number of finished instances.
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POS-GRD µ = 1 µ = 2 µ = 3

Domain wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s)
Instances Reduction Opt. ¬Opt. Reduction Opt. ¬Opt. Reduction Opt. ¬Opt.

ro
om

4-4-3 4.0 → 3.7 1 2 4.0 → 3.7 * 1 15 4.0 → 3.7 * 860,395 55
8-8-2 16.0 → 16.0 1 6 16.0 → 16.0 2 201 16.0 → 16.0 27 5,696
8-8-3 9.6 → 9.3 1 8 9.6 → 9.1 4 212 9.6 → 9.1 62 6,079
12-12-3 15.8 → 15.8 1 23 15.8 → 15.7 6 1,677 15.8 → 15.7 189 82,237
16-16-3 9.3 → 7.6 1 61 9.3 → 7.6 67 7,462 9.3 → 7.1 4,777 592,919
20-20-3 45.7 → 41.1 2 121 45.7 → 40.3 333 25,369 45.7 → 39.8 43,958 3,234,404
24-24-3 18.1 → 13.8 1 177 18.1 → 12.5 259 46,273 18.1 → 12.3 49,771 9,237,414
32-32-2 77.0 → 53.8 15 430 77.0 → 47.2 10,377 226,099 77.0 → - t-o 83,666,056
32-32-3 86.6 → 86.6 8 590 86.6 → 86.6 12,577 287,432 86.6 → - t-o 100,652,112
32-32-3a 61.2 → 55.9 7 505 61.2 → 55.8 8,747 285,873 61.2 → - t-o 88,544,663
44-44-3 91.7 → 80.5 90 2,820 91.7 → - t-o 2,332,353 91.7 → - t-o 1,599,973,370

gr
id

-n
a-

vi
ga

ti
on

5-5-2 5.7 → 4.6 1 3 5.7 → 4.6 * 1 33 5.7 → 4.6 * 1 210
4-12-3 11.2 → 11.2 1 5 11.2 → 10.1 1 99 11.2 → 10.1 2 1,430
4-12-4a 7.9 → 5.7 1 5 7.9 → 5.7 1 123 7.9 → 5.7 * 2 1,515
4-12-4b 6.8 → 6.8 * 1 7 6.8 → 6.8 * 1 99 6.8 → 6.8 * 1 1,688
4-12-4c 7.9 → 6.8 * 1 4 7.9 → 6.8 * 1 101 7.9 → 6.8 * 1 1,732
4-12-6 13.4 → 13.4 1 5 13.4 → 13.4 * 1 119 13.4 → 13.4 * 1 2,004
6-19-3 7.9 → 6.8 1 10 7.9 → 5.7 1 849 7.9 → 5.7 15 26,163

at
ta

ck
-

pl
an

ni
ng

10-2-O1a 3.7 → 3.7 1 15 3.7 → 3.7 1 1,200 3.7 → 2.9 * 1 77,861
10-2-O1b 2.3 → 1.3 * 3 10,654 2.3 → 1.3 * 3 29,071,372 2.3 → 1.3 * 3 39,757,899,216
10-3-O1a 8.0 → 8.0 * 1 5 8.0 → 8.0 * 1 118 8.0 → 8.0 * 1 979
10-2-O2a 2.9 → 2.9 * 1 18 2.9 → 2.9 * 1 1,182 2.9 → 2.9 * 1 60,299
10-2-O2b 2.3 → 2.3 5 9,922 2.3 → 1.3 * 5 26,695,646 2.3 → 1.3 * 5 41,421,173,774
20-2-O1a 10.2 → 10.2 1 263 10.2 → 9.0 * 1 90,685 10.2 → 9.0 * 1 21,325,009

bl
oc

ks
-

w
or

ld

3-2-2-O1 8.7 → 3.8 * 1 3 8.7 → 3.8 * 1 16 8.7 → 3.8 * 1 79
3-2-2-O2 4.6 → 3.8 * 1 1 4.6 → 3.8 * 1 17 4.6 → 3.8 * 1 120
5-2-3-O1 9.5 → 7.9 1 129 9.5 → 6.2 39 53,389 9.5 → 5.6 * 845 15,130,443
5-2-3-O2 9.5 → 7.4 1 136 9.5 → 6.2 36 62,725 9.5 → 5.6 * 324 18,343,215
5-3-3-O1 8.7 → 8.7 1 126 8.7 → 8.7 * 1 51,717 8.7 → 8.7 * 1 16,908,080
5-3-3-O2 8.7 → 8.7 * 1 121 8.7 → 8.7 * 1 51,048 8.7 → 8.7 * 1 15,182,485
6-2-3-O1 19.8 → 19.8 10 3,490 19.8 → 18.0 59,039 10,049,661 19.8 → - t-o 22,508,237,285
6-2-3-O2 19.8 → 19.8 3 3,969 19.8 → 19.8 94,401 11,070,930 19.8 → - t-o 30,464,848,511

bo
xw

or
ld

2-1-2-4-3 3.2 → 2.9 1 206 3.2 → 2.8 * 1 49,286 3.2 → 2.8 * 1 12,023,373
2-2-0-4-3 5.7 → 5.5 1 105 5.7 → 5.4 22 35,671 5.7 → 5.4 3,156 5,863,013
2-2-1-4-2 5.1 → 5.1 1 380 5.1 → 4.9 80 391,538 5.1 → 4.9 31,253 156,482,239
2-2-1-4-3 5.4 → 5.1 1 308 5.4 → 5.0 78 388,251 5.4 → 4.9 * 4,309 188,123,453
2-2-2-4-3 5.2 → 4.3 1 2,123 5.2 → 4.2 534 3,422,501 5.2 → - t-o 3,938,454,780
3-1-1-4-2 2.1 → 1.9 * 1 302 2.1 → 1.9 * 1 336,294 2.1 → 1.9 * 1 213,743,870
3-2-2-4-3 3.3 → 3.1 2 18,507 3.3 → 3.1 * 24 182,214,212 3.3 → 3.1 * 23 950,514,378,021

Table 6.8: POS-GRD: Sensor refinement avoiding policy enumeration. Values with (*)
represent maximal refinement
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wcd value with a lower budget ran out of time. Additionally, 27 instances present lower wcd

values with µ = 2 (compared to µ = 1) and 14 instances with µ = 3 (in relation to µ = 2),

indicating that SR is more effective than AR in the analyzed instances. Since the optimized

algorithm finds the wcd value for a fully-refined model as an intermediate step, we marked

(with a *) the cases where the final result is optimal, i.e. where the reduced wcd is equal to

the wcd for a fully-refined model. In total, 9 instances present optimal results when using

µ = 1, 17 when µ = 2, and 22 when µ = 3. While it is expected to have better results with

higher budget, it is also good to show that we can achieve optimal results with lower budgets

in several cases (more than 23% cases forµ = 1 and more than 43% cases for µ = 2).

Similar to the case of POS-GRD with AR, we compared the ¬PE and PE approaches. As

expected, PE has a lower performance: on average, the percentage increase in running time

is 5456% for the wcd computation of the original stochastic GR problem. However, the gap

reduced to an average percentage increase of 283% for µ = 1, 1929% for µ = 2, and 1062%

when using µ = 39. Figure 6.6 visualizes the running time in seconds on a logarithmic scale

(vertical axes) for every instance (horizontal axes). Purple markers present the information

for ¬PE and the yellow ones for PE. Figure 6.6(a), the same as Figure 6.2(a), shows the

difference of the wcd calculation for the original stochastic GR problem and Figures 6.6(b) to

(d) compare total running times when solving POS-GRD problems using SR and budgets of

1,2,and 3. With SR, the performance of PE is closer to ¬PE than with AR. Since the set of

legal policies does not change and the creation of augmented MDPs in both methods has
9We did not consider instances that timed-out for these calculations.
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similar complexity, the policy information does not provide any advantage. PE outperforms

¬PE in only 6 instances with a budget of 3.

(a) (b)

(c) (d)

Figure 6.6: Comparison between approaches avoiding and using policy enumeration (¬PE
and PE) to solve POS-GRD. Vertical axes show the running time in seconds on a logarithmic
scale for each instance in the horizontal axes. (a) wcd computation. (b) Design using SR and
µ = 1. (c) Design using SR and µ = 2. (d) Design using SR and µ = 3.

POSS-GRD

Tables 6.9 and 6.10 present experimental results for POSS-GRD problems using SR with 1

and 2 suboptimal actions, respectively, and budgets ranging from 1 to 3. Like the POS-GRD

case, we marked instances whose wcd value is optimal, i.e., is equal to the wcd of a fully-refined

stochastic GR problem. The wcd value for the initial stochastic GR problem is higher for

almost all cases with two suboptimal actions; there is only one case where the values are

equal. POSS-GRD problems with k = 1 present a wcd reduction in 18 instances when µ = 1
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(12 of which reached optimal values), in 18 cases when µ = 2 (13 with optimal values), and

in 17 cases when µ = 3 (14 of them with optimal values). The wcd reduction was higher in 6

cases when comparing µ = 1 to µ = 2, and only 2 instances presented higher reduction when

using µ = 3 instead of µ = 2.

When working with k = 2, 11 instances reduced wcd when µ = 1 (6 of which were optimal),

15 reduced when µ = 2 (8 with optimal values), and 14 when µ = 3 (10 of them with optimal

values). When comparing the amount of reduction, 8 instances had higher wcd reduction

when using µ = 2 instead of µ = 1 and 5 when using µ = 3 rather than µ = 2.

Figure 6.7 visualizes the reduction obtained in all cases. Markers map each instance to its

corresponding wcd value. Blue markers denote the wcd value for the original stochastic GR

problem, red, yellow, and green markers indicate the final wcd values for budgets of µ = 1,

µ = 2, and µ = 3, respectively, and pink markers represent wcd values for a fully-refined

model. Comparisons should happen among markers in the same vertical line; the lower the

mark, the smaller the wcd value, i.e., no marker should be above a blue one or below a pink

one.

168



POSS-GRD µ = 1 µ = 2 µ = 3

Domain wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s)
Instances Reduction Opt. ¬Opt. Reduction Opt. ¬Opt. Reduction Opt. ¬Opt.

ro
om

4-4-3 7.4 → 6.1 * 1 5 7.4 → 6.1 * 1 36 7.4 → 6.1 * 1 142
8-8-2 - → - t-o t-o - → - t-o t-o - → - t-o t-o
8-8-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
12-12-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
16-16-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
20-20-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
24-24-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-2 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-3a - → - t-o t-o - → - t-o t-o - → - t-o t-o
44-44-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o

gr
id

-n
a-

vi
ga

ti
on

5-5-2 8.9 → 7.9 1 12 8.9 → 7.9 1 117 8.9 → 7.9 3 456
4-12-3 14.4 → 13.4 17 325 14.4 → 13.4 165 8,194 14.4 → 13.4 2,895 105,146
4-12-4a 10.1 → 9.0 1 31 10.1 → 9.0 7 798 10.1 → 9.0 106 8,644
4-12-4b 11.1 → 10.1 1 34 11.1 → 10.1 7 999 11.1 → 10.1 76 14,210
4-12-4c 10.1 → 9.0 * 1 15 10.1 → 9.0 * 1 417 10.1 → 9.0 * 1 6,693
4-12-6 16.7 → 16.7 26 704 16.7 → 16.7 44 24,528 16.7 → 16.7 105 273,921
6-19-3 12.2 → 10.1 2 128 12.2 → 9.0 24 7,060 12.2 → 9.0 1,198 225,715

at
ta

ck
-

pl
an

ni
ng

10-2-O1a 5.2 → 5.2 * 1 56 5.2 → 5.2 * 1 4,753 5.2 → 5.2 * 1 229,121
10-2-O1b 3.5 → 3.5 * 4 15,070 3.5 → 3.5 * 4 36,191,448 3.5 → 3.5 * 3 55,427,840,059
10-3-O1a 10.3 → 9.3 * 1 15 10.3 → 9.3 * 1 324 10.3 → 9.3 * 1 3,018
10-2-O2a 5.2 → 5.2 * 1 62 5.2 → 5.2 * 1 4,227 5.2 → 5.2 * 1 216,587
10-2-O2b 3.5 → 3.5 * 4 17,068 3.5 → 3.5 * 4 38,918,911 3.5 → 3.5 * 4 70,572,628,839
20-2-O1a 11.5 → 11.5 * 1 602 11.5 → 11.5 * 1 196,500 11.5 → 11.5 * 1 36,960,922

bl
oc

ks
-

w
or

ld

3-2-2-O1 12.0 → 6.1 * 1 2 12.0 → 6.1 * 1 19 12.0 → 6.1 * 1 142
3-2-2-O2 7.7 → 6.3 1 2 7.7 → 6.1 * 1 19 7.7 → 6.1 * 1 120
5-2-3-O1 13.3 → 11.9 21 13,015 13.3 → 11.0 2,899 5,265,292 13.3 → 10.5 * 34,077 1,496,124,609
5-2-3-O2 12.1 → 10.5 * 21 12,464 12.1 → 10.5 * 21 5,495,593 12.1 → 10.5 * 19 1,399,576,283
5-3-3-O1 12.8 → 12.8 3 1,507 12.8 → 12.8 350 652,974 12.8 → 12.8 105,410 281,869,607
5-3-3-O2 14.5 → 14.5 3 1,348 14.5 → 12.8 406 564,650 14.5 → 12.8 107,605 181,115,401
6-2-3-O1 - → - t-o t-o - → - t-o t-o - → - t-o t-o
6-2-3-O2 - → - t-o t-o - → - t-o t-o - → - t-o t-o

bo
xw

or
ld

2-1-2-4-3 5.2 → 4.3 2 720 5.2 → 4.2 76 246,091 5.2 → 4.2 14,962 64,591,047
2-2-0-4-3 24.2 → 14.8 * 8,891 5,085,103 24.2 → 14.8 * 9,681 1,597,116,121 24.2 → 14.8 * 9,494 300,314,848,161
2-2-1-4-2 14.4 → 13.5 8,042 11,721,343 14.4 → - t-o 9,329,287,991 14.4 → - t-o 4,475,811,246,602
2-2-1-4-3 14.4 → 14.4 8,429 11,814,028 14.4 → - t-o 9,354,016,555 14.4 → - t-o t-o
2-2-2-4-3 26.3 → 25.3 184,398 729,879,139 26.3 → - t-o 1,082,782,102,440 26.3 → - t-o t-o
3-1-1-4-2 5.3 → 5.0 2 1,902 5.3 → 4.9 398 1,623,935 5.3 → 4.9 184,555 1,033,180,138
3-2-2-4-3 6.4 → 5.8 * 44 340,717 6.4 → 5.8 * 44 2,805,382,290 6.4 → 5.8 * 44 15,603,487,670,685

Table 6.9: POSS-GRD: Sensor refinement – 1 suboptimal action (k = 1). Values with (*)
denote maximal refinement

(a) (b)

Figure 6.7: POSS-GRD: wcd reduction with SR using different budgets. Vertical axes show
wcd values for each instance in the horizontal axes. Allowed budget is color-coded. (a) k = 1.
(b) k = 2.
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POSS-GRD µ = 1 µ = 2 µ = 3

Domain wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s) wcd Runtime(s) Runtime(s)
Instances Reduction Opt. ¬Opt. Reduction Opt. ¬Opt. Reduction Opt. ¬Opt.

ro
om

4-4-3 14.5 → 13.1 3 30 14.5 → 12.5 4 256 14.5 → 12.3 11 1,237
8-8-2 - → - t-o t-o - → - t-o t-o - → - t-o t-o
8-8-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
12-12-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
16-16-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
20-20-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
24-24-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-2 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
32-32-3a - → - t-o t-o - → - t-o t-o - → - t-o t-o
44-44-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o

gr
id

-n
a-

vi
ga

ti
on

5-5-2 11.1 → 11.1 1 17 11.1 → 11.1 2 236 11.1 → 10.1 2 1,268
4-12-3 17.8 → 16.8 727 18,526 17.8 → 16.8 4,121 472,276 17.8 → 16.8 63,117 6,238,317
4-12-4a 13.3 → 12.3 8 183 13.3 → 12.3 78 4,529 13.3 → 12.3 1,560 67,119
4-12-4b 13.3 → 13.3 5 163 13.3 → 13.3 8 3,922 13.3 → 13.3 43 61,120
4-12-4c 12.3 → 12.3 3 69 12.3 → 12.3 5 1,709 12.3 → 12.3 34 23,350
4-12-6 18.9 → 18.9 4,525 116,497 18.9 → 18.9 4,506 2,808,360 18.9 → 18.9 5,529 45,412,506
6-19-3 14.4 → 13.4 37 2,328 14.4 → 12.3 702 130,594 14.4 → 11.2 36,303 5,061,747

at
ta

ck
-

pl
an

ni
ng

10-2-O1a 7.4 → 7.4 1 126 7.4 → 7.2 4 10,253 7.4 → 7.2 88 443,319
10-2-O1b 5.5 → 5.5 * 7 30,322 5.5 → 5.5 * 7 76,268,868 5.5 → 5.5 * 6 114,388,104,917
10-3-O1a 11.3 → 10.3 * 1 24 11.3 → 10.3 * 1 318 11.3 → 10.3 * 1 3,228
10-2-O2a 7.4 → 7.4 1 121 7.4 → 7.2 4 10,869 7.4 → 7.2 140 439,300
10-2-O2b 5.5 → 5.5 * 7 30,251 5.5 → 5.5 * 7 77,369,713 5.5 → 5.5 * 7 122,199,719,778
20-2-O1a 13.9 → 13.9 * 2 1,246 13.9 → 13.9 * 2 428,752 13.9 → 13.9 * 2 94,381,115

bl
oc

ks
-

w
or

ld

3-2-2-O1 12.0 → 6.1 * 1 2 12.0 → 6.1 * 1 20 12.0 → 6.1 * 1 128
3-2-2-O2 9.0 → 7.4 1 2 9.0 → 6.1 * 1 20 9.0 → 6.1 * 1 123
5-2-3-O1 23.4 → 15.8 2,180 1,825,417 23.4 → 15.8 43,422 805,213,570 23.4 → - t-o 200,942,004,152
5-2-3-O2 16.2 → 15.8 1,988 1,566,772 16.2 → 15.8 82,050 559,047,627 16.2 → - t-o 208,996,482,989
5-3-3-O1 18.1 → 18.1 86 70,461 18.1 → 17.6 * 465 30,722,303 18.1 → 17.6 * 108 11,548,398,460
5-3-3-O2 18.1 → 18.1 77 63,041 18.1 → 17.6 2,384 27,781,019 18.1 → 17.6 * 3,269 10,306,296,983
6-2-3-O1 - → - t-o t-o - → - t-o t-o - → - t-o t-o
6-2-3-O2 - → - t-o t-o - → - t-o t-o - → - t-o t-o

bo
xw

or
ld

2-1-2-4-3 16.5 → 16.4 * 72 45,867 16.5 → 16.4 * 73 9,669,156 16.5 → 16.4 * 85 5,517,095,653
2-2-0-4-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
2-2-1-4-2 - → - t-o t-o - → - t-o t-o - → - t-o t-o
2-2-1-4-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
2-2-2-4-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o
3-1-1-4-2 16.7 → 16.5 71 89,171 16.7 → 16.4 18,677 7,084,873,491 16.7 → 16.4 * 80,492 45,745,136,493
3-2-2-4-3 - → - t-o t-o - → - t-o t-o - → - t-o t-o

Table 6.10: POSS-GRD: Sensor refinement – 2 suboptimal actions (k = 2). Values with (*)
denote maximal refinement
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Chapter 7

Related Work

“If we knew what we were doing,

it would not be called research, would it?”

– Albert Einstein

(S-)GRD problems exist at the intersection of GR and design optimization. This chapter

briefly surveys related work classified in three main areas: We review work that stems from

GRD, alternative approaches dealing with ambiguous behavior, and several AI models that

use design to solve different problems other than GR.
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7.1 GRD Extensions

7.1.1 Alternative Evaluation Measures: Expected-Case Distinc-

tiveness (ecd)

The wcd measure focuses only in the worst ambiguous case. While it is useful, different ob-

servers or situations could use other criteria for optimizing a stochastic GR problem. Wayllace

et al., 2017 proposed an alternative measure that evaluates the expected case of ambiguity

instead of the worst case.

An implicit assumption made by the worst-case distinctiveness (wcd) metric is that there

is no prior information on the actual agent’s goal. While this assumption is reasonable

in many problems, it may be the case that some information is available. For example,

in human-computer interaction applications, user profiles may assign different weights to

each goal, where weights correspond to an agent’s prior probabilities of choosing its goal.

Risk-aware agents may prefer choosing slightly suboptimal trajectories, for example, to avoid

optimal policies closer to risky states. Therefore not all legal policies are equally probable.

Weighting goals can also symbolize the importance of goals from the observer’s perspective.

For instance, in a security application, some goals (i.e., targets of terrorists) are more valuable

than others and should thus deserve more protection.
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Further, it may often be the case where no modification sequence can reduce wcd (i.e., it is

impossible to decrease the cost of the most expensive non-distinctive policy because there are

no alternative ways to reach the goals). However, it can be possible to reduce the cost of

other, less costly non-distinctive policies. Thus, intuitively, one should prefer the solution that

decreases the cost of any non-distinctive policy. In such a scenario, the wcd value remains the

same and fails to distinguish between these solutions. This situation is further exacerbated

when the longest non-distinctive path is to goals with low weights!

Finally, even if a redesign using wcd could remove all ambiguous policies, it often requires

a long sequence of modifications. Naïvely searching for the optimal sequence requires(|M|
1

)
+ . . .+

(|M|
µ

)
computations of wcd, whereM denotes the set of all modifications and µ

the allowed budget. Since | M | is usually large and | M |> µ, it is commonly not possible

to search for sequences of more than few modifications.

Therefore, in response to these three observations, Wayllace et al., 2017 proposed the expected-

case distinctiveness (ecd), for S-GRDs that weighs the length of a trajectory to a goal (either

by the probability of an agent choosing that goal or by the observer’s priority) and takes

the sum of all the weighted trajectory lengths. By doing so, accounts for all non-distinctive

policies and potentially improves the GR ability with few modifications. Appendix A provides

the formal definition and methods to compute ecd in optimal settings.
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7.1.2 Solving GRD Using Different Approaches

Son et al., 2016 use Answer Set Programming (ASP) instead of planning to solve the

problem, providing faster algorithms. However, they only consider the initial assumptions,

i.e., deterministic outcomes, full observability, and optimal actors. Harman and Simoens,

2019 use action graphs to solve GRD problems in human-inhabited environments. One

difficulty is that removing actions in these settings can be expensive or not feasible; thus, the

authors propose a new type of modification that consists of replacing actions. For instance,

moving items to another cupboard in a kitchen can help if each goal requires opening different

cabinets. The authors also provided a measure that considers the average (instead of the

worst) distinctiveness. This new measure is a particular case of ecd.

7.1.3 Plan Recognition Design

Plan recognition design (PRD) (Mirsky et al., 2017) is an extension of GRD where the

objective shifts to recognize plans instead of goals and uses plan libraries instead of inverse

planning. The paper also proposes the use of hierarchical plans to solve GRD (GRD-PL).

The authors show that the wcd used in GRD-PL is a lower bound of the analogous measure

for PRD. The design component removes rules from the plans; in hierarchical planning, a

rule represents how a complex action can decompose to a sequence of other atomic actions.
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The work in (S-)GRD and PRD use design to reduce ambiguous behavior, which is a significant

problem for goal and plan recognition. The next section reviews work with ambiguity as one

of its main components.

7.2 Ambiguity

One of the most critical problems of goal recognition is ambiguity; it confuses AI recognizers

and people (Bonchek-Dokow and Kaminka, 2014). Unlike GRD, other techniques do not

change the environment but the agent’s behavior. For instance, Dragan et al., 2013 proposes

methods to generate legible motion autonomously. Legible behavior helps an observer infer

the agent’s goal quickly, and it could even imply deviating from an optimal behavior purposely.

Under the current assumptions, GRD does not increase the original cost to reach a goal but

forces the agent to prune non-legible plans.

Agents can likewise modify their behavior with the opposite purpose, that is, to obfuscate

their goal and deceive the observer (Masters and Sardina, 2017b). When we deal with

adversarial goal recognition, it is logical to presume a deceptive agent. However, the observer

could also use deception to its advantage. Basak et al., 2019 propose to design a cybersecurity

domain to detect the type (goals, capabilities, and strategies) of an intruder or attacker. The

paper uses game theory to deploy honeypots strategically, and by doing so, deceive and force

the attacker to reveal its kind. They analyze three scenarios where attackers have different
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goals or skills to take advantage of system vulnerabilities. This problem could use techniques

very similar to GRD as an alternative approach.

Researchers also studied the ambiguity caused by partial observability (of an observer) as

a tool to signal friendly observers and misguide adversarial ones simultaneously. Kulkarni,

Srivastava, et al., 2020 use legible behavior to convey an agent’s goal to a cooperative observer

while hiding it from adversaries. Presumably, this requires a balance between legibility and

obfuscation. The authors leverage that observers may have different degrees of observability

and propose methods to optimize the necessary trade-offs.

7.3 Design

This section considers design as fixed changes to the original environment that accelerate

attaining a specific objective without significantly affecting acting agents’ performance.

Zhang and Parkes, 2008, Zhang, Y. Chen, et al., 2009, and Zhang, 2012 proposed a general

model of computational environment design which contains most elements of (S-)GRD except

for the set of goals. Environment design as defined in their work is the same as ours, where a

designer performs a limited amount of modifications in an environment to induce a desirable

behavior in acting agents. Zhang and Parkes, 2008 focus on modifying the reward on a limited

number of states to teach the agent a policy that maximizes an observer’s utility. That is, the

designer aims to find incentives that cause an agent to follow a specific behavior. The authors

consider both cases where the agent’s reward function is known and also where it is not. The
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first case produces an offline design problem. In the second case, they use online observations

of the modified behavior to learn the reward function through preference elicitation and

generate future modifications. Zhang, Y. Chen, et al., 2009 formally proposes a general

model of environment design for one agent and one observer or designer. Similar to previous

work, they analyze both static and dynamic formulation. The agent’s model parameters are

partially unknown initially and provide an improved algorithm with logarithmic convergence

for the dynamic case. (S-)GRD falls under the umbrella of computational environment design,

specifically in the static case.

Reward shaping in reinforcement learning (RL) could be regarded as environmental design

since it looks for ways to modify a reward function to improve an agent’s learning rate.

Specifically, it alters the reward function by supplying rewards to guide an RL agent’s

learning process. While the intention was to accelerate the learning process, researchers

found that changing the reward function might cause the agent to learn locally optimal

policies, originating unwanted or unexpected behavior. Ng et al., 1999 studies the conditions

under which reward shaping of an MDP does not deviate an agent from an optimal policy.

The first problematic case analyzed is when the values added to the reward functions create

infinite-reward cycles, in which case the agent decides to stay in the loop forever. A solution

is to use potential-based shaping functions since the difference of state potentials is 0 for

infinite loops. As it turns out, this is a necessary and sufficient condition to guarantee optimal

behavior. Potential functions should use as much domain knowledge as possible.
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Environment design is also related to mechanism design problems (Jackson, 2014). In

mechanism design, modifications are equivalent to sets of game rules chosen to achieve desired

outcomes (for the greater good) when agents are self-interested and possibly hide information.

The collection of rules or selected mechanism affects agents’ interaction. (S-)GRD may be

considered a simple case of mechanism design since at least one legal policy is still valid after

modifications, which implies that the agent selects its best option and a modified model

may improve an observer’s conditions. Considerations like hidden parameters and agent

interaction lead to extensions for the S-GRD framework.

Keren, Pineda, et al., 2017 proposed the design of stochastic environments to maximize utility.

In this case, both the agent and system share the same utility function and operate in a

stochastic environment. In GRD, however, the agent’s utility function is tied to the objective

to reach its goal, while the system’s utility models aim to minimize the goal recognition time.

Researchers also applied environmental design in deterministic domains to facilitate human-

robot interaction. Recent approaches to improving human-robot collaboration require robots

to exhibit interpretable behavior (Chakraborti et al., 2019), that is, behavior that aligns

with people’s expectations. Alternatively, the robot could explain its actions. However,

generating this type of behavior or an explanation could be costly or impossible in certain

situations. Kulkarni, Sreedharan, et al., 2020 propose to use design optimization as an offline

tool to reduce the complexity of generating explicable behavior. Their approach is applicable

in structured environments where robots perform repetitive tasks.
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Additionally, the observer is always the same human, and the cost of modifications significantly

overcomes the overhead of explicable performance. The authors further consider that after a

certain number of repetitive behavior, a person will get used to it, and the behavior’s degree

of interpretability will increase. Therefore, the objective is to minimize both the cost incurred

by the changes and explainable behavior in a fixed amount of time.

Finally, research in social laws for artificial agents (Shoham and Tennenholtz, 1992) studies

the offline design of rules that modify an existing environment to improve the coordination of

agents in artificial social systems. Multi-agent systems require a type of coordination so that

each agent can achieve their goal without interfering with each other. Centralized control

is useful when there are relatively few agents, and they all trust a central entity. Different

distributed approaches require communication and coordination between agents, which can

become a bottleneck in crowded environments. Social laws are mechanisms that can minimize

or eliminate the need for communication between agents by restricting their behaviors. The

objective of the problem is to search in the space of social laws and find a social law that,

given the social multi-agent system, will induce a system where every agent is always able

to move between two given focal states independently of other agents’ actions. Social laws

reduce the acting agents’ policies, resembling action removal in (S-)GRD problems. After the

design, agents should have enough freedom to achieve their goals without interfering with

others’.

Nir et al., 2020 use planning to synthesize robust social laws, that is, social laws that allow

all agents to reach their goals without interfering others’ actions (Karpas et al., 2017). Like
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the design phase of (S-)GRD problems, a sequence of small modifications is applied to the

original multi-agent setting looking for a robust social law or exhausting all possible changes.

The authors use action removal as modifications, and the set of removed actions describe a

social law.
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Chapter 8

Conclusions and Future Work

“There is no real ending.

It’s just the place where you stop the story.”

– Frank Herbert

Recognizing or inferring an agent’s actual goal from observing its behavior is an essential skill

in multi-agent environments where intelligent agents, either humans or AI, need to interact.

The complexity of the task depends on the degree of ambiguous behavior observed. Goal

recognition design (GRD) uses design optimization to reduce goal recognition’s complexity by

minimizing the ambiguity of a problem. Solving a GRD problem implies selecting a measure

to evaluate the original model and finding the minimal set of modifications to the model that

will optimize the adopted measure. Traditionally, GRD assesses the model quality using the
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worst-case distinctiveness (wcd), a measure representing the largest path an acting agent can

take without revealing its real goal. The seminal work on GRD (Keren, A. Gal, et al., 2014)

made three assumptions: (1) Acting agents are optimal, (2) Observers and acting agents

have full observability, and (3) Agent action outcomes are deterministic.

This dissertation analyzes the consequences of relaxing the initial GRD assumptions and

extends the GRD framework to work in stochastic environments where the agent action out-

comes are stochastic. We proposed the stochastic goal recognition design (S-GRD) framework

supporting settings with different assumptions regarding the acting agent’s optimality and

the degree of observer’s perception.

The S-GRD framework is better suited to model problems of the physical world where most

interactions are inherently stochastic. For example, intelligent agents (robots) are prone to

have stochastic action outcomes even if their behavior is optimal. Further, sensor limitation

affects the observer. For instance, in agent navigation cases, it is more likely that an observer

perceives states (the action outcomes) instead of actions. Additionally, some contiguous

states may be difficult to distinguish due to sensor resolution. Finally, in most real situations,

optimal behavior is not possible. However, agents, in general, try to behave rationally.

Therefore, considering some degree of suboptimality can arguably produce better design

solutions.

The list of factors analyzed in the previous paragraph influenced the assumptions of all

supported models. Concretely, S-GRD considers four settings: (1) The Optimal S-GRD
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(OS-GRD), where the acting agent is optimal, and both the observer and agent have full

observability. (2) The Partially-Observable S-GRD (POS-GRD) model, where the observer

cannot perceive actions and states are only partially observable, whereas the agent has full

observability and is optimal. (3) The Suboptimal S-GRD (SS-GRD) problem, with suboptimal

but rational agents and a fully observable model. (4) The Partially-Observable Suboptimal

S-GRD (POSS-GRD), a model that combines POS-GRD and SS-GRD assumptions.

We observed that the main difference from deterministic settings is that the set of candidate

goals at any given state depends on the observed trajectory used to reach it, which conditions

the methods to compute wcd in a given scenario. The principal algorithmic tasks comprise the

computation of wcd under all different assumptions and its reduction using two environment

modifications: action removal and sensor refinement. Sensor refinement is a novel modification

type applicable to partially-observable settings.

A naïve approach to compute wcd requires evaluating the non-distinctive (ambiguous) prefix

of every legal policy and finding the maximum. We offered algorithms that avoid policy

enumeration in optimal settings and reduce the number of evaluations when policy enumeration

is unavoidable. Optimizing the value of wcd is modeled as a search problem in the space

of modifications. Our algorithms prune the search space using heuristics based on the

modifications’ properties and taking advantage of the data structures used to compute the

original wcd.
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The empirical evaluation shows the benefits of algorithm optimization and the usefulness

of S-GRD. Optimized versions outperform the naïve approach in 100% of the cases, with

differences of up to six orders of magnitude. While generating legal policies with a high

number of suboptimal actions is not possible, the approach of policy enumeration seems to

effectively prune the search space for the design stage. If we assume a given set of “ probable”

policies for a determined agent, we could use that information to improve the design phase in

a similar way of our PE approach with more scalable results. Overall, our S-GRD framework

seems useful decreasing the complexity of stochastic GR problems by reducing the wcd in

many cases. For the instances used in our experiments, wcd reduced at least in 28% of the

cases and at most in 87%.

There are different directions of future work. For instance, using different measures to evaluate

the GR problem, similar to the expected-case distinctiveness (ecd) (Subsection 7.1.1, p. 172).

An alternative/complementary measure could use entropy to assess the information produced

when an agent executes an action that discards some candidate goals. The redesigned model

should allow higher information-gain policies, and it could serve to break ties among policies

with the same non-distinctive expected cost. Defining a measure that does not consider

the history but only the current state and its relation with the start state and possible

goals could benefit settings with suboptimal agents, e.g., analyzing policy suffixes instead of

prefixes (Masters, 2019).

Assuming that various kinds of agents could act in the environment, a designer can prioritize

types and consider modifications that benefit some groups and harm others. If agents have
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different reward functions, skills (available actions), or resources, some changes could have

different impacts. Modifying other components of the model, such as the reward function,

could lead to interesting results. For example, reducing the cost of distinctive trajectories

under a budget or changing the start state’s number or position.

Considering other assumptions such as dynamic environments or incomplete agents (or

environment) models also pose new challenges. Since the problem’s complexity increases

with the number of relaxed assumptions, it would be interesting to investigate approximate

solutions in real-world scenarios. One case of particular interest is assuming that one of the

interested parties is human. In that case, accounting for different cost functions is critical as

they reflect their preferences and biases. Estimating mutual influence is also relevant in this

context, even if there is no direct interaction. Active goal recognition, where the observer

actively modifies the environment (and updates the human model), is more appropriate when

considering a human acting agent.
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Appendix A

Alternative Evaluation Measure for

S-GRD

S-GRD problems use design optimization to improve goal recognition. Like any other

optimization problem, S-GRD requires an evaluation criterion to select the best design. In

Chapter 4, we (re)defined the worst-case distinctiveness (wcd) measure, first introduced

by Keren, A. Gal, et al., 2014, to assess stochastic GR problems. While wcd is an ingenious

metric, focusing on an ambiguous policy with the highest expected cost may disregard other

variables important for an observer. In this appendix, we propose methods to compute the

expected-case distinctiveness (ecd), a measure that could replace or complement wcd.
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A.1 Expected-Case Distinctiveness (ecd)

A.1.1 Model

Definition 21. Given that the expected distinctiveness ED(π̂) of a partial policy π̂ is the

expected distinctiveness cost of its trajectories,
∑

~τ Pπ̂(~τ)DC(~τ) (Definition 17, p. 55).

The expected case distinctiveness of a stochastic GR problem P is:

ecd(P ) =
∑
π̂∈ΠG

Pr(π̂)ED(π̂)

where Pr(π̂) =
1

Z

∑
g∈G(π̂)

Pr(g)Pr(EDπ̂)

Z =
∑
π̂∈ΠG

∑
g∈G(π̂)

Pr(g)Pr(EDπ̂)

(A.1)

Pr(g) is the weight of goal g that could model the prior of the agent or a preference given by

an observer. Pr(EDπ̂) is the preference an actor may have over available policies based on

their expected distinctiveness cost. Z is the normalization constant such that
∑

π̂∈ΠG

Pr(π̂) = 1

Intuitively, Eq. A.1 associates a probability Pr(π̂) to each non-distinctive policy based on the

number of satisfied goals as well as the probabilities of those goals being the true goal. Note

that in case of a uniform prior distribution, Pr(π̂) favors trajectories common to a higher

number of goals.

Theorem 4. ecd(P ) ≤ wcd(P )
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Proof. wcd is the maximum expected distinctiveness among all legal policies, while ecd is the

average expected distinctiveness over those policies. Therefore, ecd(P ) ≤ wcd(P ) �

Corollary 6. If there is exactly one policy in the augmented MDP, then ecd(P ) = wcd(P ).

A.1.2 Computing ecd

From the analysis in Chapter 4, finding non-distinctive policies in a stochastic GR problem

requires to account for all candidate goals (as opposed to pairs of goals in deterministic GR

problems). Additionally, the set of possible goals at a given state s is not Markovian as

it depends on the trajectory that reaches s. Therefore, we compute the ecd of an optimal

setting of the S-GRD framework using the appropriate augmented MDP (Subsections 4.1.3,

p. 64 and 4.2.1, p. 83). By Lemma 6 (Chapter 4, p. 87), the expected distinctiveness cost of

a partial policy value is equal to the expected cost from a policy in the augmented MDP.

In general, we can determine the ecd value of a stochastic GR problem P using:

ecd(P ) =
∑

π̂∈Πaug

Pr(π̂)Vπ̂(s
′
0) (A.2)

Vπ̂(s
′) =

∑
s′′∈S

T (s′, π̂(s′), s′′)
[
C ′(s′, π̂(s′), s′′) + Vπ̂(s

′′)
]

(A.3)

where Πaug is the set of non-distinctive policies (Definition 16, p. 53), Pr(π̂) is the probability

of policy π̂, s′0 = s0 · 〈T . . . T 〉 is the augmented initial state, s′ = s · 〈pos1 . . . posn〉 is an
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augmented state, and Vπ̂(s
′
0) is the expected cost for s′0 with augmented policy π̂ computed

recursively using Eq. A.3.

Lemma 6 (p. 87) guarantees the existence of an augmented policy in Πaug with the same

expected cost as a non-distinctive policy of a partially-observable stochastic GR problem.

We use Lemma 19 below to make the same guarantee for OS-GRD models.

Lemma 19. Let π′ be any policy for the augmented MDP Πaug defined in Chapter 4 (Sub-

section 4.3.2, p. 109) and define the non-distinctive partial policy π̂ for P by:

π̂(s) =



a π′(s′) = a ∀s′ ∈ S′ : w(s′) = s

∧ ∀s′s ∈ S′ : T ′(s′, π′(s′), s′s) > 0

⊥ otherwise

(A.4)

Then Vπ′(s0) = ED(π̂), that is, the expected value of policy π′ in Πaug at s0 is equal to the

expected distinctiveness of π̂ in P .

Proof. Let Sπ̂ be the set of states reached by any non-distinctive trajectory of π̂ and Sπ′ the set

of reachable states using augmented policy π′. By Definition 17, the expected distinctiveness

of a non-distinctive policy π̂ is its expected cost. From Eq. A.4, π̂ starts at s0 = w(s′0) and

ends at states sn = w(s′n) | ∃s′s ∈ S′ : T ′(s′n, π
′(s′n), s

′
s) = 0, which are the predecessors of
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distinctive states. Therefore, ED(π̂) = Vπ̂(s0), where:

Vπ̂(s) =


0 if π̂(s) = ⊥

∑
ss∈Sπ̂

T (s, a, ss)
[
Co(s, a, ss) + Vπ̂(ss)

]
Otherwise

(A.5)

By Eq. 3.9 (p. 55), the expected distinctiveness will not include costs of non distinctive

trajectories. Hence, Eq. A.5 considers only successors reachable by non-distinctive trajectories.

On the other hand, Vπ′(s′0) can be evaluated using:

Vπ′(s′) =


0 if s′ ∈ G′

∑
s′s∈S′ T (s′, a, s′s)

[
C ′(s′, a, s′s) + Vπ′(s′s)

]
Otherwise

(A.6)

By construction of the augmented MDP, ∀s′, s′s ∈ S′,∃s, ss ∈ Sπ̂ : s = w(s′) ∧ ss =

w(s′s) ∧ T (s′, a, s′s) = T (s, a, ss) ∧ C ′(s′, a, s′s) = Co(s, a, ss). If s′ ∈ S′ is not reachable using

π′, then s = w(s′) 6∈ Sπ̂, that is, s is not part of any non-distinctive trajectory, nor is the

action reaching s. Therefore, Eqs. A.5 and A.6 provide the same values for all states s ∈ Sπ̂

and s′ ∈ Sπ′ . Hence, Vπ̂(s0) = ED(π̂) = Vπ′(s′0). �
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A.1.3 Computing ecd for Optimal Settings

We use a TVI-like algorithm, on an augmented MDP constructed using Algorithm 1 or 2,

with a Bellman-like update defined as:

ecd(P ) = V (s′0) (A.7)

V (s′) =
∑
π∈ΠG

∑
s′′∈S′

Pr(π(s
′))T ′(s′, π(s′), s′′)

[
C ′(s′, π(s′), s′′) + V (s′′)

]
(A.8)

Pr(π(s
′)) =

1

Z

∑
gi∈G(π(s′))

Pr(g) (A.9)

Z =
∑
π∈ΠG

∑
g∈G(π(s′))

Pr(g) (A.10)

where Pr(g) > 0 is the probability of the agent choosing goal g that satisfies action π(s′), and

Z is the normalization constant such that
∑

π(s′)|π∈ΠG
Pr(π(s

′)) = 1.
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