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ABSTRACT OF THE DISSERTATION
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Constraint-based models offer powerful approaches for describing and resolving many combi-
natorial optimization problems in a centralized or distributed environment. In such models,
the goal is to find a value assignment to a set of variables given a set of preferences expressed
by means of cost functions such that the sum over all costs is optimized. The importance
of constraint-based models is outlined by the impact of their applications in a wide range
of agent-based systems. Many real-life combinatorial problems can be naturally formalized
using constraint-based models. Examples of such applications are supply-chain management,
roster scheduling, meeting scheduling, combinatorial auctions, bioinformatics, and smart

home automation.

The majority of these constraint-based models assume that all constraint costs are specified or
known a priori. Unfortunately, such an assumption is impractical, especially in many human-
in-the-loop applications, such as scheduling problems where constraints encode the preferences
of human users. These constraints may not be fully specified because it is unrealistic to

accurately know the preferences of users for all possible scenarios in an application. These

xi



constraint costs are only known after they are queried or elicited from domain experts or

human users.

This dissertation proposes solutions for further improving the applicability of constraint-
based models. These solutions aim for better formalizing and solving optimization problems,
requiring human interactions to address the above limitation. Our core contributions are

listed as follows:

We begin by introducing the uncertain constraint-based model that represents the uncertainty
in users’ preferences (i.e., constraint costs) as Gaussian distributions. To solve such a
constraint-based model with uncertainty, we propose probabilistic heuristics that select a
subset of constraints to elicit and choose those that significantly impact the overall solution
quality. The elicitation of these preferences occurs prior to the execution of the search

algorithm for an optimal solution.

Human users are likely bothered by repeated elicitations and will refuse to provide an
unbounded number of preferences. Hence, as our next contribution, we propose the incomplete
weighted constraint satisfaction problems with elicitation costs (IWCSPs+EC) that takes
into consideration how much users are bothered by queries. To solve IWCSPs+EC, we
offer three parameterized heuristics that allow users to trade off solution quality for fewer
elicited preferences and faster computation times. Further, they provide theoretical quality

guarantees for problems where elicitations are free.

Finally, we extend IWCSPs to distributed problems and introduce incomplete distributed
constraint optimization problems (I-DCOPs). To solve I-DCOPs, we propose an extended
version of SyncBB — a complete search algorithm — with two parameterized heuristics. These
heuristics interleave the elicitation process with the search for an optimal solution. Our

proposed heuristics for SyncBB allow users to trade off solution quality for fewer elicited

xii



preferences and faster computation times. To improve the scalability of our proposed
framework, we offer an extended version of ALS-MGM - a local search algorithm — which
can solve much larger I-DCOPs. Local search algorithms are computationally much faster
and provide sub-optimal or close to optimal solutions. The number of elicited preferences is
significantly smaller than SyncBB with heuristics, and its solution quality is not far from

optimal.

We apply our proposed model to smart home device scheduling and distributed meeting
scheduling applications with partial users’ preferences. The empirical results show the
significance of our contributions against random methods and the previous state-of-the-art
approaches. Our models and heuristics thus extend the state-of-the-art in constraint reasoning

to better model and solve agent-based applications with user preferences.
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Chapter 1

Introduction

Centralized Constraint Satisfaction Problems (CSPs) [3, 19, 44, 135] and its variant Weighted
Constraint Satisfaction Problems (WCSPs) [47, 56, 59], as well as its decentralized variant
Distributed Constraint Optimization Problems (DCOPs) [14, 137, 145], are powerful paradigms
for formulating many combinatorial and optimization problems. WCSPs are also known as
Constraint Optimization Problems (COPs). When resources are distributed among a set of
autonomous agents, COPs take the form of DCOPs, which are used to model cooperative
combinatorial optimization problems. In this dissertation, we refer to these paradigms as

“Constraint-Based Models”

The Constraint-Based Models are mathematical paradigms defined as a set of objects whose
states must satisfy a number of constraints or limitations. Such models typically represent
the entities in a problem as a homogeneous collection of finite constraints over (decision)
variables. In Chapter 2, we will describe each of these frameworks formally in more details. In
classical CSPs, the objective is to find a value assignment for a set of variables that satisfies a

set of constraints. The assignments satisfying the constraints are called solutions. In WCSPs



and DCOPs, the objective is to find an optimal solution, given a set of preferences expressed
through cost functions [6, 101, 102]. And often, in these models, constraints can encode
human users’ preferences. Consequently, constraint costs corresponds to preferences that can

be estimated from historical data or queried from domain experts or human users.

The importance of constraint-based models is outlined by the impact of their applications in
a wide range of agent-based systems. Many real-life combinatorial problems can be naturally
modeled using constraint-based models. It is just a matter of identifying the decision variables
of the problem and how they are related. Typically the relations between the decision variables
are described in the form of constraints. For example, there might be as many variables as
tasks in a scheduling problem, each specifying its starting time, and constraints can model the
relations among the tasks, such as “the beginning of task 2 must occur after the end of task 1.”
Similar models have been designed for many agent-based applications such as supply-chain
management [34, 95], roster scheduling [1, 11}, meeting scheduling [69], combinatorial auctions

[99], bioinformatics [2, 12, 28], and smart home automation [31, 52, 98, 120].

A key drawback of these constraint-based models is the assumption that all the constraint
costs are specified or known a priori. For instance, in several applications (e.g., a scheduling
problem), some constraints encode the preferences of human users. Such constraints may not
be fully specified because it is unrealistic to accurately know the preferences of users for all
possible scenarios in an application. These constraint costs are only known after they are
queried or elicited from domain experts or human users. Preference elicitation is crucial in
such situations, which is a process of asking questions about the users’ preferences. This
process allows users to intelligently interact with the constraint-based solver (i.e., resolution
algorithms) without being forced to state all their constraints, or preferences, at the beginning

of the interaction. More specifically, preference elicitation is more pronounced in scenarios



where the users want to avoid revealing all of their preferences at the beginning of the

interaction due to privacy and security [52, 117, 119] reasons.

Such an assumption in constraint-based models restrains their capabilities to model and solve
many combinatorial optimization problems in a centralized or decentralized manner. In this
dissertation, to address this limitation, we investigate two approaches for eliciting constraint
costs or preferences in constraint-based models. In the first approach, the elicitation process
occurs before executing an algorithm to solve the underlying constraint-based problem.
In the second approach, the elicitation process occurs while executing an algorithm to
solve the underlying constraint-based problem. Researchers have partially investigated the
latter by introducing new formulations for CSPs, which allow a set of constraints to be
unspecified. Gelain et al. proposed the Incomplete WCSP (IWCSP) formulation [35], which
extends WCSPs by allowing some constraints to be partially specified (i.e., the costs for some
constraints are unknown). To solve IWCSPs; they introduced a series of algorithms that
interleave a resolution algorithm’s search process with the elicitation process. The search
process seeks to find a good solution, while the preference elicitation process seeks to obtain

some subset of cost functions from the user.

Despite the fact that the proposed models and resolution algorithms by Gelain et al. address
the key drawback of the CSP models, it suffers from another assumption — they assume that
the elicitation of preferences does not incur any cost. This assumption is not realistic as human
users are likely bothered by repeated elicitations and will refuse to provide an unbounded
number of preferences. In the next sections, we propose models and resolution algorithms
that not only address this assumption but also tackle the key drawback in constraint-based

models.



1.1 Hypotheses

Our interests lie in improving the practical applicability of constraint-based models to better
model applications that involve users’ preferences so that constraint-based models can be
used to model a more general class of applications. In the previous section, we discussed the
key drawback of constraint-based models and their limitations. To adequately address this

drawback in constraint-based models, we hypothesize that:

One can improve the applicability of constraint-based models by developing new
formulations where constraint costs can be uncertain or unknown and applying
elicitation strategies to constraint-based algorithms to solve such models.

As mentioned earlier, this dissertation’s focus is on elicitation strategies in constraint-based
models. Hence, we first classify elicitation approaches into “pre-execution” and “intra-
execution” elicitation categories. Then, within each category, we discuss how to extend the
constraint-based models when constraint costs are uncertain or unknown in a centralized or

distributed manner.

1. Pre-execution elicitation approach:
We decouple the elicitation process and the algorithm to solve the constraint-based
model. As such, the elicitation process happens before solving the constraint-based
model problem. The elicitation strategies can be applied to both centralized and
decentralized constraint-based models in this approach: WCSPs/COPs and DCOPs.
We hypothesize that: One can allow all constraint costs of a constraint-based model
(i.e., centralized or decentralized) to be uncertain and assume that random variables

represent them following Normal distributions. Then, one can employ probabilistic



strategies to identify the constraints that highly affect the solution quality and realize
the remaining from their corresponding distributions. Since the actual constraint costs
are not retrieved from the users, we assume that the realization of constraints does not
incur any penalty (e.g., any cognitive cost that represents how much a user is annoyed

by those queries).

. Intra-execution elicitation approach:

We interleave the elicitation process and the algorithm to solve the constraint-based
model. As such, the elicitation process happens while executing the algorithm to
retrieve the actual constraint costs from the users needed to compute the problem’s
solution quality. To make the model realistic for a broader class of applications, we
associate a penalty (e.g., cognitive cost) for eliciting a constraint cost and incorporate
it in the solution quality. Typically, the algorithms to solve constraint-based problems
modeled in a centralized manner are independent and different from constraint-based
problems modeled in a decentralized manner. Consequently, the elicitation strategies
applied to centralized algorithms differ from those applied to decentralized algorithms.
Therefore, we carry out our investigation for centralized and decentralized approaches

separately:

e On the centralized approach, Gelain et al. extend WCSPs by allowing some con-
straint costs/preferences to be partially specified (i.e., the costs/preferences for some
constraints are unknown) [35] (i.e., IWCSPs). However, it is unrealistic to assume
the costs of elicitation of all unknown constraints are identical. To address this
assumption, we hypothesize that: One can extend IWCSPs by associating costs to
the elicitation of the unknown constraints. We assume that elicitation costs are not

uniform. Then, to solve IWCSPs with elicitation costs, one can develop resolution



algorithms that interleave the elicitation process with search strategies to optimize
both constraint and elicitation costs.

e On the decentralized approach, we hypothesize that: One can extend DCOPs
by allowing some constraint costs/preferences to be partially specified (i.e., the
costs/preferences for some constraints are unknown) and associating costs to the
elicitation of the unknown constraints. We assume that elicitation costs are not
uniform. Then, to solve such incomplete DCOPs one can develop resolution algorithms
that interleave elicitation process with distributed search strategies to optimize both

constraint and elicitation costs.

1.2 Contributions

Constraint-based models have been well-studied since their perception and can model a wide
range of combinatorial and optimization problems. However, still, some assumptions restrain
their practical applicabilities. One of the critical drawbacks in constraint-based models is the
assumption that almost all the constraints are specified or known a priori, which does not
hold in many applications, for instance, in a meeting scheduling problem, where constraints
encode human users’ preferences. It is unrealistic to accurately know users’ preferences for
all possible scenarios in such a scheduling problem. These constraint costs or preferences
are only known after being queried or elicited from domain experts or users. Thus, in this
dissertation, we address this limitation using the approaches discussed in Section 1.1. Our

contributions are outlined as follows:

1. To assess the hypothesis that allows all constraint costs of a constraint-based model (i.e.,
centralized or decentralized models) to be uncertain and employ Normal distributions

to represent the uncertainty of the constraint costs, we introduce the “Uncertain



DCOPs/COPs” framework [107, 109]. The uncertain DCOP framework extends DCOPs
where constraint costs are uncertain and represented as random variables following
Normal distributions. To solve uncertain DCOPs, we develop heuristics to execute
the preference elicitation prior to the search for an optimal solution of a DCOP. As
the proposed heuristics are performed before searching for an optimal solution, we
reside the proposed constraint-based model and its heuristics in the pre-execution
elicitation approach category. The proposed elicitation strategies can be applied to
both COPs and DCOPs since they are independent of their underlying resolution
algorithms. We introduce an expected error as the evaluation metric. The expected
error is the absolute difference between the solution quality of an oracle DCOP and
an uncertain DCOP that only reveals a limited number of constraints. Our heuristics
aim at minimizing the expected error by eliciting the constraints that highly affect the
solution quality. To evaluate the significance of our heuristics, we carry out extensive
experiments using multiple benchmarks such as random graphs and smart home device
scheduling problems. The results of our experiments indicate that the expected error
decreases with increasing the number of elicited constraints. Furthermore, by analyzing
these results, we validate our hypothesis that one can allow the constraint costs to be
uncertain and develop strategies to only reveal the constraints that highly affect the

solution quality of the underlying constraint-based model.

. To assess the hypotheses that one can allow some constraint costs to be partially
specified in the constraint-based models and develop resolution algorithms to solve
the constraint-based models with unknown constraints, we introduce the following

frameworks:

e Gelain et al. introduced the incomplete WCSP (IWCSP) framework, which extends

WCSPs by allowing some of the constraint costs to be partially specified [35]. To



solve IWCSPs, they proposed several resolution algorithms by interleaving elicitation
with the search for an optimal solution. Even though their work addressed the key
drawback of WCSPs — constraints are specified a priori — they assumed that eliciting
constraints costs from human users do not incur any cognitive costs. Human users
often get annoyed by an unlimited number of queries and interactions of the system
with users. Therefore, they may hesitate to provide their actual feedback/preferences.
To address this limitation, we assume that the eliciting constraint costs from users
incur some cognitive costs that we refer to them as “elicitation costs” (i.e., abbreviated
as EC) in this dissertation. More specifically, we introduced the “IWCSPs+EC”
framework in which we associate penalties (i.e., elicitation costs) for eliciting the
unknown constraint costs [106, 114]. We propose heuristics in conjunction with a
variant of the depth-first search algorithm for WCSPs. Our proposed search algorithm
embodies elicitation strategies and incorporates the elicitation costs into the solution
quality.

Consequently, the proposed resolution algorithm finds the best possible solution
that minimizes both the constraint and elicitation costs when elicitation costs are
non-zero. We also parameterize our algorithm such that it takes in a user-defined
threshold to tradeoff solution quality for fewer elicitations and faster runtimes. Thus,
the solution quality can be bounded from above by the user-defined threshold. We
carry out extensive experiments using multiple benchmarks such as random graphs
and smart grids to evaluate the significance of the algorithm. Our experimental
results indicate that the proposed algorithm can find the optimal solution when
elicitation costs are zero eliciting only necessary constraints. When elicitation costs
are non-zero, our algorithm can guarantee solution optimality. These results validate

our hypothesis that one can allow the constraint costs to be partially specified and



develop elicitation strategies to reveal the constraint costs required to find the best
solution with smaller elicitation costs.

We introduce the incomplete DCOP (I-DCOP) framework, which extends DCOPs
by allowing some of the constraint costs to be partially specified [111, 134]. Similar
to IWCSP+EC, we associate penalties for eliciting the unknown constraint costs.
We propose heuristics in conjunction with a distributed branch-and-bound complete
search algorithm for DCOPs. Our proposed algorithm embodies elicitation strategies
and incorporates the elicitation costs into the solution quality.

Consequently, the proposed resolution algorithm finds the best possible solution
that minimizes both the constraint and elicitation costs (assuming elicitation costs
are non-zero). In addition to the proposed distributed complete search algorithm
to solve I-DCOPs, we combine elicitation strategies with an anytime local search
algorithm. Our extended version of the anytime local search algorithm can solve
larger scale -DCOP problems and provide sub-optimal solutions to minimize both
constraint and elicitation costs. We also parameterize our algorithms such that it
takes in a user-defined threshold to tradeoff solution quality for fewer elicitations
and faster runtimes. Thus, the solution quality provided by these algorithms can be
bounded from above by a user-defined threshold. We carry out extensive experiments
in multiple benchmarks such as random graphs and meeting scheduling problems
to evaluate the significance of our algorithms. The experimental results indicate
that our distributed branch-and-bound algorithm can find the optimal solution when
elicitation costs are zero (i.e., elicitation is free), only elicits those constraint costs
that are required to find the optimal solution. Thus, when elicitation is free, the
proposed complete search algorithm can guarantee solution optimality. Additionally
our proposed distributed local search algorithm provides sub-optimal solutions and

using its anytime property it improves the solution quality at every iteration. These



results validate our hypothesis that one can allow the constraint costs to be partially
specified in a distributed environment and develop elicitation strategies to explicitly

reveal the constraint costs required to find the best solution.

In the frameworks mentioned above (in a centralized and decentralized environment), we
interleave search with elicitation. Thus elicitation occurs during the execution of a resolution
algorithm. We reside the proposed centralized and decentralized constraint-based models and
their resolution algorithms in the intra-execution elicitation approach category. Since the
above frameworks are entirely independent of each other despite being in the same category,

we dedicate a complete chapter to each framework.

10
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Figure 1.1: Structure of Contributions in this Dissertation

1.3 Dissertation Structure

This dissertation is the result of collaborating with other researchers and most of the work of
this dissertation has been published in peer-reviewed conferences. We structured it as follows:
In the next chapter, we give an overview of the centralized and decentralized/distributed
constraint-based models such as CSPs, WCSPs, and DCOPs, respectively. In the same
chapter, we briefly introduce some of the resolution algorithms of centralized and decentralized
frameworks. Figure 1.1 shows the structure of this dissertation. The x-axis corresponds to
the elicitation approach that is divided into pre-execution and intra-execution categories. The
y-axis corresponds to the constraint-based models that are divided into two main categories
of centralized and distributed approaches. In what follows, we will detail the original work,

with references to those previous publications, and explain the contributions of each author.

o Chapter 3: The work in this chapter appears in

11



M. Tabakhi, A., Le, T., Fioretto, F., and Yeoh, W., Preference elicitation for
DCOPs. In Proceedings of the International Conference on Principles and
Practice of Constraint Programming (CP), 2017.

Yeoh proposed the idea of the Uncertain DCOP model. Fioretto, Le, and Tabakhi
proposed several elicitation heuristics to solve the uncertain model. Tabakhi and
Fioretto modeled Smart Home Device Scheduling (SHDS) using DCOPs. Tabakhi
developed, evaluated the model along with its heuristics, and conducted experiments
under different benchmarks of random graphs and SHDS graphs. Yeoh, Fioretto,

Tabakhi, and Le collaboratively wrote the paper.

o Chapter 4: The work in this chapter appears in

M. Tabakhi, A., Yeoh, W., and Yokoo, M., Parameterized Heuristics for
Incomplete Weighted CSPs with Elicitation Costs. In Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems

(AAMAS), 2019.

The idea of the Incomplete WCSPs+EC model was conceived by Tabakhi and Yeoh
originally. Yeoh and Yokoo proposed the use of the depth-first search technique to
solve the incomplete model. Then, Tabakhi and Yeoh iteratively proposed heuristics to
enhance the performance of the algorithm. Tabakhi developed the model, resolution
algorithm, elicitation heuristics and conducted the experiments under different bench-
marks of random graphs and SHDS graphs. Most of the paper was written by Yeoh,

and Tabakhi added the heuristic and experimental sections to the paper.

o Chapter 5: The work in this chapter appears as short papers in

Xiao, Y., M. Tabakhi, A., and Yeoh, W., Embedding Preference Elicitation
Within the Search for DCOP Solutions. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2020.

12



Tabakhi proposed the idea of the Incomplete DCOP (I-DCOP) model. Yeoh and
Tabakhi iteratively proposed two distributed heuristics to improve the performance of the
synchronous branch-and-bound distributed algorithm. Xiao and Tabakhi collaboratively
developed synchronous branch-and-bound with two heuristics. Tabakhi conducted the
experiments under different benchmarks of random graphs and meeting scheduling

graphs. Tabakhi and Yeoh collaboratively wrote the paper.

M. Tabakhi, A., Xiao, Y., Yeoh, W., and Zivan, R., Branch-and-Bound
Heuristics for Incomplete DCOPs. In Proceedings of the International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS), 2021.

Later, Tabakhi proposed a distributed local search algorithm to solve I-DCOPs and
Zivan proposed applying anytime local search framework for each agent to keep track
of the state of the best solution found so far. Tabakhi proposed the heuristics for
enhancing the algorithm. Tabakhi and Xiao collaboratively developed the local search
algorithm. Tabakhi conducted experiments under different benchmarks of random
graphs and meeting scheduling graphs. Most of the paper was written by Tabakhi and
revised by Yeoh. The complete version of this work has yet to be published, and the
candidate intends to submit the work at the International Conference on Distributed

Artificial Intelligence (DAI), 2022.

Chapter 6: We discuss potential future directions and briefly mention our collaborative
work that are not part of this dissertation but part of the future work, which can be

further extended and improved. Our collaborative work appears in:

Le, T., M. Tabakhi, A., Long, T., Yeoh, W., and Son, T., Preference
Elicitation with Interdependency and User Bother Cost. In Proceedings of

the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 2018.
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Long, Yeoh, and Son proposed the idea of preference elicitation using the matrix
completion technique. Le proposed the use of convex optimization, developed the
algorithm. Tabakhi and Le proposed applying the model on an open-source dataset in
the domain of smart grids. Le and Tabakhi collaboratively conducted the experiments
under random graphs and smart grids benchmarks. Tabakhi prepared the dataset to
be used in experimental evaluations. Long, Yeoh, Le, Son, and Tabakhi collaboratively

wrote the paper.

M. Tabakhi, Yeoh, W., and Fioretto, F., The Smart Appliance Scheduling
Problem: A Bayesian Optimization Approach. In Proceedings of the In-
ternational Conference on Principles and Practice of Multi-Agent Systems
(PRIMA), 2020.

The idea behind this work was proposed by Yeoh and Fioretto primarily and later
on revised by Tabakhi. Tabakhi modeled the Smart Appliance Scheduling Problem
using CSPs and proposed several acquisition functions for Bayesian optimization.
Tabakhi implemented the idea, developed tailored acquisition functions, and conducted
experimental evaluations. The paper is mainly written by Tabakhi and revised by Yeoh

and Fioretto.
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Chapter 2

Background

This chapter provides an overview of several constraint-based models, their definitions, and
the relation among these models. We provide an overview of different existing resolution
algorithms to solve such constraint-based models. As some of these existing algorithms are
the starting platforms for the work in this dissertation, we provide detailed descriptions
along with examples. Figure 2.1 illustrates the relations among the constraint-based models.
In addition, we explain the meaning of preferences and elicitation in the context of this

dissertation and clarify all the assumptions of our contributions.

2.1 Weighted Constraint Satisfaction Problems

Constraint Satisfaction Problems (CSPs): Centralized CSPs [44, 96] are decision
problems that assign values to variables under a set of pre-specified constraints. The set
of constraints defines how variables should be related to each other. CSPs have been well

studied in artificial intelligence [21]. CSPs can formulate and model a number of combinatorial
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Figure 2.1: Relation Among the Constraint-Based Models

problems, including scheduling, vehicle routing, and resource allocation problems.

A CSP is formally defined as a tuple P = (X, D, F), where:

o X ={xy,...,2,}, is a set of finite variables.

e D={D,...,D,} is a set of finite domains for each variable x; € X', with D, being the
set of possible values for z;.

o F =A{f1,..., fm} is a set of m constraints, restricting the values that the variables can
take simultaneously. A constraint f;, defined over k variables x;i,...,zj;, is a relation
fi ©X5, Dj., where {j1,..., 5k} € {1,...,n}. The set of variables x5 = {2;1,..., 7.} is
referred to as the scope of f;. If k = 1, then f; is called a unary constraint, and if k = 2,
then f; is called a binary constraint, otherwise f; is called k-ary constraint. The number

of variables involved in f; is called the constraint’s arity.

A partial assignment is a value assignment for a proper subset of variables that must be
consistent with their respective domains. A value assignment is defined as a partial function

o: X — U, D; such that, for each z; € X, if o(z;) is defined, then o(z;) € D;. An
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Figure 2.2: Example of a Weighted CSP

assignment is complete if it assigns a value to all variables in X'. In a CSP, the objective is to
find a complete solution o such that, for each f; € F, o s, satisfies all the constraints. Such

a complete assignment is called a solution of the CSP.

As mentioned above, a solution of a CSP must satisfy all of its constraints. However, it
is desirable to consider complete assignments whose constraints can be violated in many
real-world scenarios, according to a violation/satisfaction degree. The Weighted Constraint
Satisfaction Problem (WCSP) [59, 102] was introduced to capture this property. WCSPs
are problems whose constraints represent preferences that specify the extent of violation (or

satisfaction) of the corresponding constraints.
A WCSP is defined as a tuple P = (X, D, F), where:

o X ={zy,...,x,} is a finite set of variables.

e D={Dy,...,D,} is a set of finite domains for the variables in X', with D; being the set
of possible values for the variable z;.

o F={f1,..., [m} is aset of weighted constraints (or cost tables). Each weighted constraint
is a function f; : X, cxri Dj — RFU{L}, where x/i C X is the set of variables relevant to f;,
referred to as the scope of f;, and L is a special element denoting that a given combination

of value assignments is not allowed.
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A solution o is a value assignment to a set of variables x, C X that is consistent with the
variables’ domains. The cost Fp(X,) = > ;o7 ircy, f(Xo) is the sum of the costs of all the
applicable cost functions in x,. A solution o is said to be complete if x, = X and is a partial
solution otherwise. The goal is to find an optimal complete solution x* = argmin, Fp(x).
Figure 2.2 illustrates a WCSP example. Typically, the problem is visualized as a constraint

graph shown in Figure 2.2(a) and the constraints are specified in constraint tables shown in

Figure 2.2(b).

As shown in Figure 2.1, a WCSP is a generalization of a CSP which can be seen as a
WCSP whose constraints utilize the costs 0 and L. A WCSP is also known as a Constraint

Optimization Problem (COP). These terms are often used interchangeably in the literature.

2.1.1 Algorithms

As the field of classical CSPs has become mature, researchers have proposed many different
resolution algorithms to solve CSPs and WCSPs. In order to find solutions for a CSP
and its variant WCSPs, we generally need to conduct some form of search. There are
multiple categories of algorithms that can be mainly classified into two groups: Complete
and incomplete algorithms. The complete algorithms can guarantee the optimal solution or
determine unsolvability, while incomplete algorithms are often faster as they trade optimality
for shorter execution time and only provide sub-optimal solutions. As representatives of the
class of complete algorithms, we can name the Bucket Elimination algorithm [20] and the
Depth-First Branch-and-Bound algorithm [71]. As representatives of the class of incomplete
algorithms, we can name the Weighted Arc Consistency algorithm [60] and a local search
algorithm called the Tabu algorithm [36, 77]. To provide a brief overview, we describe one

algorithm from each category that are used to solve WCSPs/COPs.
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Figure 2.3: The Search Tree with Labeled Nodes

Depth-First Branch-and-Bound Algorithm:

In complete search algorithms, the state space of the problem is explored as a tree which is
called the search tree. The search tree consists of a set of nodes and edges connecting the
nodes. Each node represents a subproblem. The root node represents the whole problem.
Node successors are produced by selecting an unassigned variable and generating as many
successors as the number of values in the domain of the corresponding variable. Each edge
connecting a node to its successor is labeled with one of the values in the domain, which
is now assigned to the selected variable. Each path from the root node to any node in the
search tree represents an assignment of values to variables. Figure 2.3 is the state space of
the WCSP in Figure 2.2(a) and represents the search tree, where levels 1, 2, and 3 correspond
to variables x1, zo, and x3, respectively, and all nodes are labeled. Left branches correspond
to the variable being assigned the value 0, and right branches correspond to the variable

being assigned the value 1.

Depth-First Branch-and-Bound Algorithm (DFBnB) performs a depth-first traversal of the
search tree. It keeps two bounds — lower bound (Ib) and upper bound (ub) — during the search.
At any node n, [b(n) is an underestimate of the total constraint costs (violation degree) of
any complete assignment. And wub is the cost of the best complete assignment so far. When

Ib(n) > ub, the subtree rooted at node n can be pruned because it contains no solution with
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a cost less than ub. If it finds a complete assignment with a cost less than ub, it updates the
ub with the new cost. After exhausting the search tree, the algorithm returns the solution
and the most updated ub. The time complexity of the DFBnB algorithm is O(d"), where
n is the number of variables and d is the maximum number of values in the domain. The
space complexity of the algorithm is O(nd). The efficiency of DFBnB depends largely on its
pruning capacity, which relies on the quality of its bounds: the higher the Ib and the lower
the ub, the better DFBnB performs since it does more pruning, exploring a smaller part of

the search tree. Many efforts have been made to improve (that is, to increase) the lower

bound [44].

Figure 2.4 shows a simplified execution trace of DFBnB, where the search starts by assigning
the value 0 to the variables first. The shaded nodes are the expanded nodes meaning that
the corresponding variable is already assigned a value. The ub is updated after finding a
complete assignment at the end of each leaf node. The DFBnB algorithm finds the optimal
solution at step 7 and prunes subtrees rooted at k, [, m, and ¢g. The optimal solution is when
r1 =0, xo = 1, and z3 = 0, with the minimum constraint cost of 22. In this example, we
imposed a value ordering for the variables, such that the value 0 is assigned first. However,
this value ordering might not be the most efficient approach. Thus, choosing a different value

ordering as well as a variable ordering will change the performance of the algorithm.

Tabu Local Search Algorithm:

The key idea behind a local search is to start from an initial search position where all variables
in a WCSP are assigned a value randomly. This variable assignment might be sub-optimal
and to improve this assignment iteratively the algorithm makes use of minor modification.
In each step, the search process moves to a position selected from the local neighborhood
based on a heuristic evaluation function. This iterative process continues until a termination

criterion is satisfied. This termination criterion is usually the fact that a solution is found or
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Figure 2.4: Simplified Execution Trace of DFBnB
a predefined number of iterations/steps is reached. In almost all local search algorithms some
form of randomization is used to avoid any stagnation of the search process. Tubu is one of
the variants of the Breakout algorithm [36, 77|, where the search history is used to make the
remaining search process more efficient. Typically, the tabu search is combined with random
moves to improve the search and avoid stagnation. Hence, the Tabu search algorithm takes
in two parameters: p, that is the probability of the random moves and ¢, that is the tabu
tenure parameter. When there is a need to choose a variable to re-assign, the variable will be
chosen randomly with probability p or, with probability (1 — p). We perform the above local
search procedure. When all new assignments in the neighborhood are worse than or equal to
the current one, this implies no improving move is possible. In such situation, the chosen

variable is marked as tabu and will not be used for t steps.

We take the WCSP example in Figure 2.2 and run the tabu local search for 3 steps. As the

initial step, we start off the algorithm with a random assignment of values to all variables
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which is when 1 = 0, 9 = 0, and x3 = 1 with the cost of 65 which is not the optimal
solution. In the first iteration, the algorithm chooses the variable with the smallest partial
cost among all other neighboring variables and change its current value to the new value in
its domain that makes the solution cost to be smaller. In this example, the algorithm chooses
Zo, and changes its current value 0 to value 1. With the new value assignment, the new
improved solution is 1 = 0, x5 = 1, and z3 = 1 with the cost of 62. In the next iteration,
the algorithm continues the above procedure and chooses z3 and changes its current value
1 to the new value 0. Thus, the new improved solution is 1 = 0, xo = 1, and x3 = 0 with
the cost of 22. The algorithm continues and move to the next variable to change its value,
however, there is no improving solution, and in the next iteration, the algorithm terminates
as its reaches 3 iterations. The final solution is z; = 0, 29 = 1, and x3 = 0 with the cost of

22. For this simple algorithm, we set p = 1, t = 0, and the number of steps to 3 iterations.

2.2 Distributed Constraint Optimization Problems

When elements of a CSP are distributed among a set of autonomous agents, the resulting
model takes the form of a Distributed Constraint Satisfaction Problem (DisCSP) [140, 141]. As
shown in Figure 2.1, DisCSPs can be seen as an extension of CSPs where agents communicate
with each other to take on values for their variables that satisfy all constraints. A DisCSP is
also defined as a tuple (A, X, D, F), where X, D, and F are exactly the same as in a CSP;
A = {ay,...,a,} is the set of finite agents; and finally a : X — A is a mapping function
that associates each variable to one or more than agents. The goal in a DisCSP is to find a

complete assignment that satisfies all the constraints of the problem.

Similar to the generalization of CSPs to WCSPs (COPs), the Distributed Constraint Opti-

mization Problem (DCOP) model [76, 86, 139] emerges as a generalization of DisCSPs, where
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constraints specify a degree of preference over their violation, rather than a Boolean satisfac-
tion metric. DCOPs can be seen as an extension of COPs, where agents control variables
and coordinate with each other to take on values for their variables so as to optimize a global

objective function. The DCOP framework is formally defined as a tuple (A, X, D, F,«),

where:
o A={ay,...,a,}, is a set of agents.
o X ={zy,...,x,}, is a finite set of variables, with n > p.

e D={D,...,D,} is a set of finite domains for each variable x; € X', with D, being the
set of possible values for ;.

o F={f1,...,fm} is a set of m constraints, with f;, being defined over a set of variables
fi =11, € XD, — RU{L}, and L is a special element denoting that a given combination
of value assignments is not allowed. Similar to WCSP, x/i C X is the set of variables
relevant to f;, referred to as the scope of f;. The arity of a constraint function is the
number of variables in its scope.

e a: X — Ais a mapping function associates each variable to one agent.

A solution o is a value assignment for a set x, C X’ of variables that is consistent with their
respective domains. The cost F(X,) = D~ ez 7oy, f(X5) is the sum of the costs across all the
applicable constraints in x, . A solution ¢ is a complete solution if x, = X and is a partial

solution otherwise. The goal is to find an optimal complete solution x* = argmin, F(x).

Representation of DCOPs:

Typically in the DCOP framework, the problem representation plays a key role from an
agent coordination perspective as well as an algorithmic perspective [29]. We start with
describing some widely adopted assumptions in this framework regarding agent knowledge

and coordination, typically in a DCOP; it is assumed that:
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Figure 2.5: Example of a DCOP

Each agent /variable knows constraint costs values involving at least one of its local variables
a priori.

A variable and its domain are solely known to the agent controlling it and its neighboring

agents.

Each agent /variable solely communicates with its own neighboring agents.

It is assumed that communication [94, 118] between all pairs of agents are identical [108] .

This assumption of a priori knowledge on constraint costs — each agent/variable knows
constraint costs values involving at least one of its local variables a priori — are common in

centralized constraint-based models such as WCSPs/COPs.

As mentioned in previous sections, one of the common ways to represents a DCOP as well as
other centralized and decentralized constraint-based models explained earlier in this chapter
is to use a graphical representation, called constraint graph, to visualize a DCOP (or any
other constraint-based model such as CSP, WCSP, and DisCSP). In such a representation,
nodes in the graph correspond to variables in the DCOP and edges connect pairs of variables

appearing in the same constraint.

A constraint graph shown in Figure 2.5(a) visualizes a DCOP, where nodes in the graph
correspond to variables in the DCOP and edges connect pairs of variables appearing in

the same constraint. The constraint tables are shown in Figure 2.5(c). In the rest of this
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dissertation, for the sake of simplicity of the examples, we assume that each agent controls

exactly one variable and thus use the terms “agent” and “variable” interchangeably.

Several DCOP algorithms require a partial ordering among the agents. When such an order
is derived from a depth-first search (DFS) exploration, the resulting structure is known as a
(DFS) pseudo-tree. A pseudo-tree arrangement has the same nodes as the constraint graph
and includes all the edges of the constraint graph. The edges in the pseudo-tree are divided
into tree edges, which connect parent-child nodes and all together form a rooted tree, and
backedges, which connect a node with its pseudo-parents and pseudo-children. Finally, two
variables that are constrained together in the constraint graph must appear in the same
branch of the pseudo-tree. When the pseudo-tree has only a single branch, it is called a
pseudo-chain. One can also view a pseudo-chain as a complete ordering of all the variables in a
DCOP, which is used by a number of DCOP algorithms. Figure 2.5(b) shows the pseudo-tree

(pseudo-chain) of the DCOP example.
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2.2.1 Algorithms

The field of DCOP has matured significantly over the past decade since its inception [76].
DCOP researchers have proposed a wide variety of solution approaches which can be classified
into two categories namely complete and incomplete resolution algorithms. Complete DCOP
algorithms find cost-minimal solutions while incomplete DCOP algorithms are often faster and
more scalable to larger problems but they usually find suboptimal solutions. As representatives
of the class of complete DCOP algorithms we can name synchronous branch-and-bound
(SyncBB) [48] and asynchronous forward bounding (AFB) [38]. As representatives of the class
of incomplete DCOP algorithms we can name Max-Sum [27] and Maximum Gain Message
(MGM) [69]. Figure 2.6 illustrates the relationship of DCOP search algorithms to other
algorithms and their categories. To provide a brief overview, we describe one algorithm from

each category that are used to solve DCOPs.

Synchronous Branch-and-Bound Algorithm:

The Synchronous Branch-and-Bound (SyncBB) [48] is a complete, synchronous, search-based
algorithm that can be considered as a distributed version of a depth-first branch-and-bound
algorithm. It uses a complete ordering of the agents to extend a Current Partial Assignment
(CPA) via a synchronous communication process. The CPA holds the assignments of all the
variables controlled by all the visited agents, and, in addition, functions as a mechanism to
propagate bound information. The algorithm prunes those parts of the search space whose
solution quality is sub-optimal by exploiting the bounds that are updated at each step of the
algorithm. In other words, an agent backtracks when the cost of its CPA is no smaller than
the cost of the best complete solution found so far. The algorithm terminates when the root

backtracks (i.e., the algorithm has explored or pruned the entire search space).
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SyncBB agents perform O(d™) number of operations since the lowest priority agent needs
to enumerate through all possible value combinations for all variables, where d is the size
of the largest domain, and n is the number of agents/variables. The memory requirement
per SyncBB agent is O(n) since the lowest priority agent stores the value assignment of all
problem variables. The number of messages that are exchanged between agents is O(d"™). The
communication model of SyncBB depends on the given agents’ complete ordering. Therefore,

agents may communicate with non-neighboring agents.

We take the DCOP example in Figure 2.5 and show a simplified execution trace of SyncBB.
The operation of SyncBB is visualized with search trees. Let us use Figure 2.3 and label each
node of the search tree with an identifier so that we can refer to them easily below. The root
agent a; first expands node a followed by node b. This is done when it assigns its variable
the value 0. It then sends a CPA with this value assignment and the cost of this CPA (= 0)
to its child a,. Upon receipt of the message, agent as needs to decide whether to expand
nodes d or e, which correspond to assigning its variable x5 the values 0 or 1, respectively.
Agent ay should expand the node with the smaller cost and fi(z; = 0,29 = 1) = 11 is the
smaller cost after expanding node e. It sends a CPA with this value assignment and the cost
of this CPA(= 11) to its child az. Upon receipt of this message, agent az needs to decide
whether to expand nodes j or k. Using the same rationale as above, agent a3 expands node j
and fi(z1 =0,29 =1) =11 and fo(x; = 0,23 =0) =4 and f3(z2 = 1,23 = 0) = 7 with cost
of 22, since the cost of the solution is smaller than the upper bound, it updates the upper
bound to 22. Then, it evaluates node k whether it should be expanded or pruned. Since the
cost of node k is no smaller than the upper bound, agent a3 prunes this node and backtracks
to its parent as by sending a BACKTRACK message that contains its best complete solution,
assignments and CPA. Upon receipt of the BACKTRACK message, agent a, updates its

CPA based on the cost received in the message. Agent as now can expand node d as the cost
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is smaller than the solution found so far, it sends its CPA and its updated upper bound to its
child a3, and prunes the branches as the cost of the solution is no smaller than the cost of the
solution found so far. Continuing the same rationale above, subtrees rooted at nodes [, m,
and ¢ are also pruned from the search space as their costs are larger than the upper bound.
Finally, the algorithm terminates after exhausting the search space and pruning branches.

The optimal solution is 1 = 0, x5 = 1, and x3 = 0 with the minimum cost 22.

Maximum Gain Message Algorithm:

The Maximum Gain Message (MGM) algorithm [69] is an incomplete, synchronous, search-
based algorithm that performs a distributed local search. Each agent starts by assigning a
random value to each of its variables. Then, it sends this information to all its neighbors.
Upon receiving the values of its neighbors, it calculates the maximum gain (i.e., the maximum
decrease in cost) if it changes its value and sends this information to all its neighbors. Upon
receiving the gains of its neighbors, the agent changes its value if its gain is the largest among
those of its neighbors. This process repeats until a termination condition is met. MGM

provides no quality guarantees on the returned solution.

MGM agents perform O(ld) number of operations in each iteration, as each agent needs to
compute the cost for each of its values by taking into account the values of all its neighbors,
where [ is the largest number of neighboring agents and d is the size of the largest domain.
MGM is anytime since agents only change their values when they have a non-negative gain.
The memory requirement per MGM agent is O(l). Each agent needs to store the values of all
its neighboring agents. In terms of communication requirements, each MGM agent sends O(()
messages, one to each of its neighboring agents. Thus, the total number of messages sent
across all agents is O(¢nl), where ¢ is the number of iterations performed by the algorithm.

Each message is of constant size O(1) as it contains either the agent’s current value or the
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agent’s current gain. Finally, the agents communicate exclusively with their neighboring

agents.

Anytime Local Search Algorithms:

An algorithm is said anytime if it can return a valid solution even if the DCOP agents are
interrupted at any time before the algorithm terminates. Anytime algorithms are expected to
seek for solutions of increasing quality as they keep running. Local search DCOP algorithms
(e.g., MGM, DSA) [68, 143] are synchronous iterative processes, where, in each step of the
algorithm, each agent sends its value assignment to all its neighbors in the constraint graph
and waits to receive the value assignments of all its neighbors before deciding whether to
change its value. In local search algorithms, agents are only aware of the cost of their own
assignments and their neighbors’ assignments. Therefore, no agent knows when a globally
good solution is found. The Anytime Local Search (ALS) framework [146] enhances the local
search algorithms by allowing them to detect when a globally better solution is found and
return that solution upon termination (i.e., the anytime property). It uses a Breadth-First
Search spanning tree (BFS-tree) of the constraint graph to aggregate costs up the tree to
the root agent such that it is able to detect when a better solution is found. When such a
solution is found, the root agent propagates the step number in which that solution is found
down to its descendants. Therefore, upon termination, all the agents have a consistent view

on when the best solution is found and take on their corresponding values.

Taking our example DCOP in Figure 2.5, we use the anytime property in MGM algorithm to
provide a simple execution trace of our MGM local search algorithm. The BFS-tree is similar
to its constraint graph shown in Figure 2.5(a), when z; is the root, and the height of the tree
is 1. The height and distance parameters in x, and x3 are initialized to h = 0 and d = 1,
respectively. Let’s assume that all agents choose value 1 for their variables and we only run

the algorithm for one step. In the initialization step of the algorithm, all agents have already
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selected a value for their variables randomly. In this step, agent a3 assigns its variable x5 the
value 1 and receives the values of its neighbors (z3 = 1) and parent (z; = 1) and calculates

the cost of this partial assignment fo(z; = 1,23 =1) + f3(xze = 1,23 =1) = 16

Agent a3 also calculates the value of improvement (loss) by checking if variable x3 changes
its value to 0 assuming all neighbors keep their current values. The total cost of this
change is fo(z1 = 1,23 = 0) + f3(xo = 1,23 = 0) = 15. The gain at this step for agent
ag is 16 — 15 = 1. Similarly, in agent as, the total cost of the partial assignment is
fi(xy = 1,29 = 1)+ f3(xe = 1,23 = 1) = 36. The total estimated cost for agent a, changing
to a new value is fi(z1 = 1,29 = 0) + f3(za = 0,23 = 1) = 26 and the gain is 36 — 26 = 10.
The root agent a; calculates the cost of its assignment based on the information received
from its children (at the initial step, the costs received from children are still 0). The total
cost of the assignment fi(xq = 1,29 = 1) + fo(21 = 1,23 = 1) = 40. The total estimated cost
for agent a; changing to a new value is fi(z1 = 0,29 = 1) + fo(x; = 0,23 = 1) = 2.5, and

the loss 40 — 56 = —16.

Each agent sends messages to its neighboring agents, the value message agents send to their
parent and children includes the cost calculation. Thus, in the next step of the algorithm
the root agent has received the cost calculation from its children and can calculate the cost
of a complete assignment fi(zy = 1,20 = 1)+ fo(x; = L,z3 =1) + f3(2za = 1,23 = 1) = 46.
Since the calculated cost is smaller than initial value that we initially set to oo, the root
agent saves the information for this assignment as the best one found so far. In this step,
all agents have received the best index from the root agent, where the best cost found so
far is 46. If we increase the number of iterations, the algorithm may find a better solution,

however, finding the optimal solution even for this simple example is not guaranteed.
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2.3 Preferences and Preference Elicitation

As mentioned earlier, constraint-based models are promising frameworks for formalizing many
problems, such as scheduling, planning, and resource allocations. Such problems are often
represented by a set of variables, their domains, and constraints. A solution of the problem
is an assignment to all the variables in their domains such that all constraints are satisfied.
Preferences or cost functions have been used to extend the formalism of constraint satisfaction
models and allow for the modeling of constraint optimization rather than satisfaction problems.
In such frameworks, the data (variables, domains, and constraints) are presumed to be known
before the solving process starts. With the increasing use of agent-based applications, many
of such applications demand for the formalization and handling of data that is only partially
known or specified, when the solving process works, and that can be added later, for instance
through elicitation [130, 131] or estimation from historical data. In many multi-agent settings,
it occurs that multiple agents may hide their data due to privacy reasons and only be released

if needed by resolution algorithms to find a solution to the problem.

Gelain et al. address this issue by focusing on constraint optimization problems while seeking
an optimal solution. They introduced the Incomplete Weighted Constraint Satisfaction
Problems (IWCSPs) model, where constraints are replaced by soft constraints, in which each
assignment to the variables of the constraint has an associated preference coming from a
preference set [6]. We assume that variables, domains, and constraint topology are given
initially, while the preferences are partially specified and are elicited during the solving process.
The proposed model is effective in scenarios where one regards the fact that quantitative
preferences, needed in soft constraints, may be difficult and tedious to provide for a user. In
other scenarios, where one regards multi-agent settings, that agents agree on the structures

of the problem but they may provide their preferences on different parts of the problem
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at different times. Finally, some preferences can be initially hidden due to several privacy

reasons.

IWCSPs allow for some preferences to be unspecified. In this setting, it is assumed that users
may know all the preferences but are willing to reveal only some of them at the beginning.
Even though some of the preferences can be missing, it could still be feasible to find an
optimal solution, and if it is not, some of the missing preferences are elicited from users.
They introduced two notions of optimal solution: possibly optimal solutions are assignments
to all the variables that are optimal in at least one way in which the currently unspecified
references can be revealed. Necessarily optimal solutions are assignments to all the variables
that are optimal in all ways in which the currently unspecified preferences can be revealed.
The proposed notions are taken from multi-agent preference aggregation [58,; 89, 90], where,
in the context of voting theory, some preferences are missing, but still, one would like to

declare a winner.

There are some lines of work that are closer to work By Gelain et al. in terms of addressing
similar issues such as Open CSPs [26] and Interactive CSPs [57], where domains are partially
specified. An Open CSP is a possibly unbounded, partially ordered set of constraint satisfac-
tion problems, each containing at least one more domain value than its predecessor. The
goal is to solve larger and larger problems until a solution is found. An interactive CSP is a
Dynamic CSP [67], where variables, domains, and constraints may change over time. The
interactive CSPs can be seen as a particular case of both dynamic and open CSPs with the
goal of minimizing the run time of the solver. These works are different from IWCSPs, and
this dissertation’s work as variable values are assumed to be known from the beginning, while
some of the preferences might be missing or uncertain. Open CSPs exploit a monotonicity
assumption that each agent provides variable values in a strictly non-decreasing order of

preference. Even when there are no preferences, each agent gives only variable values that are
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feasible. Since the agent that provides new values/costs for a variable must know the bounds
on the remaining possible costs, this is not desirable in the setting where bound computation

is costly or time-consuming.

An example of another approach for elicitation in incomplete CSPs is the one presented in [8],
where the user provides a classical CSP and a partially unknown utility function over its
solutions. The system then performs elicitation queries to select a specific utility function by
a regret-based technique. The elicitation is used to ease the computation of the minimax
regret function. More specifically, the elicitation considers bounds on the parameters of the
utility function. Moreover, quasi-optimal decisions may be obtained since often they require
much less effort than finding optimal ones. This approach is different from the work of this
dissertation and the work by Gelain et al. since the preferences are explicitly elicited or

estimated.

The work in this dissertation employs constraint-based frameworks to model real-world
combinatorial optimization problems. In constraint-based models, cost functions express
preferences or degree of satisfaction/violation of the constraints. Preferences can be qualitative
or quantitative. There are some lines of work on qualitative preferences. For example,
Conditional-Preference Networks (CP-nets) [7, 97] also lie in this category. CP-nets are a
graphical representation model for qualitative preferences and reflect conditional dependencies
between sets of preference statements. In contrast, IWCSPs focus more on the notion of
conditional additive independence [4], which requires that the cost of an outcome be the sum

of the “costs” of the different variable values of the outcome.

Cost functions represent the soft constraints in our constraint-based models. We later refer to
these constraint costs as preferences and use constraint costs and preferences interchangeably

in the remainder of this dissertation. In the context of this dissertation, we only concern
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quantitative preferences. Such quantitative preferences in the context of this work can be
estimated from historical data or elicited from domain experts or human users. Preference

elicitation is the process of asking questions about the preferences of users or domain experts.

As mentioned in Chapter 1, one of the limitations of constraint-based models is that all
preferences must be specified or know a priori, which is unrealistic to accurately know the
preferences for all possible scenarios in an application. To address this limitation, Chapter 4
extends IWCSPs, proposed IWCSPs+EC, which associates penalties to the elicitation of
missing preferences to represent how much users are bothered by queries. Chapter 3 and 5
introduce uncertain and incomplete constraint-based models, where constraint costs are
uncertain and partially specified, respectively. Such costs/preferences must be elicited from
domain experts or estimated from historical data. In these chapters, as we introduce models
in a distributed manner and multi-agent scenarios, we assume all agents are truthful and
cooperative. Therefore, each agent is acting to help its neighboring agents solve the problem

to minimize the cost over all constraints and consequently achieve an optimal solution.

While our contributions assume truthful agents in a cooperative environment, agents might
lie about their preferences and try to game the system in the real world. There is much work
on designing protocols and mechanisms so that agents will be truthful and not game the
system [17, 65, 82]. For example, Vickrey-Clarke-Groves (VCG) schemes [16, 42, 127] provide
a method for charging agents so that each is motivated to tell the truth about its preferences.
Studying the game-theoretic and mechanism design perspective of motivating agents to be

truthful is out of the scope of this dissertation.

As people increasingly rely on interactive systems to make decisions on their behalf, building
effective interfaces for such systems becomes challenging due to the initial incomplete users’

preferences and users’ cognitive costs. How to accurately elicit users’ preferences has become
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the main concern of some of such decision making systems [15]. Within the last decades,
researchers have studied the preference elicitation problem in different fields of research from
various perspectives: starting from the traditional utility function elicitation [9, 132] and
CP-nets [55, 97] to preferences clustering and matching [23, 144] as well as collaborative
filtering in recommendation systems [51, 85]. In this dissertation, we only address preference
elicitation from the traditional utility function elicitation perspective and leave other aspects
to the future, as they are out of the scope of this dissertation’s work. Later, in Sections 3.6, 4.6,
and 5.6, we discuss the research work that is more closely related to our work in detail and

clarify the similarities and differences.
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Chapter 3

Pre-execution Elicitation Approach in

Constraint-Based Models

To address the key drawback in constraint-based models, we assume that constraint costs
(i.e., preferences) are uncertain, in this chapter. Thus, we extend the constraint-based models
under the assumption that preferences are unknown and represented by Normal distributions.
Prior to solving such constraint-based models, we propose strategies for eliciting unknown
preferences. This chapter introduces the uncertain constraint-based models and preference
elicitation strategies to reveal a subset of constraint costs. In what follows, we briefly introduce
the intuition behind our model and motivate our approach with a real-world application.
Finally, we will discuss our model, elicitation heuristic strategies, and our evaluation analyzes

in more detail.
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3.1 Introduction

The importance of constraint optimization is outlined by the impact of its application in
a range of Weighted Constraint Satisfaction Problems (WCSPs), also known as Constraint
Optimization Problems (COPs), such as supply chain management [95] and roster scheduling
[1]. When resources are distributed among a set of autonomous agents and communication
among the agents are restricted, COPs take the form of Distributed Constraint Optimization
Problems (DCOPs) [29, 76, 86, 139]. In this context, agents coordinate their value assignments
to minimize the overall sum of resulting constraint costs. DCOPs are suitable to model
problems that are distributed in nature and where a collection of agents attempts to optimize
a global objective within the confines of localized communication. They have been employed
to model various distributed optimization problems, such as meeting scheduling [136, 146],

sensor networks [27], coalition formation [123], and smart grids [72, 73, 113].

The field of DCOP has matured significantly over the past decade since its inception [76].
DCOP researchers have proposed a wide variety of solution approaches, from complete
approaches that use distributed search-based techniques [76, 78, 136] to distributed inference-
based techniques [86, 128]. There is also a significant body of work on incomplete methods
that can be similarly categorized into local search-based methods [27, 68], inference-based
techniques [128], and sampling-based methods [30, 80, 83]. Researchers have also proposed the
use of other off-the-shelf solvers such as logic programming solvers [61, 62] and mixed-integer

programming solvers [46].

One of the core limitations of all these approaches is that they assume that the constraint
costs in a DCOP are known a priori. Unfortunately, in some application domains, these costs
are only known after they are queried or elicited from experts or users in the domain. One

such application is the Smart Home Device Scheduling (SHDS) problem [31]. In this problem,
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agents have to coordinate with each other to schedule smart devices (e.g., smart thermostats,
smart lightbulbs, smart washers, etc.) distributed across a network of smart homes. The goal
is to schedule these devices to optimize the preferences of occupants in those homes subject
to a larger constraint that the peak energy demand in the network does not exceed an energy
utility defined limit. By introducing several smart devices in the commercial market, they
are becoming ubiquitous in today’s very interconnected environment, consistent with the
Internet-of-Things paradigm [74]. Therefore, we suspect that this SHDS problem will become

more important in the future.

DCOPs are a natural framework to represent this problem as each home can be represented
as an agent, and occupants’ preferences can be represented as constraints. Furthermore, due
to privacy reasons, it is preferred that the preferences of each occupant are not revealed to
other occupants. The DCOP formulation allows the preservation of such privacy since agents
are only aware of constraints that they are involved in. We further describe this motivating

application and its mapping to DCOPs in more detail in Section 5.2.

A priori knowledge on the constraint costs is infeasible in our motivating SHDS application.
A key challenge is thus in the elicitation of users’ preferences to populate the constraint cost
tables. Due to the infeasibility of eliciting preferences to populate all preferences, in this
chapter, we introduce the uncertain constraint-based models namely uncertain COPs and
uncertain DCOPs. Uncertain constraint-based models study how to select a subset of k cost
tables to elicit from each agent intending to choose those constraints that have a significant
impact on the overall solution quality. We propose several methods to select this subset of
cost tables to elicit, based on the notion of partial orderings. We extend the SHDS problem
modeled with the uncertain DCOP to allow for the encoding and elicitation of soft preferences.
Moreover, we evaluate our methods on this extended SHDS problem and on random graphs

to show generality. Our results illustrate the effectiveness of our approach in contrast to a
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baseline evaluator that randomly selects cost tables to elicit. While the description of our

solution focuses on DCOPs, our framework is also suitable to solve WCSPs/COPs.

3.2 Motivation

To motive our work and the need for introducing uncertain constraint-based models, let us
first describe our motivating application domain, the Smart Home Device Scheduling (SHDS)
problem [31], in this section. An SHDS problem is composed of a neighborhood H of smart
homes h; € H that are able to communicate with one another and whose energy demands
are served by an energy provider. The energy prices are set according to a real-time pricing
schema specified at regular intervals ¢ within a finite time horizon H. We use T = {1,..., H}
to denote the set of time intervals and 6 : T — R™ to represent the price function associated
with the pricing schema adopted, which expresses the cost per kWh of energy consumed by a

consumer.

Within each smart home h;, there is a set of (smart) electric devices Z; networked together
and controlled by a home automation system. We assume all the devices are uninterruptible
(i.e., they cannot be stopped once they are started) and use s, and d.; to denote, respectively,
the start time and duration (expressed in multiples of time intervals) of device z; € Z;. The
energy consumption of each device z; is p.; kWh for each hour that it is on. It will not
consume any energy if it is off. We use the indicator function ¢ij to indicate the state of the

device z; at time step t:

1if s, <tAs, +0, >t
’ 0 otherwise
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Additionally, the usage of a device z; is characterized by a cost, representing the monetary
expense to schedule z; at a given time. The aggregated cost of the home h; at time step ¢ is

denoted with C! and expressed as:
Cl=E!-0(t) (3.1)

where Ef = sze z qﬁ‘;j - pz; 1s the aggregated energy consumed by home h; at time step .

The SHDS problem seeks a schedule for the devices of each home in the neighborhood in
a coordinated fashion to minimize the monetary costs and, at the same time, ensure that
user-defined scheduling constraints (called active scheduling rules in [31]) are satisfied. The

SHDS problem is also subject to the following constraints:

1< Sz, <T-— 5zj Vh; € H, zj € Z; (32)
> ¢l =0, Vhi € ",z € Z; (3.3)
teT
d El </ VteT (3.4)
h;€H

where /! € RT is the maximum allowed total energy consumed by all the homes in the
neighborhood at time step t. This constraint is typically imposed by the energy provider and
is adopted to guarantee reliable electricity delivery. Constraint (3.2) expresses the lower and
upper bounds for the start time associated to the schedule of each device. Constraint (3.3)
ensures the devices are scheduled and executed for exactly their duration time. Constraint (3.4)
ensures the total amount of energy consumed by the homes in the neighborhood does not

exceed the maximum allowed threshold.

Fioretto et al. introduced a mapping of the SHDS problem to a DCOP [31]. At a high level,

each home h; € H is mapped to an autonomous agent in the DCOP. For each home, the start
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Figure 3.1: Smart Home Device Scheduling [lustration
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times s, indicator variables ¢tzj, and aggregated energy in the home are mapped to DCOP
variables, which are controlled by the agent for that home. Constraints (3.2) to (3.4) are
enforced by the DCOP constraints. Finally, the objective function of the SHDS is expressed

through agents’ preferences.

Figure 3.1 (a) provides an illustration of a network of smart home, Figure 3.1 (b) demonstrates
a set of smart devices Z; controlled within a smart home h;, and Figure 3.1 (c¢) shows an
example of discomfort values (top) and costs (bottom) for a schedule of the devices Z; within

home h;.

Encoding and Eliciting Preferences in SHDS: The above SHDS problem thus far
includes exclusively hard constraints and has no soft constraints (i.e., preferences for when
devices are scheduled). Therefore, we will describe in this section how to integrate such

preferences as soft constraints into SHDS.

We consider the scenario in which a single home h; may host multiple users u € Uy, with
U, denoting the set of users in h;. In modeling agents’ preferences, we introduce discomfort
values dij,u € Ry describing the degree of dissatisfaction for a user u to schedule the device

zj at a given time step t. Note that the monetary cost is the same for all users while the
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degree of dissatisfaction is user-dependent. Thus, to avoid conflicting users’ decisions over
the control of the device, we assume that there is one user who has exclusive access to a
device z € Z; at any point in time. For each device z; € Z; in home h; and each time step
t, we assume the likelihood for a user to gain exclusive access on a device z; is expressed

Prt (u) =1).

uEUhi j

though a probability Pri (ie., Vu € Uy, Pri (u) € [0,1] and 3

Additionally, we use d} = sz ez @, - d., to denote the aggregated discomfort in home h;
at time step ¢, where dij is the discomfort value of the user who has exclusive access to the
device z; at time step t. We can update the SHDS objective in a way that it considers the
users’ preferences and minimizes the monetary costs. While this is a multi-objective problem,

we combine the two objectives into a single one through the use of a weighted sum:

minimize Z Z - Cl+ay, - d (3.5)

teT h;eH
where «, and «, are weights in the open interval (0,1) C R such that a, + «, = 1. While, in
general, the real-time pricing schema 6 that defines the cost per kWh of energy consumed
and the energy consumption p.; of each device z; are well-defined concepts and can be easily
acquired or modeled, the preferences on the users’ discomfort values d’;j}u on scheduling a

device z; at time step ¢ are subjective and, thus, more difficult to model explicitly.

We envision two approaches to acquire these preferences: (1) eliciting them directly from the
users and (2) estimating them based on historical preferences or from preferences of similar
users. While the former method will be more accurate and reliable, it is cumbersome for
the user to enter their preference for every device z; and every time step ¢ of the problem.
Therefore, we assume that a combination of the two approaches will be used, where a subset
of preferences will be elicited, and the remaining preferences will be estimated from historical

sources or similar users. We believe that this strategy is especially important in application
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Figure 3.2: Example of a classical DCOP and an Uncertain COP/DCOP Cost Tables

domains such as the SHDS problem, where users’ preferences may be learned over time, thus,

ensuring a continuous elicitation process of the unknown users preferences.

3.3 Uncertain Constraint-Based Models

A key drawback of existing WCSPs (a.k.a COPs) and DCOP approaches is the underlying
assumption of a total knowledge of the model, which is not the case for a number of applications
involving users’ preferences, including the SHDS problem. Due to the infeasibility of eliciting
all users’ preferences — and, thus, their associated complete cost tables — in this chapter,
we study how to choose a subset of k cost tables to elicit. We first cast this problem as an

optimization problem, before describing our proposed techniques.

Definition 1 For each agent a; € A, L; = {z; € X | a(z;) = a;} is the set of its local
variables. L;={x; € L; | Iz, € X A3fs € F: alxr) # a; AN{xj,x} C x/*} is the set of its

interface variables.

Definition 2 For each agent a; € A, its local constraint graph G; = (L;, Ex,) is a subgraph

of the constraint graph, where F; = {f; € F | xfi C L;}.
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3.3.1 Uncertain COPs

Let P = (X, D, F) denotes a WCSP/COP whose constraints have partial knowledge on the
cost tables, where:

o X is the set of variables.

e D is the set of domains.

o« F= F. U F, is the set of constraints that are composed of revealed constraints F,,
whose cost tables are accurately revealed, and uncertain constraints F,, whose cost

tables are unrevealed and must be either estimated from historical sources or elicited.

We refer to this problem as the uncertain COP.

3.3.2 Uncertain DCOPs

Let P = (A, X, D, F,a) denotes a WCSP/COP whose constraints have partial knowledge on

the cost tables, where:

A is the set of agents.

X is the set of variables.

D is the set of domains.

a: X — Ais a surjective function, from variables to agents.

F= F. U F, is the set of constraints that are composed of revealed constraints F,,
whose cost tables are accurately revealed, and uncertain constraints F,, whose cost

tables are unrevealed and must be either estimated from historical sources or elicited.
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We refer to this problem as the uncertain DCOP.

In both uncertain COPs and uncertain DCOPs, a solution x is a value assignment to a
set of variables Xy C X that is consistent with the variables’” domains. The cost Fp(x) =
> ferxicx, /(%) is the sum of the costs of all the applicable cost functions in x. A solution x is
said complete if Xy=AX. The goal is to find an optimal complete solution x* = argmin, Fp(x).
To find a solution, the unrevealed cost tables must be be either estimated from historical
sources or elicited from users. In the following sections, we discuss in more detail the elicitation

process of the uncertain costs tables.

We assume that the costs of the uncertain constraints are sampled from Normal distributions
that can be estimated from historical sources.! Further, we assume that the distribution for
each cost value is independent from the distribution of all other cost values. Figure 3.2 (c)
illustrates an uncertain cost table whose costs are modeled via random variables obeying
Normal distributions, and u; and us denote two distinct users that can control the associated

device.

The Preference Elicitation Problem:

The preference elicitation problem in DCOPs is formalized as follows: Given an oracle DCOP

P and a value k € N, construct an uncertain DCOP P that reveals only k constraints per

agent (i.e., |F,| =k - |X|) and minimizes the error:

ep = E[Fp(x*) — Fp(x")] (3.6)

LOther forms of distributions can also be used, but our minimax regret heuristics require that the form
of the distributions have the following property: The sum of two distributions has the same form as their
individual distributions.
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where x* is the optimal solution for a realization of the uncertain DCOP P, and x* is the
optimal complete solution for the oracle DCOP P. A realization of an uncertain DCOP P
is a DCOP (with no uncertainty), whose values for the cost tables are sampled from their
corresponding Normal distributions. Note that the possible numbers of uncertain DCOPs
that can be generated is (k‘_ﬁL'). Since solving each DCOP is NP-hard [75], the preference
elicitation problem is a particularly challenging one. Thus, we propose a number of heuristic

methods to determine the subset of constraints to reveal, and to construct an uncertain

problem P.

3.4 Resolution Algorithms and Heuristics

Let us first introduce a general concept of dominance between cost tables of uncertain
constraints. Given two cost tables of uncertain constraints f.,, f., € F, C F , let =, denote
the dominance between the two cost tables according to partial ordering criteria o. In other
words, f., = f., means that f., dominates f., according to criteria o. We now introduce the

heuristic methods for different possible ordering criteria o.
3.4.1 Heuristic Strategies

Minimax Regret: Minimaz regret is a well-known strategy that minimizes the maximum
regret, and it is particularly suitable in a risk-neutral environment. At a high level, the
minimax regret approach seeks to approximate and minimize the impact of the worst-case
scenario. The idea of using minimax regret in our domain of interest is derived by the desire
of taking into account the possible different outcomes occurring when eliciting the preferences
of different users for a single device. Further, we assume that constraints that can be elicited

are either unary or binary constraints. We leave to future work the extension to higher arity
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constraints. We now describe how to compute the regret for a single user u, and later how to
combine the regrets across multiple users. We use Pr,, (d) to estimate the likelihood of an
assignment d € D; to a variable z;:

Prﬂ?i,u(d) = Hd’eDi\{d}Pr(¢d < ) (37)

Tiu — FTiu

where ¢§fhu is the random variable representing the total cost incurred by z; if it is assigned

value d from its domain under user u. Then, the value:

dy. ., = argmax Pry, ., (d) (3.8)
d

with the largest probability is the one that is most likely to be assigned to x;.

The probability Pr(y¢ , <4< ) can be computed using:

Privi vl )= [ [ i (P () ded 39)
/=0 Jc=0

where Prﬁi’u is the probability distribution function (PDF) for random variable wgi,u. Un-

fortunately, the PDF Prgfhu is not explicitly defined in the uncertain DCOP. There are two

challenges that one needs to address to obtain or estimate this PDF:

1. First, the total cost incurred by an agent is the summation of the costs over all constraints
of that agent. Thus, the PDF for the total cost needs to be obtained by summing over
the PDFs of all the individual constraint costs. Since we assume that these PDFs are
all Normally distributed, one can efficiently construct the summed PDF, which is also a
Normal distribution. Specifically, if N(p;, 02) is the PDF for random variables ¢; (i = 1,2),

then N'(p1 + p2, 0f + 03) is the PDF for ¢; + co.
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1. Second, the cost associated to a variable for each constraint is not only dependent on its
value but also on the value of the other variables constrained with it. In turn, the value
of those variables depend on the variables that they are constrained with, and so on. As
a result, estimating the true PDF requires the estimation of all the constraint costs in
the entire DCOP. To simplify the computation process and introduce an independence
between the costs of all variables, we propose the three following variants, each of which
estimates the true PDF Prﬁ;fu of a random variable ¢g;{‘u, representing the cost incurred
by z; from constraint f if assigned value d when its control is under user u:

e OPTIMISTIC: In this variant, the agent will optimistically choose the PDF with smallest

mean among all the PDFs for all possible values of variables z; € x/ \ {z;} in the scope

of constraint f:

Prit, =N, o3) (3.10)
pr= min g (3.11)

where N (p, 0622) is the PDF' of the constraint cost if x; = d and z; = d under user u.
For example, in the uncertain cost tables in Figure 3.2 (c), the estimated PDF of the
cost incurred for the choice zo = 0 from constraint foy is Prg;{fj = N(65,8?), which
optimistically assumes that x, will be assigned value 0 to minimize the incurred cost.

e PESSIMISTIC: In this variant, the agent chooses the PDF with largest mean among all

the PDFs for all possible values of z; € x/ \ {x;}:

Prid, = N(u*,0%) (3.12)
ph= max g (3.13)
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In Figure 3.2 (c), the estimated PDF of the cost incurred by xo = 0 from constraint fo,
is Prif2s = N(71,8%), which pessimistically assumes that x, will be assigned value 1 to
maximize the incurred cost.

e EXPECTED: In this variant, the agent chooses the PDF with the “average” value of all

the PDFs for all possible values of z; € x/ \ {z;}:

1 Z 1 Z
d7f — [ -~ —_—
I dep, I

(iGDj

fz) (3.14)

In Figure 3.2 (c), the estimated PDF of the cost incurred by xo = 0 from constraint fo,

is PriJ/2e = A(68,82), assuming that 2, = 0 or x4 = 1 with equal probability.

T2,U

The regret Rﬁm of variable x; being assigned value d is defined as:
R ,=1—Pr, ,(d) (3.15)

Each variable x; will most likely be assigned the value d; with the smallest regret by definition
(see Equations 3.7 and 3.8). We thus define the regret R,, , for each variable z; to be the
regret for this value:

Re.w = Riv = min R (3.16)

dEDz Ti,U

To generalize our approach to also handle multiple users in each house, where the PDFs differ
across users, we take the maximum regret over all users u for each variable x; and its value d

before taking the minimum over all values. More precisely,

R,, = minmax R? (3.17)

deDi u iy
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Therefore, the minimax regret approach seeks to approximate the impact of the worst-case
scenario. Finally, we define the regret Ry, for a constraint f; to be the absolute difference

between the regrets of the variables in the scope of the function:

sz‘ = ’szl - inQ

(3.18)

where x7 = {x;,, z;, }.

While defining the regret to be the sum of the two variables’ regrets may be more intuitive,
our experimental results show that the above definition provides better results. Intuitively, if
the regret of a variable x; is large, then there is little confidence that it will take on value
d;. with the smallest regret because the PDFs for all its values are very similar and have
significant overlaps. Thus, eliciting a constraint between two variables with large regrets

will likely not help in improving the overall solution quality since the PDFs for all value

combinations for that constraint are likely to be similar.

Similarly, if the regret of a variable is small, then there is a high confidence that it will be
assigned value with the smallest regret because the PDFs for its values are sufficiently distinct
that regardless of the actual realizations of the random variables (costs in the cost table),
the value with the smallest regret will be the one with the smallest cost. Therefore, eliciting
a constraint between two agents with small regrets will also not help. Therefore, we define
the regret of a constraint to be the difference in the regrets of the variables in its scope (see

Equation 3.18).

If we order the constraints using the ordering criteria o = M R[], that is, according to
the minimax regret criterion, then, given two uncertain constraints f;, f; € F,, we say
that f; =mr f; iff MR[fi] > MR[f;], where MR|[f;] = Ry, is the regret as defined in

Equation 3.18.
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Figure 3.3 illustrates a partial trace of this approach on the example DCOP of Figure 3.2
with two users u; and uy. Figure 3.3 (a) shows the uncertain cost tables for constraint fo4
between variables x, and x4 and constraint fos between variables xs and xg. Figure 3.3
(b) shows the estimated PDFs Prd/, of the constraint costs incurred by variables x; from
constraint f under user u if it takes on value d. In this trace, we use the “optimistic” variant
of the algorithm, and the PDFs are estimated using Equations 3.10 and 3.11. Figure 3.3 (c)
shows estimated summed PDFs Prgé{u of the total constraint costs incurred by the agent,
summed over all of its constraints. Here, we only sum the PDFs for the two constraints fo4

and fas. Figure 3.3 (d) shows the probabilities Pr,, ,(d) of 25 = d under user u, computed

d
T2,u’?

using Equation 3.7, and Figure 3.3 (e) shows the regrets R computed using Equation 3.15.
Thus, the regret R,, for x5 is 0.13, computed using Equation 3.17. Assume that the regret

R,, of x; is 0.50. Then, the regret Ry, of constraint fio = |R,, — Rs,| = [0.50 —0.13| = 0.37.

Maximum Standard Deviation: We now propose a different heuristic that makes use of
the degree of uncertainty in the constraint costs x}, for constraint f, value combination
v = (z;, =di,..., 7, = d;), and user u, where x/ = {x;,...,2;.}, dy € Dy, ..., and

d;, € D,,. Assume that there is only a single user u. Then, using the same motivation
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described for the minimax regret heuristic, and assuming that variables be assigned a different
value for different constraints, the value combination chosen for a constraint f will be the
v* = argmin, x}, that has the smallest cost. Unfortunately, the actual constraint costs are

not known and only their PDFs N (u5,,, (0%,)?) are known.

Since the constraint costs’ distribution means are known, we assume that the value combination
chosen for a constraint f will be the value v* = argmin, 1%, that has the smallest mean.
The degree of uncertainty in the constraint cost for that constraint f is thus the standard

deviation associated cr;iju with that value combination v*.

To generalize this approach to multiple users, we take the maximum standard deviations over

all users u. More precisely, the degree of uncertainty in the constraint costs for a constraint

fis:

oy =maxoy, (3.19)

One can then use this maximum standard deviation criterion to order the constraints. In
other words, if the ordering criteria o = M S|[] is done according to the maximum standard
deviation criterion, then, given two unknown functions f;, f; € F,, we say that f; =us f;
iff MS[fi] > MS[f;], where MS[f;] = oy, is the maximum standard deviation as defined in

Equation 3.19.

3.4.2 Off-the-Shelf Solvers

As mentioned before, to solve the proposed uncertain constraint-based model, we must elicit
a subset of constraint tables (preferences) using one of the heuristics introduced in previous

section. The elicitation of the unknown constraints (preferences) occurs before executing
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an algorithm to solve the uncertain COPs/DCOPs. Therefore, we can use an off-the-shelf
constraint programming solver, MiniZinc [104], to solve all COPs/DCOPs in centralized
manner. In this work, we only measure the solution quality of COPs/DCOPs which is
independent of the choice of solver we used, hence, any algorithm or solver can be used to

find a solution for the constraint-based model after eliciting its unknown preferences.

MiniZinc is a language for specifying constraint optimization problems. MiniZinc models
consist of variable declarations and constraint definitions as well as a definition of the objective

function if the problem is an optimization problem.

3.5 Experimental Evaluations

We evaluate our preference elicitation framework on distributed random binary graphs and
smart home device scheduling (SHDS) problems [31, 108], where we compared our four
heuristics — minimax regret with the three variants: optimistic (MR-O), pessimistic (MR-P),
and expected (MR-E) and maximum standard deviation (MS) — against a random baseline
(RD) that chooses the constraints to elicit randomly. All the problems are modeled and
solved optimally on multiple computers with Intel Core i7-3770 CPU 3.40GHz and 16 GB of
RAM.

3.5.1 Metrics

In our experiments, the preference elicitation heuristics are evaluated in terms of the normal-

ized error , where €5 is the error as defined by Equation 3.6. An accurate computation

_p
Fp(x*)
of this error requires us to generate all possible realizations for the uncertain DCOPs. Due
to the complexity of such task, we create m = 50 realizations of the uncertain DCOPs and

compute the error €5 in this reduced sampled space.
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Figure 3.4: Random Graphs: Preference Elicitation Empirical Results

3.5.2 Random Graphs

We create 100 random graphs whose topologies are based on the Erdds and Rényi model [24]
with the following parameters: |X| = 50, |.A| = 5, and |D;| = 2 for all variables z; € X. Each
agent a; has |L;| = 10 local variables with density p; = 0.8 that produces |F;| = 36 local
constraints per agent. These constraints are unknown (uncertain constraints) and we set two
scenarios for all uncertain cost tables. All constraint costs are modeled as random variables
following a Normal distribution N (j, 0?), where o is uniformly sampled from the range [5, 10]
and the means p are uniformly sampled from one of the following six ranges [5,70], [5, 80],
[5,90], [5,100], [5,110], and [5,120]. The different ranges are to introduce some heterogeneity
into the constraints. We set the non-local constraints (i.e., inter-agent constraints) to be
uncertain constraints as well, where we vary the mean g of their Normal distributions to be
from different distributions: p = 0; p € [0,20]; and u € [0,40]. Finally, we allow only local

constraints (or preferences) to be elicited.
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Figure 3.4 (a) illustrates the normalized errors of our heuristics and that of the random
baseline heuristic, where the mean p of the non-local constraints are uniformly sampled
from the range [0, 20]. We control k so that the number of the constraints per agent elicited
from the oracle DCOP varies from 3 to 15 with increment of 3. We make the following

observations:

e As the number of constraints (k) to elicit increases, the errors of the MR-P and MR-
O heuristic decrease for all values of k£ as opposed to the random heuristic which is
approximately the same for all values of k. The reason is, as we increase k, the random
heuristic randomly selects k constraint to elicit with high likelihood of choosing the wrong
constraints. However, since the regret-based heuristic (e.g., MR-P) takes into account the
uncertain cost of the constraints it chooses those minimizing the regret.

e The MS heuristic performs slightly better than random heuristic. The reason is that MS
orders the uncertain constraints by their degrees of uncertainty (i.e., o) corresponding to
the most likely value combinations to be assigned (i.e., the ones with the smallest p). In
contrast, the random heuristic chooses constraint randomly without taking into account
the degree of uncertainty.

e All regret-based heuristics outperform the baseline heuristic, especially for larger values
of k, indicating that they are able to effectively take the regrets of the constraints into

account.

Figure 3.4 (b) illustrates the normalized errors for the random problems, where we vary
the mean values p of the non-local constraints, sampled from different distributions; we set
k = 15 for all cases. The same trends observed above apply here. However, the normalized
error increases as the range of the mean increases for all heuristics. The reason is because
the magnitude in the error (when variables are assigned wrong value due to wrong guesses

in the cost of the constraints) increases when the range increases. However, generally, the
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Dish- Micro- | Lap- | Desk- | Vacuum . Electrical
washer Washer | Dryer | Hob | Oven wave | top top | Cleaner Fridge Vehicle

075 | 120 [ 250 [3.00] 5.00 [ 1.70 [0.10 | 030 | 120 [ 0.30 | 3.50

Table 3.1: Smart Devices and their Energy Consumption (in kWh)
optimistic and pessimistic variants of the minimax regret heuristics still perform better in all

three cases.

3.5.3 Smart Home Device Scheduling

SHDS Problem Construction: We now describe how we construct SHDS problems. As
the only uncertain element in the uncertain constraints are the discomfort values dtzw (defined
in Section 5.2) for devices z;, time steps ¢, and users u, we model these values as random
variables following a Normal distribution (e.g., one could fit a Normal distribution to the
historical data). As the distribution for one user may be different from the distribution for
a different user in a home, for each user u, we generate a discomfort table composed of a
Normal distribution N'(i, ,, (0% ,)?) for each device z; and time step ¢. Each user u can gain
the exclusive access to a device z; with the probability Pr;j, and the Normal distribution

of the discomfort of device z; at time step ¢ is the Normal distribution of the user that has

exclusive access for that device and time step.

Next, let P = (X, D, F, A, «) denote the DCOP whose constraints F have accurate cost
tables that depend only on external parameters and are easily obtained (e.g., price function
¢ and energy consumption of devices p.;) or they depend on user preferences that are
accurately obtained through an oracle. Using the same process described above, we combine
the discomfort tables for multiple users into a single aggregated discomfort table . Note
that this aggregated discomfort table may be different than the one U for the uncertain

DCOP if there are multiple users. Then, the actual discomfort value dij for each device z;
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and time step ¢ is sampled from the Normal distribution N(4. , (O‘i]_)z) for that device and
time step in the aggregated discomfort table /. We refer to this problem as the oracle DCOP.
In summary, when a constraint is elicited, the actual discomfort values are retrieved from the

oracle DCOP.

Experimental Setup: In our experiments, we consider |H| = 10 homes, each controlling
| Z;| = 10 smart devices, listed in Table 3.1 along with their energy consumption. We populate
the set of smart devices Z; of each home by randomly sampling 10 elements from Z. Thus, a
home might control multiple devices of the same type. We set a time horizon H = 6 with
increments of 4 hours. We use the same real-time pricing schema as proposed by Fioretto et
al. [31], which is the one used by the Pacific Gas and Electric Company for their Californian

consumers during peak summer months.?

To generate the discomfort table for each user, we assume that there is a weak correlation
between the price of energy and the level of discomfort of the user. Specifically, we assume
that users will prefer (i.e., they are more comfortable) using their devices when prices are
low to save money. Therefore, the higher the price, the more uncomfortable the user will
be at using the device at that time. Based on this assumption, for each home, user, and
device, the mean p' at each time step ¢ is an integer that is uniformly sampled from the
range [max{1,0(t) — 50}, 0(t) + 50], where 6(t) is the real-time pricing at time step ¢ used
by the Pacific Gas and Electric Company. Therefore, the range of the means differ across
time steps but are the same for all devices as the discomfort level is primarily motivated by
the pricing schema. The weights a. and «,, of the objective function defined in Equation 3.5
are both set to 0.5. These settings are employed to create both an oracle DCOP and the

corresponding uncertain DCOP, except that the values of the constraints of the uncertain

’https://www.pge.com/en_US/business/rate-plans/rate-plans/peak-day-pricing/
peak-day-pricing.page. Retrieved in November 2016.
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Figure 3.5: Smart Home Device Scheduling: Preference Elicitation Empirical Results

DCOPs are not realized (i.e., they are distributions). Finally, since all uncertain constraints
in an SHDS problem are unary constraints, all three variants of the minimax regret heuristics

are identical, and we use “MR” to label this heuristic.

Single User Experiments: In the first set of experiments, we set each home to have only
one user. Figure 3.5 (a) plots the error for our heuristics compared against the random
baseline heuristic. The results are averaged over 100 randomly generated SHDS problem

instances. We make the following observations:

e As expected, for all elicitation heuristics, the error decreases as the number of cost tables
to elicit increases.

e Both the MR and MS heuristics consistently outperform the random heuristic for all values
of k. Like the results in random graphs, the random heuristic has a higher likelihood of

choosing the wrong constraint to elicit, while MR and MS choose better constraints.
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e Interestingly, we observe that MS selects the constraints slightly better than MR, indicating
that despite the fact that MS is a simpler heuristic, it is well-suited in problems with single
users. The reason is that the key feature of MR — maximizing the regret over all users — is

ignored when there is only one user.

Multiple User Experiments: In the second set of experiments, we set each home to have
two users, where both users have equal likelihood of controlling the devices (i.e., P,, =
P,, = 0.5). Figure 3.5 (b) shows the results. The trends for this experiment is similar to
that shown for Figure 3.5 (a), where our MR heuristic outperforms the random heuristic.
However, the MS heuristic performs poorly in this experiment, with similar performance as
the random baseline. In general, our results show that the regret-based method outperforms
other heuristics in multiple users scenarios, as it takes into account the discomfort values of
all users, orders the constraints to elicit based on their minimum regrets. Similar to random
graph results, MR performs better in the scenarios that multiple users take control of the

devices in a building.

Finally, the SHDS and random graph experiment results demonstrate that the regret-based
elicitation heuristics achieve approximately 30% and 11% improvement over the baseline
random heuristic in minimizing the error, respectively. The improvements in SHDS problems
are larger than those in random graphs because variables are highly connected (p; = 0.8) in
random graph problems. In contrast, variables in SHDS problems are mostly independent as
they mostly have unary constraints. The higher dependency between variables in random

graphs reduces the improvements of our heuristics over the baseline random heuristic.

29



3.6 Related Work

There is an extensive body of work on the topic of modeling preferences [40]. In particular,
Rossi et al. discussed conditional-preference networks (CP-nets) for handling preferences [97],
which provide a qualitative graphical representation of preferences reflecting the conditional
dependence of the problem variables. Differently from CP-nets, our proposal focuses on the
notion of conditional additive independence [5], which requires the utility of an outcome to

be the sum of the “utilities” of the different variable values of the outcome.

In terms of preference elicitation, two major approaches are studied in the literature: A
Bayesian approach [10] and a minimax regret approach [9, 37, 132]. The former is typically
adopted when the uncertainty can be quantified probabilistically, and preference elicitation
is often formalized as a partially-observable Markov decision process (POMDP) [53] that
assumes each query to a user is associated with a finite set of possible responses. In contrast,
our proposal follows the minimax regret approach [9, 37, 132]. The proposed framework differs
from other proposals in the literature in the following ways: We assume the unknown costs
are sampled from a Normal distribution and compute the regret based on such distributions.
In contrast, other minimax regret based methods have different assumptions. For example,
Boutilier et al. assumes that a set of (hard) constraints together with a graphical utility
model captures user preferences [9]. While the structure of the utility model is known,
the parameters of this utility model are imprecise, given by upper and lower bounds. The
notion of regret is computed based on those upper and lower bounds. Differently, Wang and
Boutilier compute regrets under the assumption that constraints over unknown utility values

are linear [132].
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Moreover, Gelain et al. computes regrets by taking the minimum among the known utilities
associated to the projections of an assignment, that is, of the appropriated sub-tuples in the

constraints [37].

Finally, preference elicitation has never been applied directly on DCOPs before. The closest
DCOP-related problem is a class of DCOPs where agents have partial knowledge on the costs
of their constraints and, therefore, they may discover the unknown costs via exploration [115,
147]. In this context, agents must balance the coordinated exploration of the unknown
environment and the ezploitation of the known portion of the rewards, in order to optimize
the global objective [103]. Another orthogonal related DCOP model is the problem where
costs are sampled from probability distribution functions [79]. In such a problem, agents seek

to minimize either the worst-case regret [133] or the expected regret [61].

3.7 Conclusions

DCOPs have been used to model a number of multi-agent coordination problems including
the smart home device scheduling (SHDS) problem. However, one of the key limitations
in DCOPs — that constraint costs are known a priori — do not apply to many applications
including SHDS. To address this limitation, in this chapter, we proposed the uncertain
constraint-based model where constraint costs ( i.e preferences) are represented as Normal
distributions; introduced the problem of preference (i.e., constraint cost) elicitation for
DCOPs; designed minimax regret-based heuristics to elicit the preferences; evaluated our
proposed framework and its heuristic strategies on random binary DCOPs as well as SHDS
problems. Our results demonstrated that our methods outperform the baseline method

that elicits preferences randomly. By introducing the uncertain constraint-based models, we
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make the foundational contributions necessary in deploying DCOP algorithms on practical

applications, where preferences or constraint costs must be elicited or estimated.

In future chapters of this dissertation, we will discuss other approaches to model constraint-
based problems where constraints are partially defined. We will propose heuristic strategies
to elicit a subset of constraint costs while interleaving elicitation and resolution algorithms to

find optimal and sub-optimal solutions.
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Chapter 4

Intra-execution Elicitation Approach

in Centralized Constraint-Based

Models

To address the key drawback in centralized constraint-based models, we design the model
so that constraint costs (i.e., preferences) are allowed to be unknown a priori. Thus, we
extend the constraint-based models under the assumption that some of the preferences are not
specified. The unknown preferences will be elicited during the search for optimal /sub-optimal
solutions. Revealing the actual values of the unknown preferences throughout the search
will incur accumulative elicitation costs. This chapter introduces incomplete constraint-
based models and preference elicitation strategies with the objective of finding solutions that
minimize both constraint and elicitation costs. In what follows, we briefly introduce the

intuition behind our model and motivate our approach with a real-world application. Then,
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we will discuss our model, elicitation heuristic strategies, and our evaluation analyses in more

detail.

4.1 Introduction

The importance of constraint reasoning in agent-based systems is outlined by the impact of
its application in a wide range of agent-based applications, such as supply-chain management
[34, 95|, roster scheduling [1, 11], meeting scheduling [69], combinatorial auctions [99],
bioinformatics [2, 12, 28], and smart home automation [31, 98]. In Constraint Satisfaction
Problems (CSPs), the goal is to find a value assignment for a set of variables that satisfies
a set of constraints [3, 44]. The assignments satisfying the problem constraints are called
solutions. In Weighted Constraint Satisfaction Problems (WCSPs), the goal is to find an

optimal solution, given a set of preferences expressed by means of cost functions [6, 101, 102].

A key assumption in all these constraint-based models is that all the constraints are specified
or known a priori. In some applications, such as roster and meeting scheduling problems,
some constraints encode the preferences of human users. As such, they may not be fully
specified simply because it is unrealistic to accurately know the preferences of users for all
possible scenarios in an application. Motivated by such applications, researchers proposed the
Incomplete WCSP (IWCSP) problem formulation [35], which extends WCSPs by allowing
some constraints to be partially specified (i.e., the costs for some constraints are unknown).
To solve IWCSPs, they introduced a series of algorithms that interleave the search process,
which seeks to find a good solution, and the preference elicitation process, which seeks to
obtain some subset of cost functions from the user. Unfortunately, existing approaches suffer

from a key limitation — they assume that the elicitation of preferences does not incur any
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additional cost. This assumption is not realistic as human users are likely bothered by

repeated elicitations and will refuse to provide an unbounded number of preferences.

To address this limitation, we make the following contributions:

e We first propose the IWCSP with FElicitation Costs (IWCSP+EC) model, which extends
the IWCSP model to include the notion of elicitation costs. This problem aims at finding
a solution that minimizes the sum of both the constraint costs and elicitation costs.

e We then introduce three parameterized heuristics — Least Unknown Cost (LUC), Least
Known Cost (LKC) and their combination heuristic (COM) — that allow users to trade off
solution quality for fewer elicited preferences and faster computation times. Further, in
settings where elicitations are free (i.e., the elicitation costs are zero), these heuristics also

provide theoretical quality guarantees on the solutions found.

Our experimental results show that COM finds solutions with larger constraint costs than LKC
and LUC, but finds them faster and with fewer elicitations than LKC and LUC. Therefore,
COM is the preferred heuristic in critical time-sensitive domains. COM also does a better
job at trading off solution quality for smaller runtimes, especially when runtimes are large,
through the use of user-defined weights. Our model and heuristics thus improve the practical
applicability of IWCSPs as they now take into account elicitation costs and provide control
knobs, in the form of user-defined weights, to perform tradeoffs along three key dimensions —

solution quality, runtime, and number of elicited preferences.

4.2 Motivation

We have described the smart home scheduling problem [110, 112] as a motivating application

for our work in Chapter 3. In this chapter, we formulate this problem in a centralized manner,
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Figure 4.1: Example of an Incomplete Weighted CSP with Elicitation Costs

considering the scheduling problem within one smart home rather than a neighborhood of
smart homes. Thus, we assume, an autonomous software agent is deployed in a smart home
that is able to automate and schedule the smart [oT devices within the home. To do so
effectively, it needs to know the preferences and constraints of users in the home in order to
find a schedule that satisfies all the constraints and optimizes the preferences of the users.
While some of these preferences may be known, some preferences may be unknown and must

be elicited. This problem can be modeled as an IWCSP:

e Variables correspond to smart IoT devices in the home.

e Domains for the variables correspond to the different possible schedules of the devices.

e Weighted constraints correspond to the preferences of users.

The objective of this problem is to find a schedule for each device such that the cumulative

preference of the user is optimized while eliciting as few partially-known preferences as

possible.

However, in a smart home scheduling problem, users will likely be bothered by the elicitation
of their preferences. Therefore, there is a need for a model and approaches that explicitly
consider such elicitation costs. The existing IWCSP model only takes into account such
elicitation costs implicitly — through its goal of minimizing the number of preferences elicited

during the search. Further, such an assumption also assumes that the elicitation cost is
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uniform for all preferences, which may be unrealistic. Therefore, we describe in the next
section an IWCSP extension that models elicitation costs explicitly and approaches that

explicitly take them into account during the search.

4.3 Incomplete Centralized Constraint-Based Model

An Incomplete WCSP (IWCSP) [35] extends WCSPs by allowing some constraints to be
partially specified. It is defined by a tuple P = (X, D, F,F),! where X, D, and F are
exactly the same as WCSPs. The key difference is that the set of fully-specified constraints
F are not known to an IWCSP algorithm. Instead, only the set of partially-specified
constraints F = { fiooon, fm} are known. Each partially-specified constraint is a function
fi Xaexti Dj — R U {oo, 7}, where ? is a special element denoting that the cost for a given
combination of value assignment is not specified. The costs Rj U {oo} that are specified
are exactly the costs of the corresponding specified constraints f; € F.2 The goal is still
to find an optimal complete solution x* = argmin, Fp(x), while specifying as few 7 of the

partially-specified constraints as possible.

4.3.1 Incomplete WCSPs with Elicitation Costs

We propose the IWCSP with Elicitation Cost (IWCSP+EC) model, which, as the name
implies, extends IWCSPs with elicitation costs. It is defined by a tuple P = (X, D, F, F.& )
where X, D, F, and F are exactly the same as IWCSPs. € = {ey,...,en} is the set of

elicitation costs, where each elicitation cost e; : Xl,j exti Dj — Ry specifies the cost of specifying

!The original definition by Gelain et al. [35] does not include the set of weighted constraints F. We
include it here to ease the understanding of the different types of solutions.
2A constraint f; € F can be fully specified, in which case f; = f; € F.
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the weighted constraint f; (i.e., it is the cost of eliciting the preferences corresponding to

constraint f;).

An ezplored solution space x is the union of all solutions explored thus far by a particular
algorithm. The cost Ep(X) = >, . €(X) is the sum of the costs of all applicable elicitation
cost functions in x. In other words, it is the cumulative elicitation cost for specifying all ? of

partially-specified constraints in the explored solution space.

The total cost Fp(x,%X) = Fp(x) + Ep(X) is the sum of both the cumulative constraint
cost Fp(x) of solution x and the cumulative elicitation cost Ep(X) of explored solutions x.
Naturally, the solution x C x must be within the space of explored solutions thus far. The
goal is to find an optimal complete solution x* while eliciting preferences from a minimal set
of solutions x* only. More formally, (x*,x*) = argmin, 5 Fp(x, X). We would like to note that
it is likely impossible to find such an optimal complete solution and elicit preferences related
to that solution only, except in some very special cases (e.g., only the optimal complete

solution has partially-specified constraints).

Figure 5.1(a) shows the constraint graph of an example IWCSP+EC with three variables
r1, To, and x3, where all variables are constrained with each other. The domains are
Dy = Dy = D3 = {0, 1}. Figure 5.1(b) shows both the partially-specified and fully-specified
costs as well as the elicitation costs for all constraints. In this example, the optimal complete
solution is x* = (r1 =1,29 = 0,23 = 1), and only that solution is explored (i.e., X* = x*).
The constraint cost of that solution is 36 (= 21 from fi({(z; = 1,29 = 0)) + 10 from
fa({xr =1,23=1)) + 5 from f3({xzg =0,23=1))). As no unknown costs are elicited, the

cumulative elicitation cost is 0. Thus, the total cost is 36.
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Figure 4.2: Search Trees

4.4 Resolution Algorithms and Heuristics

Existing IWCSP solvers [35] are all based on the depth-first branch-and-bound (DFBnB)
search algorithm. As our solvers also use it as the underlying framework, we briefly describe it
here. The operations of DFBnB can be visualized with search trees. Figure 4.2 shows search
trees for our example IWCSP+EC shown in Figure 5.1, where levels 1, 2, and 3 correspond
to the variables x1, x5, and x3, respectively. Left branches correspond to the variable being
assigned the value 0 and right branches correspond to the variable being assigned the value 1.

Each non-leaf node thus corresponds to a partial solution of the IWCSP+EC.

Figure 4.2(a) shows the identifiers of the nodes that allow us to refer to them easily; Fig-
ure 4.2(b) shows the constraint costs of the partial solutions if all unknown constraint costs
are elicited; Figure 4.2(c) shows the cumulative elicitation costs of the explored solution

space if one were to expand nodes in a depth-first order and preferring left branches over
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right branches; and Figure 4.2(d) shows the total costs (= sum of constraint and cumulative
elicitation costs). For example, node f corresponds to the partial solution (x; =1, 25 =0)

with cost 134 (= constraint cost of 21 + cumulative elicitation cost of 113).

4.4.1 Depth First Branch-and-Bound Algorithm

Depth First Branch-and-Bound (DFBnB) expands nodes in the search tree in a depth-first
order and prunes nodes whose costs are no smaller than a threshold Fp(x,X), where x is
the best complete solution found so far and x is the solution space explored thus far. It

backtracks once all children of a node have been expanded or pruned.

A simple and straightforward extension of DFBnB to solve IWCSP is as follows, where we
use A* notations [45] in some of our definitions: Before expanding a node n, it elicits all
the unknown constraint costs associated with that node and adds those costs to the known
constraint costs associated with that node. We refer to these costs as g(n). Additionally, it
also adds all the elicitation costs associated with the unknown constraint costs elicited to the
cumulative elicitation costs Ep(X), where X is the union of all partial solutions corresponding
to the set of nodes expanded by DFBnB thus far. Finally, one can use heuristics, referred to
as h(n), to estimate the sum of constraint and elicitation costs needed to complete the partial
solution at node n and if those heuristics are underestimates on the true cost, then they can be
used to better prune the search space, that is, when f(n,x) = g(n)+h(n)+Ep(x) > Fp(x,X),
where x is the best complete solution found so far. We provide more formal definitions below,

where we use x,, to refer to the partial solution corresponding to node n.

Definition 3 (Unknown Constraint Costs) The unknown constraint costs of a node n
are all the partially-specified constraint costs f(x) = 7 that are unknown, where x C x,, 1S a

subset of the partial solution corresponding to node n.

70



Definition 4 (Elicited Constraint Costs) The elicited constraint costs of a node n are
all the constraint costs f(x), where x C x,, is a subset of the partial solution corresponding to

node n and the partially-specified cost f(x) = 7 of that subset is unknown.

Definition 5 (Known Constraint Costs) The known constraint costs of a node n are all
the constraint costs f(x) # 7, where x C x,, is a subset of the partial solution corresponding

to node n.

Definition 6 (Cumulative Elicitation Cost) The cumulative elicitation cost of a set of

nodes x is Ep(X).

Definition 7 (¢g-Value) The g-value of a node n is Fp(x,).

Definition 8 (h-Value) The h-value of a node n is a lower bound estimate of the minimal

sum of constraint and elicitation costs to complete the partial solution x,,.

Definition 9 (f-Value) The f-value of a node n and the set of nodes X expanded thus far

is the sum of its g-value, h-value, and cumulative elicitation costs.

For example, for node i in Figure 4.2(a), its unknown constraint cost is fo((z=0,z3=1)) = ?;
its elicited constraint cost is fo((z; = 0,23 = 1)) = 45; its known constraint costs are
fillz1=0,2,=0)) = 15 and f3((z,=0,23=1)) = 5; and its g-value is g(i) = 45+15+5 = 65.
If nodes are explored in depth-first order from left to right, then the explored solution space
when node i is expanded is X = {{(x; =0, 29,=0,23=0), (z1=0,29 =0, 23=1) }, which includes
two unknown constraint costs that were elicited — f3({(za=0,235=0)) and fo((x;=0,z3=1)).

The costs of these elicitations are e3({(x2 = 0,23 =0)) = 9 and ex({(x; = 0,23 = 1)) = 3,
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summing up to a cumulative elicitation cost of 12. Consequently, if we use a zero heuristics
(i.e., the h-value for all nodes is 0), then the f-value of node i and the corresponding explored

solution space is f(i,X) = 65+ 12 = 77.

4.4.2 Heuristic Strategies

We now describe our three heuristic functions that can be used in conjunction with DFBnB
to solve our IWCSP-EC problem. These heuristics make use of an estimated lower bound £
on the cost of all constraints f € F. Such a lower bound can usually be estimated through
domain expertise or can be set to 0 in the worst case since all costs are non-negative. The
more informed the lower bound, the more effective the heuristics will be in pruning the search

space.

Additionally, these heuristics are parameterized by two parameters — a relative weight w > 1
and an additive weight ¢ > 0. Users can define these parameters a priori allowing them to
trade off solution quality for fewer elicited preferences and faster computation times. Further,
in settings where elicitations are free (i.e., the elicitation costs are zero), the costs of solutions
found are guaranteed to be at most w - OPT + ¢, where OPT is the optimal solution cost

(Theorems 1, 2, and 3).

Least Unknown Cost (LUC) Heuristic: Our first heuristic function is called the Least
Unknown Cost (LUC) heuristic. Let S,, be the set of all possible variable-value assignments
needed to complete the partial solution corresponding to node n. For each variable-value
assignment ¢ € S, let ¢ denote the number of yet-to-be-elicited unknown constraint costs

that must be elicited to complete the partial solution, and E. denote the sum of elicitation
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costs of those constraint costs. LUC computes the h-value for each node n as follows:

h(n) = min (¢, - L+ E.) (4.1)

SESK

Therefore, the f-value for node n, under the assumption that x is the set of nodes expanded

thus far, is as follows:
f(n,%) = g(n) + Ep(X) + min (¢ - £ + E) (4.2)
Thus, when using this heuristic, DFBnB prunes a node n if
w - f(n,X) + € > Fp(x,X) (4.3)

where x is the best complete solution found so far. Note that users can increase the weights
w and €, which will prune a larger portion of the search space. Consequently, it will reduce
the computation time as well as the number of preferences elicited. However, the downside is

that it will also degrade the quality of solutions found.

Least Known Cost (LKC) Heuristic: Our second heuristic function is called the Least
Known Cost (LKC) heuristic. Instead of returning h-values like LUC, LKC directly returns
the f-values, but taking into account only known and elicited constraint costs. To compute
the f-value for each node n, LKC computes the estimated g-values of the leafs in the subtree
rooted at n (i.e., all the leaf variables in S,,) — it is an estimate because it does not take into
account unknown constraint costs that are yet to be elicited:

J(n,%) = min §(i,) + Ep(%) (4.4)

§€Sn
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where g(l.) is the estimated g-value of node [ and [, is the leaf node along the branch ¢ € S,
that completes the partial solution at node n. Thus, when using this heuristic, DFBnB uses
the same pruning condition as Equation 5.1, except that the f-values are computed using

Equation 4.4.

Combination (COM) Heuristic: When estimating the minimal cost to complete the
partial solution at a node n, the LUC heuristic takes into account yet-to-be-elicited unknown
constraint costs and their corresponding elicitation costs. However, it ignores the known
and elicited constraint costs needed to complete the partial solution. In contrast, the LKC
heuristic does take into account such known and elicited constraint costs. However, it ignores
the yet-to-be elicited unknown constraint costs and their corresponding elicitation costs.
Therefore, the LUC and LKC heuristics complement each other as they are estimating non-
intersecting components of the minimal cost to complete partial solutions. To take advantage
of both heuristics, we combined them into a new Combination (COM) heuristic. The new

f-values are thus a combination of both the f-values of the LUC and LKC heuristics:

f(n,x) = min (§(l) + s - L+ E¢) + Ep() (4.5)

SESK

Thus, when using this heuristic, DFBnB uses the same pruning condition as Equation 5.1,
except that the f-values are computed using Equation 4.5.

Value-Ordering Heuristic: Finally, instead of choosing a random order to explore the
children of a node, for each heuristic, we order the nodes according to their f-values. DFBnB

will then expand the child with the smallest f-value first as that is the most promising child.
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4.4.3 Theoretical Results

We now discuss some theoretical results that are applicable only in the original IWCSP setting,
i.e., in problems with zero elicitation costs. Therefore, in this setting, Fp(x) = Fp(x,x) for

all solutions x and explored search spaces Xx.

Theorem 1 DFBnB with the LUC heuristic parameterized by a user-defined relative weight
w > 1 and a user-defined additive weight € > 0 will return an IWCSP solution whose cost is

bounded from above by w - Fp(x*) + €, where x* is an optimal complete IWCSP solution.

Proof :Assume that DFBnB returns a complete solution x with cost Fp(x). There are the

following two cases:

e Case 1: Fp(x) = Fp(x*). It is trivial to see that

Fp(x) =Fp(x") Sw - Fp(x") +¢ (4.6)

since w > 1 and € > 0.

e Case 2: Fp(x) > Fp(x*). It must be the case that the subtree rooted at some node n
along the branch to the optimal solution x* was pruned at some point during the search.
Otherwise, the algorithm would have returned x* since Fp(x*) < Fp(x). Therefore, when

the subtree was pruned, the following pruning condition from Equation 5.1 must have held:

w- f(n,x) +€>Fp(x,X) (4.7)
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where x is the best solution found so far and x is the search space explored so far. Further,

since the RHS of the pruning condition above is non-increasing, it must be the case that:

F'p(X, )~(> > Fp(f() (48)

Next, expanding on the LHS of Equation 4.7:

we f(n,X) +€=w-(g(n) + Ep(X) +min (g - L+ E)) + e (4.9)
=w-(g9(n) +minpc- L) +e (4.10)
=w-(g(n)+h(n))+e (4.11)
<w-Fp(x) +e (4.12)

Finally, combining Equations 4.7 to 4.12, we get:

which concludes the proof. [ |

Theorem 2 DFBnB with the LKC' heuristic parameterized by a user-defined relative weight
w > 1 and a user-defined additive weight € > 0 will return an IWCSP solution whose cost is

bounded from above by w - Fp(x*) + €, where x* is an optimal complete IWCSP solution.

Theorem 3 DFBnB with the COM heuristic parameterized by a user-defined relative weight
w > 1 and a user-defined additive weight € > 0 will return an IWCSP solution whose cost is

bounded from above by w - Fp(x*) + €, where x* is an optimal complete IWCSP solution.

The proofs for Theorems 2 and 3 are similar to the proof for Theorem 1.
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Note that these error bounds do not apply to the IWCSP+EC setting with non-zero elicitation
costs. The reason is because the RHS of the pruning condition used by DFBnB is not

guaranteed to be non-increasing, thereby invalidating our proof.

4.5 Experimental Evaluations

We evaluate DFBnB using our three heuristics — LUC, LKC, and COM - against a ran-
dom (RND) heuristic on both IWCSP+ECs and IWCSPs (without elicitation costs). For
IWCSPs, we also compare against the best algorithm proposed by Gelain et al. [35] — the
LU.WW.BRANCH algorithm (labeled LWB).

4.5.1 Metrics

We evaluate the algorithms on two benchmarks — random graphs and smart home scheduling
problems [109], where we measure the various costs of the solutions found — the cumulative
constraint costs, cumulative elicitation costs, and their aggregated total cost — the number
of unknown costs elicited to find those solutions, and the runtime of the algorithms. All
experiments were performed on an Intel Core i7, 3.4GHz machine with 16GB of RAM. Each

data point shown is an average of over 100 instances.

4.5.2 Random Graphs

We generate 100 random (binary) graphs [24], where we vary the number of variables |X|
from 5 to 12; the constraint density p; from 0.2 to 0.8; the fraction of unknown costs 7 in

each constraint from 0.2 to 1.0;3.the user-defined relative weight w from 1 to 10; and the

3In other words, for each constraint f € F, i is the number of value assignments with unspecified costs as
a fraction of the total number of value assignments in that constraint.
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(a) Varying Number of Variables |X|, i = 0.6, p; = 0.4

| # unknown # of elicited costs runtime (sec) total cost cumulative constraint cost || cumulative elicitation cost
costs LKC | LUC | COM | LKC LUC COM LKC LUC COM LKC LUC COM LKC | LUC COM
5 20.75 14.32 | 12.16 | 11.83 0.03 0.03 0.03 167.93 | 151.50 | 160.30 98.41 115.97 | 109.45 || 65.37 | 53.09 50.85
6 30.60 21.71 | 18.23 | 17.06 0.11 0.10 0.09 264.17 | 241.08 | 248.97 | 171.97 | 161.85 | 177.42 || 92.20 | 79.23 71.55
7 40.90 30.44 | 26.51 | 23.31 0.39 0.33 0.34 366.68 | 339.77 | 354.28 || 242.34 | 243.01 | 260.36 || 124.34 | 96.76 93.92
8 55.30 41.73 | 36.39 | 30.31 1.63 1.64 1.35 515.34 | 480.56 | 483.67 || 352.83 | 347.82 | 365.52 || 162.51 | 132.74 | 118.15
9 70.00 53.16 | 46.26 | 39.27 7.74 7.26 5.35 673.10 | 630.47 | 637.40 | 485.87 | 467.85 | 499.14 || 187.23 | 162.62 | 138.26
10 90.05 68.24 | 60.52 | 52.01 34.11 33.73 | 20.96 | 867.03 | 833.77 | 861.34 || 646.32 | 656.12 | 688.39 || 220.71 | 177.65 | 172.95
11 110.05 84.39 | 75.77 | 62.77 | 192.98 | 182.93 | 101.12 | 1086.84 | 1047.23 | 1058.42 || 845.08 | 831.48 | 872.95 || 241.76 | 215.75 | 185.47
12 130.00 100.41 | 89.31 | 73.95 | 1505.35 | 1301.48 | 552.12 || 1295.68 | 1248.14 | 1258.51 || 1003.53 | 1014.30 | 1047.98 || 292.15 | 233.84 | 210.53

(b) Varying Constraint Density p1, |X| =10, i = 0.6

# unknown # of elicited costs runtime (sec) total cost cumulative constraint cost | cumulative elicitation cost
P costs LKC | LUC | COM | LKC LUC COM LKC LUC COM LKC LUC COM LKC | LUC COM
0.2 56.70 44.67 | 38.92 | 33.15 || 34.08 26.56 | 23.15 | 546.26 | 501.72 | 505.75 || 365.32 | 359.93 | 374.56 || 180.94 | 141.79 | 131.19
0.4 90.05 68.24 | 60.52 | 52.01 34.11 33.73 | 20.96 | 867.03 | 833.77 | 861.34 || 646.32 | 656.12 | 688.39 || 220.71 | 177.65 | 172.95
0.6 135.00 97.74 | 89.41 | 74.15 || 34.36 40.78 | 27.35 || 1333.73 | 1331.18 | 1335.97 || 1053.82 | 1086.79 | 1116.19 || 279.91 | 244.39 | 219.78
0.8 180.00 124.55 | 117.58 | 92.29 || 37.59 49.13 | 33.57 || 1813.18 | 1806.55 | 1817.44 || 1493.86 | 1522.51 | 1534.46 || 319.32 | 284.04 | 282.98

(c) Varying Fraction of Unknown Costs 4, |X| = 10, p; = 0.4

; # unknown # of elicited costs runtime (sec) total cost cumulative constraint cost || cumulative elicitation cost
costs LKC | LUC | COM | LKC LUC COM LKC LUC COM LKC LUC COM LKC | LUC COM
0.2 36.02 30.15 | 25.40 | 13.71 || 48.58 41.77 16.97 || 666.87 | 662.86 | 718.70 || 544.06 | 563.76 | 645.59 || 122.81 | 99.10 73.11
0.4 72.04 57.75 | 49.63 | 37.14 | 43.22 36.15 19.40 || 809.65 | 790.16 | 802.20 || 615.10 | 637.36 | 665.96 | 194.55 | 152.80 | 136.24
0.6 90.05 68.24 | 60.52 | 52.01 34.11 33.73 | 20.96 | 867.03 | 833.77 | 861.34 || 646.32 | 656.12 | 688.39 || 220.71 | 177.65 | 172.95
0.8 126.07 85.40 | 80.64 | 73.95 || 25.09 28.14 | 22.66 | 964.39 | 941.53 | 928.84 | 712.97 | 712.14 | 707.86 | 251.42 | 229.39 | 220.98
1.0 162.09 90.34 | 91.56 | 82.16 | 20.51 23.70 | 21.79 | 1019.10 | 1019.87 | 1018.80 || 772.25 | 775.46 | 768.83 | 246.85 | 244.41 | 249.97

Table 4.1: Random Graphs: IWCSP+EC Empirical Results

user-defined additive weight € from 0 to 1000. The domain size | D;| for all variables z; € X is

set to 3. In our experiments below, we only vary one parameter at a time, setting the rest at

their default values: |X| =10, py =04, i = 0.6, w = 1, and € = 0. All constraint costs are

randomly sampled from [2,100] and all elicitation costs are randomly sampled from [0, 20].

IWCSP+ECs: Table 4.1 tabulates the empirical results for our IWCSP+EC experiments,

where we vary number of variables |X|, the density p;, and the fraction of unknown costs i.

We make the following observations with regards to the runtime of the algorithms and the

number of unknown costs that they elicit:

e As expected, the runtimes of all algorithms increase with increasing number of variables

|X'| and constraint density p;. This trend is also reflected in the number of unknown costs

elicited. The reason is that the size of the problem, in terms of the number of constraints
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in the problem, increases with increasing |X’| and p;. And all algorithms need to elicit
more unknown costs and evaluate the costs of more constraints before terminating.

e Interestingly, while the number of unknown costs elicited also increases for all algorithms
with increasing fraction of unknown costs ¢, the runtimes of LKC and LUC decrease instead.
The reason is that the ratio of unknown costs elicited compared to the total number of
unknown costs actually decreases with increasing i. Since the size of the problem, in
terms of the number of constraints in the problem, is the same for all values of i (as
they are dependent only on |X| and p;, which remain unchanged), the ratio of unknown
costs elicited roughly reflects the ratio of search space explored. Therefore, as this ratio
decreases with 4, so does the runtime of LKC and LUC. The exception to this observation
is COM, whose runtimes increase slightly from when 7 = 0.2 to ¢ = 0.4, after which it
plateaus. However, the reason is similar to the one above — the ratio of unknown costs
elicited compared to the total number of unknown costs increased slightly when ¢ = 0.2 to
1 = 0.4 and remained relatively unchanged for larger values of 7.

e Finally, COM is generally faster than both LKC and LUC across all parameters. The
reason is because COM is able to prune a larger portion of the search space compared to
LKC and LUC, as reflected by the observation that the number of unknown costs elicited

by COM is smaller than that of LKC and LUC.

We now discuss the costs of the solutions found in terms of their cumulative constraint costs,

cumulative elicitation costs, and their aggregated total costs:

e As expected, the cumulative elicitation cost of the solutions found, which is proportional
to the number of unknown costs elicited, by all algorithms increase with increasing number
of variables |X|, constraint density p;, and fraction of unknown costs . The reason is that

the number of unknown costs in the problem increases with increasing |X|, p1, and i.
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e The cumulative constraint cost of the solutions found by all algorithms also increase with
increasing |X|, p1, and i. However, the reasons for why they increase is different: The
constraint costs increase for increasing |X| and p; because the number of constraints in
the problem increases. As such, the average constraint cost of solutions increases with
increasing |X'| and p.

In contrast, the average constraint cost of solutions should remain relatively unchanged
with increasing ¢ because the number of constraints remain unchanged. In this case, the
constraint costs of solutions found increase because the algorithms find increasingly worse
solutions with increasing 7. As the algorithms do not know the unknown constraint costs
until they are elicited, they will prefer to elicit unknown costs that have smaller elicitation
costs. And since the elicitation cost and unknown constraint cost are not correlated, the
behavior of the algorithms become increasingly random with increasing ¢, thereby resulting
in solutions with larger constraint costs.

e Finally, since both the cumulative elicitation costs and cumulative constraint costs increase
with increasing |X|, p1, and 4, the aggregated total costs also increase similarly.

e In general, COM finds solutions with larger constraint costs than LKC and LUC. However,
its elicitation costs are smaller than those of LKC and LUC. (Our results are statistically
significant with p < 0.05). This implies that COM is able to find relatively good solutions
quickly and uses that solution to prune a large portion of the search space. In contrast,
LKC and LUC explores a larger portion of the search space to find better solutions, but at
the cost of increasing elicitation cost. This behavior is also reflected in the runtimes of
COM, which are smaller than the runtimes of LKC and LUC. The total cost of solutions

found by all three algorithms are all approximately the same.

Figure 4.3 plots the empirical results for our IWCSP+EC experiments, where we vary the

relative weight w from 1 to 10 in increments of 1 and the additive weight € from 0 to 1000
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Figure 4.3: Random Graphs: IWCSP+EC Empirical Results with |X| = 10, p;

1 =0.6

in increments of 100. Each data point in the figures thus shows the result for
heuristic with one of the values of w or e. Data points for smaller values of w and € are in the

bottom right of the figures and data points for larger values are in the top left of the figures.

We plot the tradeoffs between total costs (= cumulative constraint and elicitation costs)

and number of elicited costs as well as the tradeoffs between total costs and runtimes. As
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Figure 4.4: Random Graphs: IWCSP Empirical Results with |X'| = 10, p; = 0.4, and i = 0.6

expected, as the relative and additive weights increase, the total costs increase, the number of
elicited costs decreases, and the runtimes decrease. The key difference between both weights
is that the tradeoffs are much more uniform when using additive weights compared to relative
weights. Therefore, using additive weights may allow users to better control the granularity
of the tradeoffs. Compared to our three heuristics, the random heuristic performs poorly and

randomly.
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When comparing the tradeoffs between total costs and number of elicited costs, LUC is
better than COM, which is better than LKC. In other words, to find solutions of the same
cost, LUC elicits fewer costs than COM, which elicits fewer costs than LKC. However, when
comparing the tradeoffs between total costs and runtimes, the same trend applies when the
runtimes are small, but COM is better than LUC when the runtimes are large (larger than
20s in our experiments). Therefore, when the weights are sufficiently large, COM provides

the best tradeoff between total costs and runtimes.

IWCSPs: We now present our empirical results for our IWCSP experiments. Note that
these are problems without elicitation costs and the weights define the theoretical error

bounds on the quality of solutions found in these problems (Theorems 1, 2, and 3).

While the original LWB algorithm does not allow users to define error bounds, it could be
extended to do so since it uses its own specific heuristic function. We thus parameterize it

the same way using Equation 5.1 and compare against it in our experiments below.

Figure 4.4 plots the empirical results, where we vary the relative weight w and additive weight
€. The key difference for these plots compared to the earlier ones is that the results for LWB

is also included. We make the following observations:

When comparing the tradeoffs between total costs and number of elicited costs, LUC is
better than COM, which is better than LKC. In other words, to find solutions of the same
cost, LUC elicits fewer costs than COM, which elicits fewer costs than LKC. However, when
comparing the tradeoffs between total costs and runtimes, the same trend applies when the
runtimes are small, but COM is better than LUC when the runtimes are large (larger than
20s in our experiments). Therefore, when the weights are sufficiently large, COM provides

the best tradeoff between total costs and runtimes.
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e Similar to the trends in IWCSP+EC problems, as the additive and relative weights increase
(from the bottom right of the figures to the top left of the figures), the total costs of solutions
increase, the number of elicited costs decreases, and the runtimes decrease. Additionally,
the random heuristic also performs poorly in this setting as expected.

e When comparing the tradeoffs between total costs and number of elicited costs, COM and
LKC behave similarly, and they are both better than LUC. Interestingly, this trend is the
opposite of that in IWCSP+EC problems, where LUC was the best. The reason is that
the heuristic function used by LUC to estimate the cost to complete the current partial
solution is poor when elicitation costs are not taken into account. In such a case, the only
contribution to the estimate is the number of yet-to-be elicited unknown costs, which is
then multiplied by a lower bound £ on the cost of all constraints. In our experiments,
L = 2, which is a poor estimate as the costs can be as large as 100.

e This trend is also repeated when comparing the tradeoffs between total costs and runtimes
— to find solutions of the same cost, COM and LKC requires a smaller runtime than LUC.

e When searching for optimal solutions (i.e., w = 1 and € = 0), all three of our algorithms
elicit similar number of costs compared to LWB. LWB is also about one order of magnitude
faster than our three algorithms. The reason is because, unlike our algorithms, LWB does
not use any heuristics to estimate the cost to complete the solution.

e When searching for suboptimal solutions (i.e., w > 1 or € > 0), all three of our algorithms
find solutions of similar costs compared to LWB but with smaller number of elicited costs
once w is sufficiently large. They also find solutions with smaller costs but with similar

number of elicited costs once ¢ is sufficiently large.
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(a) Varying Number of Variables |X|, i = 0.6

| # unknown # of elicited costs runtime (sec) total cost cumulative constraint cost || cumulative elicitation cost
costs LKC | LUC | COM || LKC | LUC | COM || LKC LUC COM | LKC | LUC COM LKC | LUC COM
2 8.00 3.61 | 3.74 | 225 || 0.01 | 0.01 | 0.01 || 294.58 | 302.93 | 273.78 || 220.12 | 225.22 | 226.54 74.46 | T7.72 47.24
3 12.00 5.37 | 6.94 | 3.17 || 0.01 | 0.02 | 0.02 || 457.47 | 491.07 | 414.92 || 344.82 | 348.52 | 347.78 | 112.65 | 142.55 | 67.15
4 16.00 6.58 | 10.06 | 4.03 || 0.07 | 0.19 | 0.08 | 640.94 | 722.07 | 590.52 | 493.89 | 497.78 | 498.75 | 147.05 | 224.28 | 91.78
5 20.00 8.37 | 13.28 | 4.97 | 0.51 | 1.76 | 0.57 | 754.18 | 862.73 | 684.67 | 573.22 | 574.81 | 574.42 || 180.96 | 287.92 | 110.25
6 24.00 10.11 | 17.06 | 5.95 || 4.38 | 17.29 | 4.34 | 911.89 | 1067.14 | 829.99 | 692.96 | 696.15 | 696.15 || 218.93 | 370.98 | 133.84

(b) Varying Fraction of Unknown Costs 4, |X| =5

i # unknown # of elicited costs runtime (sec) total cost cumulative constraint cost || cumulative elicitation cost
] costs LKC | LUC | COM || LKC | LUC | COM | LKC | LUC | COM | LKC | LUC | COM | LKC | LUC | COM
0.2 5.00 4.62 | 4.64 | 4.12 0.46 | 3.94 | 0.53 | 618.67 | 660.66 | 651.38 || 517.84 | 558.07 | 561.45 100.84 | 102.58 89.93
0.4 10.00 6.98 | 7.96 | 4.73 0.47 | 3.13 | 0.54 || 698.28 | 745.37 | 674.69 || 549.25 | 572.77 | 571.86 149.02 | 172.60 | 102.83
0.6 20.00 837 | 13.28 | 497 || 0.51 | 1.76 | 0.57 || 754.18 | 862.73 | 684.67 || 573.22 | 574.81 | 574.42 180.96 | 287.92 | 110.25
0.8 25.00 8.85 | 15.47 | 5.15 0.52 | 1.47 | 0.58 || 773.75 | 915.20 | 695.97 || 583.63 | 583.25 | 582.22 190.12 | 331.95 | 113.75

1.0 30.00 5.30 | 14.03 | 5.00 0.47 | 0.83 | 0.58 || 622.66 | 805.35 | 616.47 || 504.20 | 504.20 | 504.20 118.46 | 301.15 | 112.27

Table 4.2: Smart Home Device Scheduling: IWCSP+EC Empirical Results

4.5.3 Smart Home Device Scheduling

We also evaluate our algorithms on smart home device scheduling problems (described in
Chapter 3), where each home consists of a set of smart devices that can be turned on or
off according to the preferences of the home occupants [109]. We assume that some of the
preferences are unknown to the system and associate an elicitation cost to the unknown

preference so that important devices to the home occupants have smaller elicitation costs.

We generate 100 instances where we vary the number of devices (variables) |X| from 2 to 6 at
each home; the fraction of unknown costs ¢ in each constraint from 0.2 to 1.0; the user-defined
relative weight w from 1 to 5; and the user-defined additive weight € from 0 to 500. All
elicitation costs are randomly sampled from [2,30]. The constraints are set to be unary, and
the domain size |D;| for all variables x; € X is set to 6. To generate the constraint costs and
preferences we follow our experimental setup described in Chapter 3. Table 4.2 shows the

empirical results, where the trends are mostly similar to those in random graphs.
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4.6 Related Work

As our work lies in the intersection of constraint-based models, preference elicitation, and
heuristic search, we will first focus on related work in this intersection before covering the three
broader areas. The body of work that is most related to ours is the work by Gelain et al. [35],
where they introduced IWCSPs as well as a family of DFBnB-based algorithms to solve them.
They parameterized their algorithm based on what preferences must be elicited, when the
elicitation should take place, and who decides the value ordering followed by the algorithm,
resulting in 32 combinations of parameter values. They found that the combination that
works best is LU WW.BRANCH. In this combination, preferences with the worst unknown
costs are elicited first (what = WW), preferences are elicited once the search reaches a leaf
of the search tree (when = BRANCH), and the value ordering is based on a lazy user who
prefers values with smaller costs without considering the constraints involving the current
variable (who = LU). We compare against this algorithm in our empirical evaluations in the
next section. In addition to Incomplete WCSPs, Gelain et al. [35] also introduced Incomplete
Fuzzy CSPs and generalized both models to Incomplete Soft CSPs. Their parameterized

algorithms described above are also generalized to solve the general problem.

Another body of work in this intersection is the use of weighted heuristics in Distributed
Constraint Optimization Problems (DCOPs), which can be viewed as decentralized versions
of WCSPs [29, 76, 86, 139]. For example, additive and relative weights were introduced
for some algorithms [76, 136, 137], which provide additive and relative quality guarantees
as those in Theorem 1. Similarly, relative weights were also introduced for ADOPT and
other search-based algorithms [137], which provide relative quality guarantees as those in

Theorem 1.
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Finally, Conditional-Preference Networks (CP-nets) [7, 97] also lie in this intersection. CP-
nets are a graphical representation model for qualitative preferences and reflects conditional
dependencies between sets of preference statements. In contrast, IWCSPs focuses more on
the notion of conditional additive independence [4], which requires that the cost of an outcome

to be the sum of the “costs” of the different variable values of the outcome.

In the context of the broader constraint-based models where constraints may not be fully
specified, there are a number of such models, including Uncertain CSPs [142], where the
outcomes of constraints are parameterized; Open CSPs [25], where the domains of variables
and constraints are incrementally discovered; Dynamic CSPs [22, 129], where the CSP can

change over time; as well as distributed variants of these models [49, 50, 64, 81, 87, 88, 138].

In the context of the broader preference elicitation area, there is a very large body of work [41],
and we focus on those that are most closely related to our work. They include techniques that
ask users a number of preset questions [109, 121] and send alerts and notification messages to
interact with users [18], techniques that ask users to rank alternative options or user-provided
option improvements to learn a (possibly approximately) user preference function [8, 13, 116,
126], and techniques that associate costs to eliciting preferences and takes these costs into
account when identifying which preference to elicit as well as when to stop eliciting preferences
(e.g., when the cost outweighs the expected gain in utility from eliciting any preference) [63,
122]. The key difference between these approaches and ours is that they identify preferences

to elicit a priori before the search while we interleave preference elicitation and search.

Finally, in the context of the broader heuristic search area, starting with Weighted A* [91],
researchers have long used weighted heuristics to speed up the search process in general
search problems. Often, solutions found by these weighted approaches also have similar

quality guarantees as those in Theorem 1. Researchers have also investigated the use of
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dynamically-changing weights [92, 105]; using weighted heuristic with other heuristic search
algorithms like DFBnB [32], RBFS [54], and AND/OR search [70, 71]; as well as extending

them to provide anytime characteristics [43, 66].

4.7 Conclusions

Incomplete Weighted Constraint Satisfaction Problems (IWCSPs) are an elegant paradigm
for modeling combinatorial optimization problems with partially-specified constraints. To
fully specify such constraints, one must elicit preferences of users. Unfortunately, existing
IWCSP approaches assume that the elicitation of preferences does not incur any additional
cost. This is unrealistic as human users are likely bothered by repeated elicitations and will

refuse to provide an unbounded number of preferences.

To overcome this limitation, we proposed the IWCSP with Elicitation Costs (IWCSP+EC)
model, which extends the IWCSP model to include the notion of elicitation costs. The
objective in this problem is to find a solution that minimizes the sum of both the constraint
costs and elicitation costs. We also introduced three parameterized heuristics — Least Unknown
Cost (LUC), Least Known Cost (LKC) and their combination heuristic (COM) — that allow
users to trade off solution quality for fewer elicited preferences and faster computation times.
Further, in settings where elicitations are free, these heuristics also provide theoretical quality

guarantees on the solutions found.

Our empirical results show that COM finds solutions with larger constraint costs than LKC
and LUC, but finds them faster and with fewer elicitations than LKC and LUC. Therefore,
COM is the preferred heuristic in critical time-sensitive domains. COM also does a better
job at trading off solution quality for smaller runtimes, especially when runtimes are large,

through the use of user-defined weights. In conclusion, our heuristics improve the practical
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applicability of IWCSPs as they now not only take into account elicitation costs but also
provide control knobs, in the form of user-defined weights, to perform tradeoffs along three

key dimensions — solution quality, runtime, and number of elicited preferences.

So far, to address the key drawback of constraint-based models — a priori knowledge on
all constraints — we have only introduced IWCSP+EC, where problems such as scheduling
of smart devices within a smart home are modeled in a centralized approach. As there
are many naturally distributed problems, in the next chapter, we will introduce a novel
framework and algorithms that are more suited to formalize such distributed problems, where
constraints encode users’ preferences and are allowed to be partially specified. An example
of such distributed problems is the problem of distributed meeting scheduling in which not
all users’ preferences of all participants are specified a priori. The next chapter introduces
the Incomplete Distributed Constraint Optimization Problems (I-DCOPs) framework and

algorithms to solve such problems with elicitation strategies in more detail.
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Chapter 5

Intra-execution Elicitation Approach
in Distributed Constraint-Based

Models

To address the key drawback in distributed constraint-based models, we assume that constraint
costs (i.e., preferences) are allowed to be unknown a priori. Thus, we extend the distributed
constraint-based models under the assumption that some of the preferences are not specified.
The unknown preferences will be elicited during the distributed search for optimal/sub-
optimal solutions. Revealing the actual values of the unknown preferences throughout the
search will incur cumulative elicitation costs. In this chapter, we introduce the incomplete
constraint-based models and preference elicitation strategies, where the objective is to find the
solutions that minimize both constraint and elicitation costs in a distributed environment. In

what follows, we briefly introduce the intuition behind our model and motivate our approach
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with a real-world application, then we will discuss our model, algorithms and elicitation

heuristic strategies, and our evaluation analyses in more detail.

5.1 Introduction

The Distributed Constraint Optimization Problem (DCOP) [76, 86] formulation is a powerful
tool to model cooperative multi-agent problems. DCOPs are well-suited to model many prob-
lems that are distributed by nature, where agents need to coordinate their value assignments
to minimize the aggregated constraint costs. This model is widely employed for representing
distributed problems such as meeting scheduling [69], sensor and wireless networks [27, 139],
multi-robot teams coordination [147], smart grids [73], and smart homes [31, 98, 112], coalition

structure generation [123].

The study and use of DCOP have matured significantly over more than a decade since its
inception [76]. DCOP researchers have proposed a wide variety of solution approaches, from
complete approaches that use distributed search-based techniques [76, 136] to distributed
inference-based techniques [86]. There is also a significant body of work on incomplete methods
that can be similarly categorized into local search based methods [27], inference GDL-based
techniques [128], and sampling-based methods [84]. Researchers have also proposed the use
of other off-the-shelf solvers such as logic programming solvers [61, 62] and mixed-integer

programming solvers [46].

One of the core limitations of all these approaches is that they assume that the constraint
costs in a DCOP are specified or known a priori. In some applications, such as meeting
scheduling problems, constraints encode the preferences of human users. As such, some of

the constraint costs may be unspecified and must be elicited from human users.
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To address this limitation, researchers have proposed the preference elicitation problem for
DCOPs [107, 109]. In this preference elicitation problem, some constraint costs are initially
unknown, and they can be accurately elicited from human users. The goal is to identify
which subset of constraints to elicit in order to minimize a specific form of expected error in
solution quality. Unfortunately, it suffers from two limitations: First, it assumes that the cost
of eliciting constraints is uniform across all constraints, which is unrealistic as providing the
preferences for some constraints may require more cognitive effort than the preferences for
other constraints. Second, it decouples the elicitation process from the DCOP solving process
since the elicitation process must be completed before one solves the DCOP with elicited
constraints. As both the elicitation and solving process are actually coupled, this two-phase

decoupled approach prohibits the elicitation process from relying on the solving process.

Therefore, in this chapter, we propose the Incomplete DCOP (I-DCOP) model, which
integrates both the elicitation and solving problems into a single integrated optimization
problem. In an I-DCOP, some constraint costs are unknown and can be elicited. Elicitation
of unknown constraint costs will incur elicitation costs, and the goal is to find a solution
that minimizes the sum of constraint and elicitation costs incurred. To solve this problem,
we adapt a complete algorithm — Synchronous Branch-and-Bounds (SyncBB) [48] — and an
incomplete algorithm — an Anytime Local Search (ALS) [146] variant of Mazimum Gain
Message (MGM) [68], which we call ALS-MGM. We also introduce parameterized heuristics
that can be used by SyncBB and ALS-MGM to trade off solution quality for faster runtimes
and fewer elicitations, and provides quality guarantees for I-DCOPs without elicitation costs

when the underlying DCOP algorithm is correct and complete.
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5.2 Motivation

In a distributed meeting scheduling problem, an organization wishes to schedule a set of
meetings in a distributed manner, where meeting participants have constraints for the
different time slots that they are available as well as preferences over those time slots. This
problem has been one of the first and more popular motivating applications for DCOPs
since its inception [69, 86, 136]. While there are a number of possible formulations, we use
the Private Events as Variables (PEAV) formulation proposed by Maheswaran et al. [69] in
this chapter. In the PEAV formulation, the agents are meeting participants, their variables
correspond to the different meetings that they must attend, and their values correspond to
the different time slots of the meetings.! Equality constraints are imposed on variables of all
agents involved in the same meeting — this enforces that all participants of a meeting agree
on the time of that meeting — and inequality constraints are imposed on all variables of a
single agent — this enforces that each participant cannot attend two meetings at the same
time. Finally, unary constraints are imposed on each of the agent’s variables where the costs

correspond to the preferences of the participant on the different time slots.

To solve this problem, existing work has assumed that all the costs of such constraints are all
known [69, 86, 136]. However, since these costs correspond to preferences of human users, it is
unrealistic to assume that all the preferences are known a priori. These unknown preferences
must thus be elicited if they are needed. Further, the elicitation of such preferences will incur
elicitation costs that correspond to the degree at which a user is bothered by the elicitation
process. As the existing canonical DCOP model is unable to capture these two features, we
describe in the next section a DCOP extension that models unknown constraint costs that

must be elicited as well as the cost of performing such elicitations.

'The description in this section assumes that each agent can control multiple variables.
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(c) Incomplete Constraint Costs and Elicitation Costs

Figure 5.1: Example of an Incomplete DCOP with Elicitation Costs with its Labeled Search
Tree

5.3 Incomplete Distributed Constraint-Based Model

We extend the distributed constraint-based model to Incomplete DCOPs (I-DCOPs), where
some constraints can be partially specified. User preferences for these partially-specified
constraints can be elicited during the execution of I-DCOP algorithms, but they incur some
elicitation costs. Additionally, we extend SyncBB, a complete DCOP algorithm, and ALS-
MGM, an incomplete DCOP algorithm, to solve I-DCOPs. We also propose parameterized

heuristics that can be used by those algorithms to trade off solution quality for faster runtimes

and fewer elicitations.
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5.3.1 Incomplete DCOPs with Elicitation Costs

An Incomplete DCOP (I-DCOP) extends a DCOP by allowing some constraints to be partially
specified. It is defined by a tuple (A, X, D, F, F,E, a), where A, X, D, F, and « are exactly

the same as in a DCOP. There are two key differences:

e The set of constraints F are not known to agents in an I-DCOP. Instead, only the set of
partially-specified constraints F = { f,};il are known. Each partially-specified constraint
is a function f; : [Lcx: Do = RU {00, 7}, where ? is a special element denoting that the

cost for a given combination of value assignment is not specified. The costs R U {oco} that

are specified are exactly the costs of the corresponding constraints f; € F.

D, — R

o & ={e;}i2, is the set of elicitation costs, where each elicitation cost e; : [],cn

specifies the cost of eliciting the constraint cost of a particular ? in f;.

An explored solution space x is the union of all solutions explored so far by a particular
algorithm. The cumulative elicitation cost £(X) = ) . e(X) is the sum of the costs of all

elicitations conducted while exploring x.

The total cost F(x,X) = ay-F(x) + a.-E(X) is the weighted sum of both the cumulative
constraint cost F(x) of solution x and the cumulative elicitation cost £(X) of the explored
solution space X, where oy € (0,1] and a. € [0, 1] such that ay+a. = 1. The weights represent

the tradeoffs between the importance of solution quality and the cumulative elicitation cost.

The goal is to find an optimal complete solution x* while eliciting only a cost-minimal
set of preferences from a solution space x*. More formally, the goal is to find (x*,%*) =

argmin , 5 F(x, X).

95



Figure 5.1(a) shows the constraint graph of an example [-DCOP that we will use as a
running example in this section. It has three variables x1, xo, and x3 with identical domains
Dy = Dy = D3 = {0, 1}. All three variables are constrained with one another and Figure 5.1(b)
shows the partially-specified constraints ﬁ-, their corresponding fully-specified constraints f;,
and the elicitation costs e;. For simplicity, assume that ay = a, = 0.5 throughout this chapter.
Therefore, in this example, the optimal complete solution is x*=(zx;=1,29=1,23=0) and
only that solution is explored (i.e., X = x*). The constraint cost of that solution is 3
(= fillxy = Lae = 1)) + fol{xy = 1,23 = 0)) + f3({xg = 1,23 = 0))). The cumulative
elicitation cost is 2 (= ey((x1 = 1,23 =0)) + e3({xg = 1,23 =0))). Thus, the total cost is

a3+ 0a,2=053+0.52=25.

5.4 Resolution Algorithms and Heuristics

To solve I-DCOPs, one can easily adapt existing DCOP algorithms by allowing them to elicit
unknown costs whenever those costs are needed by the algorithm. We describe below how
to adapt SyncBB, a complete search algorithm, and ALS-MGM, a variant of the MGM [68§]
local search algorithm using the ALS framework [146], to solve I-DCOPs. We will use also

SyncBB and ALS-MGM as the underlying algorithms that use our proposed heuristics later.

5.4.1 Synchronous Branch-and-Bound Algorithm

The operations of SyncBB can be visualized with search trees. Figure 5.1(c) shows the search
tree for our example I-DCOP shown in Figures 5.1(a) and Figures 5.1(b), where levels 1,
2, and 3 correspond to variable x1, x5, and x3, respectively. Left branches correspond to
the variable being assigned the value 0 and right branches correspond to the variable being

assigned the value 1. Each non-leaf node thus corresponds to a partial solution and each leaf
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Figure 5.2: Simplified Execution Trace of SyncBB Without Heuristics
node corresponds to a complete solution. These nodes also correspond to unique CPAs of
agents when they run SyncBB. We label each node of the search tree with an identifier so

that we can refer to them easily below.

When SyncBB evaluates a node n after exploring search space X, it considers only the
cumulative elicitation cost so far £(X) and the constraint costs of the CPA at node n, which
we will refer to as g-values (defined in Chapter 4, Definition 7), denoted by g(n). We refer to

the weighted sum of these values as f-values (defined in Chapter 4, Definition 9), denoted by

f(nvi) = af'g(n) + ae-g(f(),

Assume that all the agents know that there is a lower bound £ on all the constraint costs.
Before calculating f(n,x) at node n, the algorithm estimates the total cost (i.e., constraint
cost + elicitation cost) by replacing unknown constraint costs with £ and summing them
up with the elicitation cost thus far. If the estimated total cost is no smaller than the cost
of the best solution found so far, SyncBB prunes node n. Otherwise, it elicits the unknown
costs of node n and calculates its true total cost. By estimating the total costs, SyncBB only

elicits unknown constraints when their costs are needed.
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Figure 5.2 shows a simplified execution trace of SyncBB, where the CPA at each step of
the algorithm corresponds to the shaded branch of search tree. For example, the CPA is
(1 = 1,29 = 0) in Step 7. The numbers in the shaded nodes correspond to their f-values
when those nodes were expanded by SyncBB. Unshaded nodes with numbers correspond to
nodes whose estimated weighted f-values are maintained by the agents. For example, agent
a3 maintains estimated weighted f-values of nodes [ and m in Step 7 as it needs to figure out
whether those nodes should be expanded or pruned in that step. The upper bound ub, which
corresponds to the cost of the best complete solution found so far, is shown in the figure

beside the root node.

We now describe the trace in more detail. The root agent a; first expands node a followed
by node b in Steps 1 and 2. This is done when it assigns its variable x; the value 0. It
then sends a CPA with this value assignment as well as the cost of this CPA (= 0) and the
cumulative elicitation cost so far (= 0) to its child as. Upon receipt of the message, agent ay
needs to decide whether to expand nodes d or e, which correspond to assigning its variable
o the values 0 or 1, respectively. If the cost of both partial solutions are known, then it
should expand the node with the smaller cost. However, in this case, the costs of both nodes
are unknown. These costs correspond to the unknown constraints fi((z; = 0, x5 = 0)) and
f1(<:171 = 0,29 = 1)). Therefore, it estimates the cost of both nodes and expand the node

with the smallest estimated cost.

Let’s assume the lower bound £ = 1 on all the constraint costs. Using this knowledge, agent
as computes an estimated cost of node d to be 2, which is the sum of the cost of the received
CPA (= 0), the cumulative elicitation cost so far (= 0), the lower bound on the constraint
cost (= ay-1), and the weighted elicitation cost (= e;((x; = 0,22 = 0)) = a,-3). Similarly,
the agent computes the estimated cost of node e to be 1.5. These costs are shown in the

corresponding nodes in Step 2.
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The estimated cost of node e is the smaller of the two. So, in Step 3, agent ay expands node
e by eliciting the unknown cost f((z; = 0,22 = 1)) = 2, updating the weighted cumulative
elicitation cost to -2 = 1, updating the cost of node e to 2 (= cost of received CPA of 0
+ weighted constraint cost of 1 + weighted cumulative elicitation cost of 1), updating its
CPA to include this new value assignment, and sending the updated CPA together with the
weighted cost of the CPA (= 1) and the weighted cumulative elicitation cost so far (= 1) to

its child as.

Upon receipt of this message, agent as needs to decide whether to expand nodes j or k. Using
the same rationale as above, in Step 4, agent az expands node j by eliciting the unknown
costs fo({(xy = 0,23 = 0)) = 3 and f3({(ze = 1,23 = 0)) = 1, incurring a weighted total
elicitation cost of a.-2 = 1, 0.5 for each elicitation. It then updates the weighted cumulative
constraint cost to ay-4 = 2, updates the cost of node j to 5 (= cost of received CPA of 2 +
weighted constraint costs of 2 + weighted cumulative elicitation cost of 1), and updates its
CPA to include this new value assignment. Since agent as is a leaf node, it knows that its
CPA is a complete solution. Since the cost of the solution is smaller than the upper bound, it

updates the upper bound to 5.

Then, it evaluates node k whether it should be expanded or pruned. Note that the estimated
weighted f-value of the node increased from 4 in Step 3 to 5 in Step 4. The reason for
this increase is because the weighted cumulative elicitation cost increased by 1 between
Steps 3 and 4. Since the weighted estimated f-value of node k is no smaller than the upper
bound, agent a3 prunes this node and backtracks to its parent as by sending a BACKTRACK
message that contains its best complete solution, the weighted cumulative constraint cost of

that solution, and the weighted cumulative elicitation cost so far.
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Upon receipt of the BACKTRACK message, agent as then updates its weighted cumulative
elicitation cost to 2 based on the cost received in the message, and updates the weighted
estimated f-value of node d to 4 (= constraint cost of 0 4+ weighted lower bound of 0.5 +
weighted elicitation cost of 1.5 from e;((z1 = 0,22 = 0)) + weighted cumulative elicitation
cost of 2). If this cost is no smaller than the upper bound in the message, it will prune this
branch and backtrack. Since the cost is smaller, it will expand the node by eliciting the
unknown cost, updates its CPA to include this new value assignment, and sends the updated
CPA together with the weighted cost of the CPA and the weighted cumulative elicitation
cost so far to its child as. Since the estimated costs of both nodes h and ¢ are no smaller
than the upper bound, the algorithm prunes the branches and backtracks to agent a;. Then
it updates the weighted cost of the CPA to 6.5 and the weighted cumulative elicitation cost
so far to 3.5. The algorithm in Step 8 finds a solution with a cost smaller than the current
upper bound 6.5. Thus, it updates the upper bound to 5.5. The process continues until the

root agent backtracks and returns the best complete solution found.

5.4.2 Anytime Local Search - Maximum Gain Message Algorithm

Just like for regular DCOPs, ALS-MGM here also uses a Breadth-First Search spanning tree
(BFS-tree) of the constraint graph to aggregate costs up the tree to the root agent such that
it is able to detect when a better solution is found. When such a solution is found, the root
agent propagates the step number in which that solution is found down to its descendants.
Therefore, upon termination, all the agents have a consistent view on when the best solution

is found and take on their corresponding values.

In more detail, Algorithm 1 presents the pseudo-code for each agent in ALS-MGM. In

lines 1-7, each agent initializes the parameters required by the ALS framework. The root
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agent initializes an additional parameter to keep track of the cost of the best solution. In
line 8, each agent chooses a value randomly or based on some heuristic (we introduce one
such heuristic in Section 5.4.3). Every agent performs m + d + h synchronous steps (line
9), where m > d + h is the number steps that a regular MGM algorithm would run, d is
the distance between the root and the agent, h is the height of the agent in the BFS-tree
and, thus, d + h is the height of the BFS-tree. Since the ALS framework requires that
m > d + h, it runs an additional d + h steps compared to MGM because those additional

steps are needed to ensure that the best solution found is propagated by the root to every agent.

In lines 10-19, each agent sends messages, calculates the cost costy,, of its current assignments
valueg., given the assignments of its neighbors, calculates the best assignment best value
given the assignments of its neighbors and the corresponding cost cost,.., and calculates
its loss (08Ssep, given the corresponding costs costye,. The root agent checks if the cost it
calculated is smaller than the best cost found thus far best cost. If so, it saves or updates
the cost, value, and index of the best assignment so far. A non-root agent checks whether
the best index from its parent is new. If so, it updates the best index best_index and value
assignment best of the step of the best assignment (lines 20-27). In lines 28-30, each agent
checks its own calculated loss and those that it received from the neighbors. If the agent’s
loss is the smallest among all the neighbors’ losses, then the agent changes its current value
value__step to its best value best_wvalue given the assignments of its neighbors and elicits

any unknown constraint costs involved with that value.

In lines 31-32, each agent deletes information that no longer needs to keep since the information
has been propagated to the root, and if the best solution is found during one of those previous

steps, the root would have propagated that information to the agent. In line 33, each agent
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Algorithm 1: Pseudo-code for each ALS-MGM Agent

h < height of the agent in the BFS-tree
d < distance of the agent from the root
best < null
best index <+ null
step < 0
if the agent is the root node in the BFS-tree then
‘ best cost + oo
end
valuegte, < a random value from the agent’s domain
while step < m do
send valuesiep, 05Sstep, and costg, to parent
send valuess, and (054, to non-tree neighbors
send valuesiep, [0S551ep and best _index to children
wait to receive messages from neighbors
cOStgiep <— estimated cost with valuesgie,
for all values d from the agent’s domain do
| cost(d) < estimated cost with d
end
best_wvalue < argmin, cost(d)
COSt e < estimated cost with best value
108Sstep < (COStpew - COStstep)
if the agent is the root node in the BFS-tree then
if costyep < best_cost then
best cost < costgiep
best < valuestep
best_index < step
end
end

o

best < value;

best_index + j

end

if l0sssep < losses of all neighbors then
valuege, < best _value

Elicit unknown constraints costs

end

Delete value gep—o+a)
Delete cost (siep—n)
step ++

end

f message from parent includes new best_index j then
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41
42
43
44
45

46

for d + h iterations do

wait to receive messages from parent

if message from parent includes a new best_indexr j then
best < value;

L best_index < j

send best index to children

increments its step counter and this process repeats until it has ran for m steps. Then, each
agent performs d + h additional steps to propagate the index of the best step down the tree
(lines 34-39).

Taking our example I-DCOP in Figure 5.1, the BFS-tree is similar to its constraint graph
shown in Figure 5.1(a), when z; is the root, and the height of the tree is 1. The height and
distance parameters in x, and 3 are initialized to h = 0 and d = 1, respectively. Let’s assume
that all agents choose value 1 for their variables and m = 1. In step 0 of the algorithm, all
agents have already selected a value for their variables randomly. We let each agent elicit
all unknown constraint that they are involved in only in step 0 to find the first complete
solution. In this step, agent a3 assigns its variable x3 the value 1 and receives the values of

its neighbors (x5 = 1) and parent (z; = 1).

To calculate the cost of its assignment, it elicits the unknown cost f3((zo = 1,23 = 1)). With a
weighted elicitation cost of eg((zy = 1,23 = 1)) = -1, the total cost of the partial assignment
is fo(z1 =Lz =1))+ fs((za=1L,zs =1)) +es((ze =125 =1)) = ;- (1+2)+a.- 1 =2
(assuming ay = o = 0.5). Then, it updates the cumulative elicitation cost to 0.5. Agent as
also calculates the value of improvement (loss) by checking if variable x3 changes its value to
0 assuming all neighbors keep their current values. The total estimated cost of this change is
fol{zr = 1,25 = 0))+ fa((2o = 1,25 = 0)) +es((zy = 1,23 = 0)) = ap(1+1) - (141) = 2,

when all agents know that a lower bound £ on all the constraint costs is 1. The loss at step
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0 for agent a3 is 2 — 2 = (0. Similarly, in agent as, the total cost of the partial assignment is
fillen =1z =1))+ fs({ze =125 =1)) +es({(zo=1,x3=1)) =a;- (1 +2)+ -1 =2.
The total estimated cost for agent ay changing to a new value is fi({(zy = 1,29 = 0)) +
f3({xg = 0,23 = 1)) = ay - (1 +4) = 2.5 and the loss is 2.5 — 2 = 0.5. The root agent a,
calculates the cost of its assignment based on the information received from its children
(at step 0, the costs received from children are still 0). The total cost of the assignment
iz =129 =1)) + fo({(z1 = 1,23 =1)) = ay - (1 + 1) = 1. The total estimated cost for
agent a; changing to a new value is fy((z; = 0,2, = 1)) + fz((ﬂcl =0,z3=1)) +e1({xg =

0,z9 =1))+ex((z1 =0,253 =1)) =y - (14+1)+ae-(24+1) = 2.5, and the loss 2.5 — 1 = 1.5.

In Step 1, the value message agents send to their parent and children include the cost
calculation. Thus, the root agent has received the cost calculation from its children and
can calculate the cost of a complete assignment f1({(x; = 1,20 = 1)) + fo({(z; = 1,253 =
D)+ fs({(xg =123 =1)) =ay- (1+14+2)+a.-1 =2.5. Since the calculated cost is smaller
than initial value of the best cost, the root agent saves the information for this assignment as
the best one found so far. In Step 2, all agents have received the best index from the root

agent, where the best cost found so far is 2.5.

5.4.3 Heuristic Strategies

To speed up SyncBB, one can use cost-estimate heuristics h(n) to estimate the sum of the
constraint and elicitation costs needed to complete the CPA at a particular node n. And if
those heuristics are underestimates of the true cost, then they can be used to better prune
the search space, that is, when f(n,x) = as-g(n) + h(n) + a.-£(x) > F(x,Xx), where x is the

best complete solution found so far and x is the current explored solution space.
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We now describe below a cost-estimate heuristic that can be used in conjunction with SyncBB
to solve I-DCOPs. This heuristic makes use of an estimated lower bound £ on the cost of all
constraints f € F. Such a lower bound can usually be estimated through domain expertise.
In the worst case since all costs are non-negative, for our running example we set the lower
bound (£) to 1. The more informed the lower bound, the more effective the heuristics will be

in pruning the search space.

Additionally, this heuristic is parameterized by two parameters — a relative weight w > 1 and

an additive weight ¢ > 0. When using these parameters, SyncBB will prune a node n if:
w-f(n,x) +e> F(x,X) (5.1)

where x is the best complete solution found so far and x is the current explored solution
space. Users can increase the weights w and € to prune a larger portion of the search space
and, consequently, reduce the computation time as well as the number of preferences elicited.
However, the downside is that it will also likely degrade the quality of solutions found.
Further, in I-DCOPs where elicitations are free (i.e., the elicitation costs are all zero), we
theoretically show that the cost of solutions found are guaranteed to be at most w - OPT + e,

where O PT is the optimal solution cost.

O
&

(a) CAC  (b) ADC

Figure 5.3: Constraints Estimated Directly by Agent x; for the CAC and ADC Heuristics
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Child’s Ancestors’ Constraints (CAC) Heuristic: This heuristic is defined recursively
from the leaf of the pseudo-chain (i.e., last agent in the variable ordering) used by SyncBB
up to the root of the pseudo-chain (i.e., first agent in the ordering). Agent z; in the ordering
computes a heuristic value h(z; = d;) for each of its values d; € D; as follows: h(z; =d;) =0

if x; is the leaf of the pseudo-chain. Otherwise:

h(a:zzd,) =
dmiB [af-f(mi:di, Te=d.) + ae-e(ri=d;, x.=d.) + h(fvczdc)]
€D,
i -f c:d07 =d e’ c:dm =d 2
+ Z d?’élgk [Ozf f(z rp=di) + ac-e(z Tk k‘):| (5.2)
rrE€Anc(ze)\{z:}

where z. is the next agent in the ordering (i.e., child of x; in the pseudo-chain), Anc(z.) is
the set of variables higher up in the ordering that x. is constrained with, and each estimated
cost function f corresponds exactly to a partially-specified function f , except that all the
unknown costs ? are replaced with the lower bound £. Therefore, the estimated cost f (x) is

guaranteed to be no larger than the true cost f(x) for any solution x.

For a parent z,, of a leaf agent z;, the heuristic value h(z,=d,) is then the minimal constraint
and elicitation cost between the two agents, under the assumption that the parent takes on
value d,, and the sum of the minimal constraint cost of the leaf agent with its ancestors. As
the heuristic of a child agent is included in the heuristic of the parent agent, this summation
of costs are recursively aggregated up the pseudo-chain. Figure 5.3(a) illustrates an example
pseudo-chain, where the constraints whose costs are directly estimated by agent x; to compute
the CAC heuristic are bolded in solid lines. Constraints whose costs are indirectly estimated

through heuristic values that are propagated up through the pseudo-chain are not shown.

It is fairly straightforward to see that this heuristic can be computed in a distributed manner

— the leaf agent x; initializes its heuristic values h(x;=d;) = 0 for all its values d; € D; and
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ub = infinity

ub = infinity

ub = infinity

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4
Figure 5.4: Simplified Execution Trace of SyncBB with CAC Heuristic

computes the latter term in Equation 5.2:

drpeD
zE€Anc(xy) R

Z min {af-f(xl:dl,xk:dk)+af-e(:vl:dl,:17k:dk) (53)

for each of its values d; € D;. It then sends these heuristic values and costs to its parent.
Upon receiving this message, the parent agent z, uses the information in the message to
compute its own heuristic values h(z,=d,) using Equation 5.2, computes the latter term
similar to Equation 5.3 above, and sends these heuristic values and costs to its parent. This
process continues until the root agent computes its own heuristic values, at which point it

starts the SyncBB algorithm.

Figure 5.4 shows the order of node expansions conducted by SyncBB using the CAC heuristic
on our example [-DCOP. Note that the algorithm needs to only expand 4 nodes and elicit 1
unknown constraint cost before returning a solution of weighted cost 2.5. In contrast, SyncBB
without heuristics expanded 9 nodes elicited 4 unknown constraint costs before returning a

solution of weighted cost 5.5 (see Figure 5.2).

Agent’s Descendants’ Constraints (ADC) Heuristic: Our second heuristic is called
Agent’s Descendants’ Constraints (ADC) heuristic. Like the CAC heuristic, it is also defined
recursively from the leaf of the pseudo-chain used by SyncBB up to the root of the pseudo-

chain. Agent z; in the ordering computes a heuristic value h(x; =d;) for each of its values
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d; € D; as follows: h(x; = d;) = 0 if x; is the leaf of the pseudo-chain. Otherwise,

dmilr)l [aff(a:i:di,xc:dc)—i—ae-e(xi:di,mczdc)—i—h(xczdc)]
€D
+ Z dfélﬁk[o‘f'f(x’:di’xk:d’f) +ae-e(xi:di,xk:dk)} (5.4)
rr€Des(z;)\{zc}

where z. is the next agent in the ordering, Des(x;) is the set of variables lower down in
the ordering that x; is constrained with, and each estimated cost function f is as defined
for the CAC heuristic above. Figure 5.3(b) illustrates an example pseudo-chain, where the
constraints whose costs are directly estimated by agent z; to compute the ADC heuristic
are bolded in solid lines. Constraints whose costs are indirectly estimated through heuristic

values that are propagated up through the pseudo-chain are not shown.

Like CAC, it is also straightforward to see that this heuristic can be computed in a distributed
manner — the leaf agent z; initializes its heuristic values h(x; = d;) = 0 for all its values
d; € D; and sends these heuristic values to its parent. Upon receiving this message, the
parent agent x, uses the information in the message to compute its own heuristic values
h(x,=d,) using Equation 5.4 and sends them to its parent. This process continues until the

root agent computes its own heuristic values, at which point it starts the SyncBB algorithm.

Neighbors’ Constraints (NHC) Heuristic: Instead of having each agent in ALS-MGM
choose its initial value randomly from its domains, one can also use cost-estimate heuristics
to estimate costs for each value and have the agent choose the value that minimizes the
estimated costs. Using cost-estimate heuristics helps ALS-MGM to find solutions with smaller
costs faster since it starts with a better initial solution, which is more pronounced when there

is not enough time to let the algorithm run until convergence. In NHC heuristic, each agent

108



x; computes a heuristic value for each of its values d; € D; as follows:

h(zi=d;) = E dmiB [af-f(l‘i:di,xczdc) + ae-e(zi=d;, x.=d.) (5.5)
€D,
zcENR(z;)

where z. is a neighboring variable, Nh(x;) is the set of neighboring variables that x; is
constrained with, and each estimated cost function f corresponds exactly to a partially-
specified function f , except that all the unknown costs 7 are replaced with the lower bound
L. Therefore, the estimated cost f (x) is guaranteed to be no larger than the true cost f(x)

for any solution x.

5.4.4 Variable and Value Ordering

Instead of choosing a random order to explore the different values of an agent, we order their
values according to the best-available cost function f(n,X) = ay - g(n) + h(n) + . - £(X),
where n is the node corresponding to the value of the agent and x is the current explored

solution space.

Instead of choosing a random ordering of variables for SyncBB, we order the variables based
on the number of their constraints that has unknown costs — the variable with the fewest
number of constraints with unknown costs as the root and the variable with the most number

of constraints with unknown costs as the leaf.

The rationale for this heuristic is the following: When an agent is higher up in the search tree
(i.e., closer to the root), it will likely need to explore all of its values since the partial cost
of its CPA (i.e., the partial solution from the root to the agent) is likely to be small as the
CPA only contains the value assignments of few agents. As a result, if any of its constraints
contain unknown costs, those costs will likely need to be elicited. In contrast, when an agent

is lower down in the search tree (i.e., closer to the leaf), it is more likely to be able to prune
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many of its values since the partial cost of its CPA is likely to be larger as the CPA contains
value assignments of more agents. As a result, it is more likely that many of its unknown

costs will not be elicited.

5.4.5 Theoretical Results

Theorem 4 The computation of the CAC and ADC heuristics require O(|.A]) number of

messages. The computation of the NHC heuristic requires no messages.

Proof : The CAC and ADC heuristics are recursively computed starting from the leaf to the
root and will take exactly |A| — 1 number of messages. The NHC heuristic is not computed

recursively and does not send any messages to compute its heuristic cost. |

Lemma 1 When all elicitation costs are zero, the CAC, ADC and NHC heuristics are

admissible.

Proof : We first prove the admissibility of the CAC heuristic. We prove that h(n) <
F(x,) — ay-g(n), where x,, is the best complete solution in the subtree rooted at node n,
for all nodes n in the search tree. We prove this by induction from the leaf agent up the

pseudo-chain:

e Leaf Agent: For a leaf agent z;, h(x; = d;) = 0 for each of its values d; € D;. Therefore,
the inequality h(n) =0 < F(x,) — ay-g(n) trivially applies for all nodes n corresponding
the agent x; taking on its values d; € D;.

e Induction Assumption: Assume that the lemma holds for all agents up to the (k—1)-th

agent up the pseudo-chain.

110



e The k-th Agent: For the k-th agent x; from the leaf:

h(zr=dy) =
dnéilr)l [af-f(xk:dk,xc:dc) + qe-e(rp=dg, v.=d.) + h(xczdc)]
+ Z dmmelgm [af- fre=deyxm=dpm) + e- e(mczdc,xm:dm)] (5.6)
rmEAnc(xze)\{zk}

where z. is the next agent in the ordering (i.e., the (k — 1)-th agent), Anc(z.) is the set
of variables higher up in the ordering that x. is constrained with. Based on our induction
assumption the lemma holds for all agents up to the (k — 1)-th agent up the pseudo-chain,

hence, we have:

h(n) < F(xn) — a;y-g(n), (5.7)

where node n corresponds to the (k — 1)-th agent in the pseudo-chain, which we denote it

as agent z.. For each estimated cost function f in the CAC heuristic, it is easy to see:

~

flee=de,vm=dn) < f(xe=de, xm=dy), (5.8)

for any pair of agents x. and x,, with any of their value combinations since all unknown
costs 7 are replaced with the lower bound £ on all constraint costs. Thus, combined with

the premise that elicitation costs are all zero and the induction assumption, we get:

h(zp=dy) =
dmijrjl [af S(xp=dp, we=d.) + e - e(x=dj, xo=d.) + h(xczdc)]
Ce C
+ Z mi}r)l [af . f(xc:dc, T =dm) + ¢ - e(x.=dq, xm:dm)} (5.9)
rmEAnc(ze)\{zr} mEPm

< i : =d c:dc h c:dc
< pin [af flep=dy,x )+ h(z )
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+ Z dfg/gm afp - f(xe=de,Tm=dm) < F(xn) —ay - g(n) (5.10)
xmEAnc(ze)\{zr}

where node n corresponds to the agent x; taking on its value di € Dy. [ |

To prove the admissibility of ADC which is very similar to that of CAC, we need to prove
that h(n) < F(x,) — ay-g(n), where x,, is the best complete solution in the subtree rooted at
node n, for all nodes n in the search tree. We prove this by induction from the leaf agent up

the pseudo-chain:

e Leaf Agent: For a leaf agent z;, h(x; = d;) = 0 for each of its values d; € D;. Therefore,
the inequality h(n) =0 < F(x,) — ay-g(n) trivially applies for all nodes n corresponding
the agent x; taking on its values d; € D;.

e Induction Assumption: Assume that the lemma holds for all agents up to the (k—1)-th
agent up the pseudo-chain.

e The k-th Agent: For the k-th agent zj from the leaf:

h(.%‘k:dk)z
dmig [af-f(xk:dk, xe=de) + ae-e(r=di,r.=d.) + h(xc:dc)]
Ce c
1 . ¢ :d m:dm e’ :d 3 m:dm 11
b o fla—dian=da) + oo en=dun=d)| 611

mEDes(xk)\{zc}

where . is the next agent in the ordering (i.e., the (kK — 1)-th agent), Des(zy) is the set
of variables lower down in the ordering that xj is constrained with (which is the set of
descendants of variable xj). Based on our induction assumption the lemma holds for all

agents up to the (k — 1)-th agent up the pseudo-chain, hence, we have:

h(n) < F(xa) — ag-g(n), (5.12)
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where node n corresponds to the (k — 1)-th agent in the pseudo-chain, which we denote it

as agent x.. For each estimated cost function f in the ADC heuristic, it is easy to see:

~

for any pair of agents x; and x,, with any of their value combinations since all unknown
costs 7 are replaced with the lower bound £ on all constraint costs. Thus, combined with

the premise that elicitation costs are all zero and the induction assumption, we get:

h(zr=dy) =

dmilel [af . f(xk:dk,xczdc) + ae - e(xp=di, zc.=d;) + h(xczdc)]

Ce c

+ Z ,in [af~f(xk—dk,xm—dm) +ae~e(xk—dk,xm—dm)] (5.14)
xm€Des(zp)\{zc}

< 1 . — = =

_drcrélgc [af flzr=dg,zc=d.) + h(z.=d.)

i . = = < — .

+ Z G min ag fler=di, xm=dn) < F(x,) —ay-g(n) (5.15)

xm€Des(zp)\{zc}
where node n corresponds to the agent x; taking on its value di € Dy. |

Theorem 5 When all elicitation costs are zero, SyncBB with the CAC and ADC' heuristics
parameterized by a user-defined relative weight w > 1 and a user-defined additive weight € > 0
will return an I-DCOP solution whose cost is bounded from above by w-OPT + €, where OPT

is the optimal solution cost.

Proof : The proof is similar to the proofs of similar properties [136] for other DCOP search
algorithms that also use heuristics. The key assumption in the proofs is that the heuristics
employed are admissible heuristics — and the CAC and ADC are admissible according to

Lemma 1. [ |

113



5.5 Experimental Evaluations

We evaluate our algorithms, SyncBB using the CAC and ADC heuristics and ALS-MGM
using the NHC heuristic, against their baselines without heuristics on I-DCOPs with and
without elicitation costs. In all experiments we set ay = a. = 0.5. Data points are averaged

over 25 instances.

5.5.1 Metrics

We evaluate our algorithms on two benchmarks random graphs, and distributed meeting
scheduling, where we measure the various costs of the solutions found — the cumulative
constraint costs, cumulative elicitation costs, and their aggregated total costs — the number
of unknown costs elicited, the number of nodes expanded after SyncBB terminates, and we

measure the simulated runtimes of our algorithms (in sec).

5.5.2 Random Graphs

We generate 25 random (binary) graphs [24], where we vary the number of agents/variables
|A| from 10 to 180; the user-defined relative weight w from 1 to 10; and the user-defined
additive weight e from 0 to 50. The constraint density p; is set to 0.4, the tightness p, is set
to 0; the fraction of unknown costs in the problem is set to 0.6. In our experiments below,
we only vary one parameter at a time, setting the rest at their default values: |A| = 10,
|D;] =2, w=1, and ¢ = 0. All constraint costs are randomly sampled from [2, 5] and all
elicitation costs are randomly sampled from [0, 20]. As mentioned earlier, in the ALS-MGM
algorithm, the number of steps that the algorithm needs to run before termination is equal

to m + H, where m is the number of steps that a regular MGM algorithm would run and H
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(a) SyncBB Without Heuristics

Without Elicitation Costs With Elicitation Costs
M #cgéltl;' # of elic. | runtime | const. cost ‘ # exp. nodes || # of elic. | runtime | total costs ‘ const. cost ‘ elic. cost ‘ # exp. nodes
10 43 39.92 7.55E-01 51.88 1.65E+403 18.08 5.60E-02 189.28 60.20 129.08 6.70E+401
12 62 58.80 2.59E+00 75.48 6.76E403 25.52 9.28E-02 264.88 87.16 177.72 1.25E402
14 86 81.88 9.18E+00 107.40 2.40E+04 35.16 7.68E-02 363.80 123.36 240.44 9.24E+01
16 115 110.92 | 3.58E+01 145.40 9.51E+404 48.56 1.13E-01 485.40 163.80 321.60 1.60E+02
18 146 139.80 1.24E4-02 184.44 3.54E+05 60.76 1.29E-01 621.04 206.68 414.36 3.08E+02
20 182 175.56 | 5.52E+02 231.64 1.36E+4-06 72.84 1.63E-01 741.76 252.88 488.88 2.79E+402
(b) SyncBB with CAC Heuristic
10 43 37.96 3.63E-01 51.88 7.73E+02 12.96 2.15E-02 173.88 61.64 112.24 2.21E+01
12 62 57.32 1.22E4-00 75.48 2.97E+403 18.32 1.82E-02 242.12 88.72 153.40 2.99E+01
14 86 80.32 3.58E+00 107.40 9.50E+403 26.08 3.69E-02 350.48 125.48 225.00 3.90E+01
16 115 110.80 1.61E401 145.40 4.26E+04 35.56 3.03E-02 464.16 165.24 298.92 4.83E+01
18 146 139.12 | 4.16E+01 184.44 1.21E+405 44.84 4.75E-02 590.20 206.64 383.56 6.11E+01
20 182 164.76 | 3.67E+02 231.64 4.09E+405 54.52 6.29E-02 722.68 258.28 464.40 5.06E+01
(¢) SyncBB with ADC Heuristic
10 43 39.00 4.89E-01 51.86 1.56E+4-03 14.10 2.31E-02 190.74 60.96 129.78 2.33E+01
12 62 58.52 1.93E+00 75.48 6.25E+03 19.80 1.77E-02 267.36 88.60 178.76 3.06E+01
14 86 81.28 7.81E+00 107.40 2.23E+04 26.72 3.20E-02 375.30 122.22 253.08 3.25E+01
16 115 110.18 | 3.22E+01 145.40 8.89E+04 35.98 2.63E-02 496.68 164.80 331.88 3.96E+01
18 146 139.68 1.23E4-02 184.44 3.39E+05 44.40 3.60E-02 621.42 208.14 413.28 3.93E+01
20 182 173.88 1.17E+403 231.64 1.29E4-06 54.80 5.41E-02 771.60 259.24 512.36 4.08E+01

Table 5.1: Random Graphs: [-DCOP Empirical Results with SyncBB and its Heuristics

is the height of the BFS tree. Since the ALS framework requires that m > H, we vary m

from H to H + 240.

Tables 5.1 and 5.2 tabulate our empirical results, where we vary the number of agents |.A|.

Figure 5.5 plots the convergence rate of ALS-MGM when elicitation is free. We make the

following observations:

e As expected, the runtimes and number of unknown costs elicited by all algorithms increase

with increasing the number of agents |A|. The reason is that the size of the problem, in

terms of the number of constraints in the problem, increases with increasing |.A|. And all

algorithms need to elicit more unknown costs and evaluate the costs of more constraints

before terminating.

e On problems without elicitation costs, SyncBB with CAC is faster than without CAC.

The reason is the following: The CAC heuristic value includes estimates of not only
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Figure 5.5: Random Graphs: Varying Number of Steps with |A| = 100

all constraints between its descendant agents, but also constraints between any of its
descendant agents with any of its ancestor agents. The CAC heuristic is thus likely to
be more informed and provide better estimates. For ALS-MGM, its runtimes with and
without NHC are about the same as the runtimes are dependent on the the number of
steps the algorithms run, and they both run for the same number of m + H steps. However,
ALS-MGM finds better solutions (i.e., solutions with smaller costs) with NHC than without
NHC because it starts with a better initial solution with the heuristic. Figure 5.5 also
clearly shows that the difference in the quality of solutions is largest at the start of the
algorithm and decreases as the algorithm runs more steps. Therefore, the heuristic is ideally
suited for time-sensitive applications with short deadlines, where there is not enough time
to let ALS-MGM run for a long time until convergence.

On problems with elicitation costs, SyncBB with CAC is still faster than without CAC.
The reason is that the number of nodes expanded is significantly smaller with CAC than
without CAC. For ALS-MGM, the same trend as above applies here as well and for the

same reasons.
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(a) ALS-MGM Without Heuristic

Al | # of unk. Without Elicitation Costs With Elicitation Costs

Sosts # of elic. ‘ runtime ‘ const. cost || # of elic. ‘ runtime | total cost ‘ const. cost | elic. cost
20 182 68.12 1.27E-01 253.04 69.44 1.26E-01 951.48 256.76 694.72
60 1699 492.00 | 2.47E+00 2459.04 496.00 | 2.47E+00 | 7429.16 2464.24 4964.92
100 4752 1302.44 | 2.58E+00 6909.20 1313.28 | 2.56E+00 | 20112.36 6926.20 13186.16
140 9341 2494.48 | 7.62E400 | 13594.44 2502.52 | 7.62E400 | 38725.12 13612.04 | 25113.08
180 15466 4080.32 | 9.79E+400 | 22521.76 4077.44 | 9.90E400 | 63223.6 22530.52 | 40693.08

(b) ALS-MGM with NHC Heuristic

20 182 72.04 1.25E-01 246.92 65.96 1.22E-01 865.96 249.96 616.00
60 1699 521.60 | 2.46E+00 2417.20 476.56 | 2.44E+00 | 6913.00 2429.84 4483.16
100 4752 1364.92 | 2.58E+00 6825.92 1262.44 | 2.57E+00 | 18844.00 6870.28 11973.72
140 9341 2591.76 | 7.68E400 | 13458.80 2416.52 | 7.66E+00 | 36647.04 13519.4 23127.64
180 15466 4210.04 | 9.93E400 | 22356.04 3956.84 | 1.01E401 | 60443.8 22407.04 | 38036.76

Table 5.2: Random Graphs: I-DCOPs Empirical Results with ALS-MGM and its Heuristic

e Overall, the use of heuristics in conjunction with SyncBB reduces the number of unknown
costs elicited by up to 22% and the runtime by up to 57% when elicitation is not free;
and the use of heuristics in conjunction with ALS-MGM improves the quality of solutions
found. Therefore, these results highlight the strengths of using our proposed heuristics for
solving I-DCOPs.

e We observe that ADC follows a similar trend to that of CAC. On problems without
elicitation costs, SyncBB with CAC is faster than with ADC, which is faster than without
heuristics. The reason is the following: The ADC heuristic value of an agent includes
estimates of all constraints between all its descendant agents. The CAC heuristic value
includes estimates of not only these constraints, but also constraints between any of its
descendant agents with any of its ancestor agents. The CAC heuristic is thus likely to be
more informed and provide better estimates. On problems with elicitation costs, SyncBB
with heuristics is still faster than without heuristics. The reason is that the number of
nodes expanded is significantly smaller than without heuristics. However, neither heuristic

dominates the other.
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Figure 5.6: Random Graphs: Varying Additive Weights with |.A| = 10

Figure 5.6 plots our empirical results, where we vary the user-defined additive bound (weight)
e for the problems when elicitation is free (i.e., all elicitation costs are zero). Additive weights
increases from right to left on the top axis of the Figure. Each data point in the figures thus
show the result for one of the algorithms with one of the values of €. Data points for smaller
values of € are in the bottom right of the figures and data points for larger values are in the
top left of the figures. We plot the tradeoffs between total cost (= cumulative constraint and
elicitation costs) and number of elicited costs. As expected, as the additive bound € increases,
the number of elicitations decreases. However, this comes at the cost of larger total costs.

Between the two algorithms, SyncBB with CAC is the best.

We omit plots of results where we vary the relative weight w as their trends are similar to
those shown here, and we also omit plots of results with elicitation costs as their trends are

similar to those without elicitation costs for both additive and relative weights.

Figure 5.7 plots the convergence rate of ALS-MGM for problems with [ 4] = 20, when

elicitation is free. As expected, the total cost decreases with increasing the number of steps in
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Figure 5.7: Random Graphs: Varying Number of Steps with |A| = 20

ALS-MGM with NHC and without NHC in the left figure. Both ALS-MGM and ALS-MGM-
NHC can find very close to optimal solutions as the number of steps increases. However, the
number of elicited constraints costs increases with increasing the number of steps in both
ALS-MGM and ALS-MGM-NHC, in the right figure, which is still smaller than the number
of elicited constraint costs by SyncBB with CAC when finding the optimal solution (i.e.,
164.76). As we increase the number of steps to find better solutions, ALS-MGM with NHC
heuristic requires fewer number of elicitations than ALS-MGM without heuristic. The reason
is ALS-MGM with the NHC heuristic starts with better initial solutions and converge to
better solutions faster than ALS-MGM without heuristic, therefore requires fewer number of
elicitations. Figure 5.5 clearly shows that the difference in the quality of solutions is largest
at the start of the algorithm and decreases as the algorithm runs more steps. Therefore,
the heuristic is ideally suited for time-sensitive applications with short deadlines, where
there is not enough time to let ALS-MGM run for a long time until convergence. Moreover,
Figure 5.5 shows the significant scalability of ALS-MGM compare to the SyncBB algorithm

with heuristics.
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(a) SyncBB Without Heuristics

Without Elicitation Costs With Elicitation Costs
|X| | |F]| #.of runtime const. | # of nodes #.of runtime total | const. | elic. | #of nodes
elic. cost expanded elic. cost cost cost expanded

9 16 || 14.20 | 1.36E4-00 | 72.66 | 2.14E403 | 12.00 | 3.60E-01 | 199.76 | 82.16 | 117.6 | 1.69E403
12 | 26 || 13.12 | 8.73E400 | 107.36 | 1.4TE+04 | 11.54 | 2.70E400 | 236.48 | 115.82 | 120.66 | 1.24E4-04
15 | 43 | 12.82 | 8.12E401 | 136.24 | 1.25E+05 || 13.32 | 3.156E401 | 272.58 | 146.05 | 126.51 | 1.19E4-05
18 | 61 | 13.80 | 5.69E402 | 152.50 | 9.06E-+05 || 13.56 | 1.83E4-02 | 291.70 | 158.40 | 133.30 | 7.79E4-05

(b) SyncBB With CAC Heuristic

9 16 | 13.62 | 1.24E4-00 | 72.66 | 1.94E403 || 11.00 | 2.73E-01 | 195.04 | 83.20 | 111.84 | 1.32E+03
12 | 26 || 12.98 | 7.00E+00 | 107.36 | 1.18E+04 | 10.20 | 1.72E4-00 | 220.58 | 115.22 | 105.36 | 8.03E4-03
15 | 43 || 12.60 | 6.96E+01 | 136.24 | 1.07E+05 | 12.00 | 1.92E401 | 263.83 | 146.46 | 117.37 | 8.43E404
18 | 61 | 11.32 | 4.51E4+02 | 152.50 | 7.26E+05 || 10.72 | 1.27E402 | 290.7 | 158.40 | 132.30 | 5.49E4-05

(¢) SyncBB With ADC Heuristic

9 16 || 12.80 | 1.06E4-00 | 72.66 | 1.64E4-03 | 10.58 | 1.73E-01 | 179.08 | 77.32 | 101.76 | 8.10E+402
12 | 26 | 12.28 | 6.26E400 | 107.36 | 1.05E+04 8.60 | 1.27E400 | 218.10 | 113.88 | 104.22 | 5.85E4-03
15 | 43 | 12.12 | 5.94E401 | 136.24 | 9.0TE+04 | 11.00 | 1.13E4-01 | 248.14 | 144.60 | 103.54 | 4.98E4-04
18 | 61 | 11.40 | 4.69E402 | 152.50 | 7.48E+05 | 10.64 | 1.15E4-02 | 291.30 | 157.80 | 133.50 | 4.88E4-05

Table 5.3: Distributed Meeting Scheduling: [-DCOP Empirical Results with SyncBB and its
Heuristics

5.5.3 Distributed Meeting Scheduling

We generate 50 random problems, where we set the number of meeting participants (= agents)
|A| = 10, meeting time slots (= domain size) |D;| = 3, density p; to 0.4, and tightness py to
0.6 and also the number of unknown costs to 20. We vary the number of meetings (= variables)
|X| from 9 to 27. All time preferences (constraint costs) and elicitation costs are randomly

sampled from [0, 20].

We evaluate our SyncBB algorithms on these problems. Table 5.3 tabulates our empirical
results. As expected, the trends are similar to those in random graphs. In addition, we can
observe that, the number of elicited costs are between 50% — 70% of the total number of

unknown costs in order to find optimal and sub-optimal solutions.
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(a) ALS-MGM Without Heuristics

Without Elicitation Costs With Elicitation Costs
X f . f 1 . lic.
|X] | |F] #‘0 untime const #'o runtime | total | const. | elic
elic. cost elic. cost cost cost

9 16 || 5.04 | 4.31E-01 | 89.84 || 4.92 | 4.32E-01 | 138.12 | 89.66 | 48.46
15 | 43 || 3.92 | 1.06E4-00 | 155.71 || 4.06 | 1.06E+400 | 187.76 | 155.35 | 32.41
21 | 80 || 3.91 | 2.12E+00 | 213.00 || 3.67 | 2.12E+00 | 252.61 | 216.24 | 36.36
27 1136 || 4.00 | 3.06E+00 | 265.29 | 3.90 | 3.00E+00 | 298.43 | 266.29 | 32.14

(b) ALS-MGM With NHC Heuristic

9 16 || 4.72 | 4.31E-01 | 81.76 | 4.84 | 5.70E-02 | 130.28 | 81.56 | 48.72
15 | 43 || 3.48 | 1.06E+00 | 147.04 || 3.42 | 1.07TE400 | 183.22 | 147.28 | 36.12
21 | 80 || 3.51 | 2.13E400 | 203.33 || 3.51 | 2.14E400 | 240.57 | 203.33 | 37.54
27 1136 || 3.76 | 3.00E+00 | 264.66 || 3.47 | 3.02E+00 | 298.22 | 264.66 | 34.23

Table 5.4: Distributed Meeting Scheduling: I-DCOP Empirical Results with ALS-MGM and
its Heuristic

Table 5.4 tabulates our empirical results as we evaluate our ALS-MGM algorithms. We can
observe that the number of elicited costs by ALS-MGM and its heuristic is significantly less
than those elicited by SyncBB with heuristics. The reason is: ALS-MGM is a local search
algorithm that does not guarantee optimality. However, because of its any-time property,
it improves its solution quality at every iteration. Consequently, it finds a solution that is
close to the optimal solution found by SyncBB. Moreover, the SyncBB algorithm runs out of
time and space when solving problems with larger number of variables, while ALS-MGM can

easily solve larger class of time-sensitive problems.

5.6 Related Work

As our work lies in the intersection of constraint-based models, preference elicitation, and
heuristic search, we will first focus on related work in this intersection before covering the
three broader areas. Aside from our work [109] discussed in Chapter 3 discussed, the body of

work that is most related to ours is the work on Incomplete Weighted CSPs (IWCSPs) [35, 36,
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114]. TWCSPs can be seen as centralized versions of I-DCOPs. Researchers have proposed
a family of algorithms based on depth-first branch-and-bound and local search to solve
IWCSPs including heuristics that can be parameterized like ours. Aside from ITWCSPs,
similar centralized constraint-based models include Incomplete Fuzzy CSPs and Incomplete

Soft Constraint Satisfaction Problems.

Another body of work in this intersection is the use of weighted heuristics in canonical DCOPs.
For example, additive weights were introduced for search-based algorithms [76, 136], which
provide additive quality guarantees as those in Theorem 5. Similarly, relative weights were
also introduced for ADOPT and other search-based algorithms [137], which provide relative

quality guarantees as those in Theorem 5.

Conditional-Preference Networks (CP-nets) [7, 97] also lie in this intersection. CP-nets
are a graphical representation model for qualitative preferences and reflects conditional
dependencies between sets of preference statements. In contrast, I-DCOPs focus more on the
notion of conditional additive independence [4], which requires that the cost of an outcome
to be the sum of the “costs” of the different variable values of the outcome. Additionally,

CP-nets are centralized problems while I-DCOPs are decentralized problems.

Finally, in the context of the broader preference elicitation area, there is a very large body of
work [41], and we focus on techniques that are most closely related to our approach. They
include techniques that ask users a number of preset questions [109, 121] as well as send
alerts and notification messages to interact with users [18], techniques that ask users to rank
alternative options or user-provided option improvements to learn a (possibly approximately)
user preference function [8, 13, 126], and techniques that associate costs to eliciting preferences
and takes these costs into account when identifying which preference to elicit as well as when

to stop eliciting preferences [63, 122]. The key difference between all these approaches and
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ours is that they identify preferences to elicit a priori before the search while we embed the

preference elicitation in the underlying DCOP search algorithm.

5.7 Conclusions

Distributed Constraint Optimization Problems (DCOPs) have been used to model a variety
of cooperative multi-agent problems. However, they assume that all constraints are fully
specified, which may not hold in applications where constraints encode preferences of human
users. To overcome this limitation, we proposed Incomplete DCOPs (I-DCOPs), which
extends DCOPs by allowing some constraints to be partially specified and the elicitation of

unknown costs in such constraints incur elicitation costs.

We propose two parameterized heuristics — CAC and ADC — that can be used in conjunction
with Synchronous Branch-and-Bound (SyncBB) to solve I-DCOPs. These heuristics allow
users to trade off solution quality for faster runtimes and smaller number of elicitations. In
addition, we propose NHC heuristic that can be used in conjunction with a local search
algorithm ALS-MGM with any-time property to solve a larger class of [-DCOPs. Further, in
problems where elicitations are free, SyncBB and its heuristics provide theoretical quality
guarantees on the solutions found. In conclusion, our new model, adapted algorithms, and
new heuristics improve the practical applicability of DCOPs as they are now better suited to

model multi-agent applications with user preferences.
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Chapter 6

Discussion and Future Directions

Constraint Satisfaction Problems (CSPs) [3, 44] and its variant Weighted Constraint Satisfac-
tion Problems (WCSPs) [59, 102], as well as its decentralized variant, Distributed Constraint
Optimization Problems (DCOPs) [86, 137] are powerful paradigms for formulating many
combinatorial and optimization problems. We refer to these paradigms as “Constraint-Based
Models” Over the past decades, researchers have developed many resolution algorithms
to solve problems formulated by constraint-based models using centralized and distributed

approaches.

The importance of constraint-based models is outlined by the impact of their applications
in a wide range of agent-based systems. Example of such applications are supply-chain
management [34, 95|, roster scheduling [1, 11], meeting scheduling [69], combinatorial auctions

[99], bioinformatics [2, 12, 28], and smart home automation [31, 98, 112].

One of the key drawbacks of these constraint-based models is the assumption that all the
constraint costs are specified or known a priori. For instance, in several applications (e.g., a

scheduling problem), some constraints encode the preferences of human users. Such constraints
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may not be fully specified because it is unrealistic to accurately know the preferences of users
for all possible scenarios in an application. These constraint costs are only known after they
are queried or elicited from domain experts or human users. To have a complete knowledge of
all these preferences, there is a need for preference elicitation technique. Preference elicitation
is a process of asking questions about the users’ preferences. This process allows users to
intelligently interact with the constraint-based solver (i.e., resolution algorithms) without
being forced to state all their constraints, or preferences, at the beginning of the interaction.
More specifically, preference elicitation is more pronounced in scenarios where the users want
to avoid revealing all of their preferences at the beginning of the interaction due to privacy

reasons.

Such an assumption in constraint-based models restrains their capabilities to model and solve
many human-in-the-loop optimization problems in a centralized or decentralized manner. To

address this limitation, this dissertation makes the following contributions:

e In Chapter 3, we investigated how constraint-based models can be extended to allow
uncertainty in constraints. We introduced uncertain constraint-based models (uncertain
COPs/DCOPs) and the pre-execution elicitation approach. In uncertain constraint-based
models, constraint costs are represented as random variables that follow Normal (i.e.,
Gaussian) distributions. As existing resolution algorithms are not able to solve the new
constraint-based models, we introduce Minimax Regret and Maximum Standard Deviation
heuristics which are probabilistic strategies to elicit a set of constraints before the execution
of any resolution algorithm. In this approach, we decoupled the elicitation process from the
search for an optimal solution. Due to this independency between elicitation process and
resolution algorithm, we employed an off-the-shelf constraint-based solver to find a solution

for the underlying problem. Prior to running the solver, our probabilistic strategies elicit
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the necessary constraints and prepare them for the solver by realizing the uncertain cost
tables from their corresponding distributions.

The objective of our proposed framework is to minimize the error between the solution
quality of the oracle DCOP and the realized DCOP. We evaluated our framework on two
main benchmarks, random graph problems as well as our real-world motivating application
SHDS. Our empirical results demonstrated that our probabilistic elicitation methods
outperformed their baseline random strategy in minimizing the error in both benchmarks
and showed the significance of our contributions in real-world scenarios.

By introducing the uncertain constraint-based models, we made the foundational contri-
butions necessary in deploying COP/DCOP algorithms on practical applications, where
preferences or constraint costs must be elicited or estimated.

In Chapter 4, we investigated how to extend IWCSPs so that constraint costs are allowed
to be partially unknown where elicitation of these unknown costs incur penalties. We
introduced the Incomplete WCSPs with Elicitation Costs (IWCSPs+EC) framework, where
only a set of constraint costs are specified a priori and the rest remain unknown. The
proposed framework associated pre-defined costs for eliciting the unknown constraints to
represent how much a user is annoyed by multiple queries. Consequently, the objective of
IWCSPs+EC is to find a solution that minimizes both constraint and elicitation costs. To
solve IWCSPs+EC in a centralized manner, we extended a depth first complete search
algorithm (DFBnB) in which, we interleaved elicitation strategies with the search algorithm
to optimize both constraint and elicitation costs. Moreover, we introduced parameterized
heuristics — Least Unknown Cost (LUC), Least Known Cost (LKC) and their combination
heuristic (COM) — to allow users to trade off solution quality for fewer elicited preferences
and faster computation times.

We evaluated our model and algorithms on two main benchmarks, random graph problems

as well as our real-world motivating application SHDS. Our empirical results demonstrated
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that DFBnB with all three heuristics — LUC, LKC, and COM — outperform the baseline
random heuristic in terms of the number of elicited costs, solution quality, and runtime.
COM finds solutions with larger constraint costs than LKC and LUC, but finds them
faster and with fewer elicitations than LKC and LUC. Therefore, COM is the preferred
heuristic in critical time-sensitive domains. COM also does a better job at trading off
solution quality for smaller runtimes, especially when runtimes are large, through the use
of user-defined weights.

By introducing IWCSP+EC and its elicitation heuristics we took a step forward in improving
the practical applicability of WCSPs and IWCSPs as they now take into account unknown
costs with their elicitation costs and provide control knobs, in the form of user-defined
weights, to perform tradeoffs along three key dimensions — solution quality, runtime, and
number of elicited preferences.

In Chapter 5, we investigated how to extend DCOPs so that constraint costs are allowed
to be partially unknown where elicitation of these unknown costs incur penalties. Similar
to IWCSPs+EC, we introduced the Incomplete DCOPs (I-DCOPs) framework, which
is the distributed version, to formulate problems that are distributed. The objective of
[-DCOPs is to find a solution that minimizes both constraint and elicitation costs. To solve
such distributed framework, we developed several distributed heuristics and interleaved
elicitation strategies with search algorithms. The first search algorithm is the synchronous
branch-and-bound (SyncBB) algorithm with two parametrized heuristics — CAC and ADC
— which aims at finding an optimal solution when elicitation costs are zero and the best
possible solution otherwise. Our parameterized heuristics allow users to trade off solution
quality for fewer elicited preferences and faster computation times. The second algorithm,
is a local search with any-time property ALS-MGM with its heuristic - NHC — which aims
at solving a larger class of incomplete DCOPs and finding sub-optimal solutions with a

fewer number of elicited costs.
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We evaluated our model and algorithms on two main benchmarks, random graph problems as
well as our real-world motivating application distributed meeting scheduling. Our empirical
results demonstrated that our parameterized heuristics improve both complete and local
search algorithms (i.e., SyncBB and ALS-MGM algorithms) in solving I-DCOPs. Further,
in problems where elicitations are free, SyncBB and its heuristics provide theoretical quality
guarantees on the solutions found. ALS-MGM with its heuristic, can solve significantly
larger I-DCOPs and provide sub-optimal solutions.

By introducing our new model, adapted algorithms, and new heuristics, we took a step
forward in improving the practical applicability of DCOPs as they are now better suited

to model multi-agent applications with user preferences.

This dissertation demonstrates that one can improve the applicability of constraint-based
models by developing new formulations, where constraint costs can be uncertain or unspecified
(i.e., unknown) and applying elicitation strategies to constraint-based algorithms to solve such
models. In the following, we list possible approaches that may help to improve preference
elicitation of constraint-based models and consequently improve the applicability of constraint-

based models.

e The proposed frameworks in both centralized and distributed manners associate random
costs or penalties for eliciting the unknown constraints. These frameworks assume that
one can have unlimited resources for eliciting the unknown constraints when elicitation
costs are taken into account. This assumption can become unrealistic in scenarios with
limited resources. Hence, to address this matter, one can associate a specific budget for
elicitation of a limited set of unknown constraints and use a modified version of a knapsack
problem [33] to approach it [63, 100].

e This dissertation only focused on explicitly eliciting unknown preferences, which requires

several interactions between systems and human users. Despite the fact that our proposed
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models have taken into account elicitation costs of those unknown preferences, our models
rely on users with the assumption that the data elicited from the users are noise-free and
trustworthy. This assumption can become unrealistic in scenarios when an annoyed user
refuses to provide feedback to the system or provides wrong input or due to many other
personal reasons. Therefore, to address this assumption, instead of explicitly eliciting users’
preferences one can develop a model along with a learning algorithm that is able to perceive
and learn the users behavior and account for noisy data in the system [112, 124, 125].

e The proposed frameworks in both centralized and distributed manners associate random
costs or penalties for eliciting the unknown constraints, which we refer to as elicitation
costs. Such elicitation costs can be modeled more accurately. For instance, the cost of
repeated elicitation is higher than the first one [63]. Furthermore, such elicitation costs
can also depend on the complexity of the queries [39]. People tend to get annoyed more
quickly if they have to answer more complex questions. Therefore, we believe that one can

conduct user studies to empirically model such elicitation costs [93].

Towards improving the practical applicability of constraint-based models further, we envision

that these approaches can be interesting avenues to investigate in the future.
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