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ABSTRACT

PROBABILISTIC PLANNING WITH RISK-SENSITIVE CRITERION

BY

PING HOU

Doctor of Philosophy

New Mexico State University

Las Cruces, New Mexico, 2017

Dr. William Yeoh, Chair

Probabilistic planning models – Markov Decision Processes (MDPs) and Par-

tially Observable Markov Decision Processes (POMDPs) – are models where au-

tonomous agents operate and make sequential decisions under uncertainty envi-

ronment in successive episodes. To adapt to different scenario and objectives,

many criteria and variants for MDPs and POMDPs have been proposed. The

Risk-Sensitive criterion (RS-criterion) is one criterion that maximize the proba-

bility that the accumulated cost of the agent execution is less than a predefined

threshold, so that the agent can avoid the situation that an exorbitantly high

accumulated cost is encountered as much as possible.

Risk-Sensitive MDPs (RS-MDPs) and Risk-Sensitive POMDPs (RS-

POMDPs) are risk-sensitive models that combine the RS-criterion with MDPs

and POMDPs, respectively. I hypothesize that one can design novel algorithms

which are specific for RS-MDPs and RS-POMDPs by applying insights gained
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from analyzing properties and structures of risk-sensitive models. The key ob-

servation about risk-sensitive models is that the original formalizations can be

transformed to new formalizations by maintaining the consumed cost so far and

considering it for decisions as well.

To validate my hypothesis, (1) I formally define the RS-MDP model and distin-

guish the models under different assumptions about cost. For each assumption and

model, I introduce new algorithms and discuss related properties. (2) I formally

propose the RS-POMDP model and discuss some deficiencies of several existing

regular POMDP models. I introduce procedures to complement several existing

algorithms and also provide new algorithms for RS-POMDPs. (3) I also provide

theoretical properties of the risk-sensitive models as well as empirical evaluations

of the new algorithms on randomly generated problems, the Navigation domain

from the ICAPS International Probabilistic Planning Competition, and a taxi

domain generated with real-world data. For both RS-MDPs and RS-POMDPs,

the experiments show my algorithms are more efficient than existing algorithms,

which validate my hypothesis.
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Chapter 1

Introduction

In artificial intelligence, one core research area is on enabling autonomous agents

to make good decisions. If achieving goals require successive decision episodes,

the research problems are sequential decision making problems, which is a cen-

tral research area called planning in artificial intelligence. In order to handle

the uncertainty that arise in a system, different planning models are proposed.

Probabilistic planning is a main research branch for planning under uncertainty.

Research about probabilistic planning continue over several decades and re-

searchers have proposed many variants and criteria for probabilistic planning mod-

els. For example, the Risk-Sensitive criterion (RS-criterion) [Yu et al., 1998;

Hou et al., 2014b] is one of such criterion. By adopting the RS-criterion for prob-

abilistic planning models, the corresponding risk-sensitive probabilistic planning

models can be obtained. In this work, I hypothesize that one can design novel

algorithms which are specific for risk-sensitive models by applying insights gained

from analyzing properties and structures of risk-sensitive models. To validate my

hypotheses, I introduce several new algorithms for various risk-sensitive models

with speedups in a variety of problems.
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1.1 Probabilistic Planning Problems

Probabilistic planning [Geffner and Bonet, 2013] is a research branch of plan-

ning under uncertainty. In probabilistic planning, uncertainty is represented

by probabilities, and two important models are Markov Decision Processes

(MDPs) [Mausam and Kolobov, 2012; Geffner and Bonet, 2013] and Par-

tially Observable Markov Decision Processes (POMDPs) [Kaelbling et al., 1998;

Geffner and Bonet, 2013]. MDPs and POMDPs model the scene that an au-

tonomous agent operates in a system and executes actions in successive episodes.

MDPs and POMDPs use states to represent the environment of the system and

assume the states transition to each other under uncertainty, which is caused

either by environment dynamics or a result of performing actions. MDPs and

POMDPs normally assume that the agent needs to achieve some tasks, namely

goals, through actions that incur costs. MDPs assume that the agent knows the

exact information of the environment, and POMDPs assume that the agent can

only obtain some observations that partially reflect the environment.

The RS-criterion is one probabilistic planning criterion whose objective is

to maximize the probability that the agent achieves goals with an accumulated

cost that is equal to or less than a predefined threshold. Risk-Sensitive MDPs

(RS-MDPs) [Yu et al., 1998; Hou et al., 2014b] and Risk-Sensitive POMDPs

(RS-POMDPs) [Hou et al., 2016] are probabilistic models that combine the RS-

criterion wieh MDPs and POMDPs.

1.2 Hypothesis and Contributions

Risk-sensitive probabilistic planning models are based on the RS-criterion, which

fall under the category of probabilistic planning models. My hypothesis is as

2



follows:

One can design novel algorithms for risk-sensitive models – RS-MDPs

and RS-POMDPs – by applying insights gained from analyzing specific

properties and structures of risk-sensitive models.

Specifically, the key observation about risk-sensitive models is that the orig-

inal formalization can be transformed to a new formalization by maintain-

ing the consumed cost so far and considering it for decisions as well. For

different formalizations, I will explore and exploit their structures and prop-

erties and adopt ideas of existing probabilistic planning technique, such as

Value Iteration (VI) [Bellman, 1957], Topological Value Iteration (TVI) [Dai

et al., 2011] and Functional Value Iteration (FVI) [Liu and Koenig, 2005b;

2006], to accelerate computation process of solving risk-sensitive models – RS-

MDPs and RS-POMDPs. I have two contributions thus far:

1. I formally defined the RS-MDP model [Hou et al., 2014b] and distinguish

the model under different assumptions about cost. For each model, new

algorithms are introduced and related properties are discussed thoroughly.

2. I formally proposed the RS-POMDP model [Hou et al., 2016] and discuss

some deficiency of several existing regular POMDP models. I introduce pro-

cedures to complement several existing algorithms, provides new algorithms

for RS-POMDPs and discuss related properties.

1.3 Dissertation Structure

Having outlined the theme of my dissertation, this proposal is structured as fol-

lows: Chapter 2 gives an overview of MDPs and POMDPs. Chapter 3 describes

3



the different risk attitudes including our RS-criterion. Then, I introduce algo-

rithms for RS-MDPs and RS-POMDPs in Chapter 4 and Chapter 5, respectively.

These sections also include comprehensive experimental results for these two mod-

els. In additional, a approximate algorithm – Local Search – is introduced in

Chapter 6. I discuss related work in Chapter 7 before presenting our conclusions

and future work in Chapter 8.
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Chapter 2

Background: MDPs and

POMDPs

This section begins by providing an overview of the Markov Decision Process

(MDP) and the Partially Observable Markov Decision Process (POMDP) models

in Section 2.1 and Section 2.2, respectively.

2.1 Markov Decision Process

In this subsection, we formally define MDPs, describe some of its solution ap-

proaches, and also discuss some additional issues related to MDPs.

2.1.1 MDP Definition

There is a variety of MDP models, and some are more expressive than oth-

ers [Mausam and Kolobov, 2012; Kolobov, 2013; Geffner and Bonet, 2013]. In this

dissertation, we focus on Goal-Directed MDPs (GD-MDPs) [Geffner and Bonet,

2013] and we will briefly discuss the relationship between different MDP models

5



as well.

A GD-MDP is defined by a tuple 〈S,A,T,C,G, s0〉 where:

• S is a finite set of all states.

• A is a finite set of all actions.

• T : S × A × S → [0, 1] is a transition function that gives the probability

T (s, a, s′) of transitioning from state s to s′ when action a is executed.

• C : S ×A × S → [0,+∞) is a cost function that gives the cost C(s, a, s′) of

transitioning from state s to s′ when action a is executed. The cost function

gives a strictly positive cost C(s, a, s′) > 0 with the exception of transitions

from a goal.

• G ⊆ S is the set of goal states. Goal states are absorbing and cost-free, i.e.,

T (sg, a, sg) = 1, T (sg, a, s¬g) = 0 and C(sg, a, sg) = 0 for all goal states sg ∈ G,

actions a ∈ A and non-goal states s¬g /∈ G.

• s0 ∈ S is the initial state.

For the cost function in above definition, there exist more general forms. The

first generalization is to allow the cost to be zero everywhere rather than only for

transitions from goals, or even to be a negative value for transitions from non-goals,

i.e., C : S×A×S→ R. This dissertation will have some discussion related to the

first generalization in subsequent sections. The second generalization is to include

uncertainty in the cost function. Then, the cost function would map transitions,

namely state-action-state tuples, into discrete probability distributions over cost

values. For the second generalization, it will not be explicitly discussed in this

dissertation, but all the work described here can be easily extended to adopt it.

In this dissertation, we will focus on GD-MDPs and will thus use the term MDPs

to refer to GD-MDPs unless other models are explicitly mentioned.

The state space of an MDP can be visualized as a directed hyper-graph called

6



a connectivity graph. A directed hyper-graph generalizes the notion of a regular

directed graph by allowing each hyper-edge to have one source but several destina-

tions. In a corresponding connectivity graph of an MDP, each vertex corresponds

to a state and each pair of state s and action a corresponds to hyper-edge whose

source is s and destinations are all states s′ where T (s, a, s′) > 0. The subgraph

rooted at the initial state is called a transition graph, which only includes vertices

corresponding to states reachable from the initial state.

2.1.2 MDP Solution

The solution of an MDP is called a policy, denoted as π, which is a strategy that

chooses an action based on the current information of the system. For any state

s, if we assume it to be the starting state s0, a policy π defines a probability for

every execution trajectory τ : 〈s = s0, a0, s1, a1, s2, . . .〉 starting from s, which is

given by the product P π(τ) =
∏∞

i=0 T (si, ai, si+1), and each execution trajectory τ

defines an accumulated cost as C(τ) =
∑∞

i=0C(si, ai, si+1), where ai is the action

chosen by π to be executed at the time step i. The expected accumulated cost,

or simply expected cost, of a policy π from state s, denoted as V π(s), stands for

the sum of the accumulated costs of the different trajectories, weighted by their

probabilities with respect to π.

MDPs assume that the state transitions and costs are Markovian, which means

that the future state and cost depend only on the current state and not on the his-

tory. Thus, the necessary information for the action choice is just the current state.

Since it also assumes that the observation is over full states, the policies are in the

form of functions π : S→ A, which map the states into actions, would be optimal.

Policies of this type are stationary [Puterman, 1994; Mausam and Kolobov, 2012].

On the other hand, a non-stationary policy is a function of both state and time.

7



For Finite-Horizon MDPs, which is another MDP model, the optimal policies

could be non-stationary, but finite-horizon MDPs can be solved as GD-MDPs by

augmenting the state to be the pairs of state and time, i.e., finite-horizon MDPs

is a subset of GD-MDPs [Mausam and Kolobov, 2012]. Non-stationary policies is

a superset of stationary policies, and they are not strictly needed for GD-MDPs

since there exist optimal policies that are stationary already [Puterman, 1994;

Mausam and Kolobov, 2012]. In this dissertation, we will use the term policies to

refer to stationary policy unless policies with other types are explicitly mentioned.

Additionally, the above policies are also called deterministic. On the other hand,

a stochastic policy is a function that maps states into probability distributions

over actions. As an example, for Constrained MDPs [Altman, 1999], which is

variant MDP model that assumes multiple objectives as constraints, the optimal

policies could be stochastic. This is due to the presence of multiple objectives,

where it may be necessary to randomize over multiple actions in order to trade off

between multiple objectives. For the work in this dissertation, stochastic policies

are unnecessary.

Policies with the form π : S→ A, V π(s) can be defined by the expression

V π(s) =
∑
s′∈S

T (s, π(s), s′)(C(s, π(s), s′) + V π(s′)) (2.1)

which defines the expected cost function V π for policy π.

Based on the regular optimality criterion, or simply criterion, a policy π is

optimal for state s if the expected cost V π(s) is minimum among all policies. The

optimal policies for MDPs are the policies π∗ that are optimal for all states, i.e.,

V π∗(s) = minπ V
π(s) for all states s ∈ S. We call this criterion as the Minimizing

Expected Cost (MEC) criterion. The expected cost function V π corresponding to

an optimal policy π∗ is the optimal expected cost function V ∗ = V π∗ , which is the

8



unique solution of the Bellman equation [Bellman, 1957]:

V (s) = min
a∈A

∑
s′∈S

T (s, a, s′)(C(s, a, s′) + V (s′)) (2.2)

for all states.

An optimal policy π∗ can be obtained from the optimal expected cost function

V ∗ as:

π∗(s) = argmin
a∈A

∑
s′∈S

T (s, a, s′)(C(s, a, s′) + V ∗(s′)) (2.3)

If there exists a policy π and a execution trajectory 〈s, a, . . . , s′, . . .〉 so that

the probability π defined for the execution trajectory is larger than 0, then we

say that state s can reach state s′, or state s′ is reachable from state s. Clearly,

states that are not reachable from the initial state s0 are irrelevant to the optimal

cost function value V ∗(s0). For an MDP, if the objective is to find a policy that

is optimal for the initial state s0, we can ignore any states that is not reachable

from s0. In this dissertation, we will not explicitly distinguish between the set of

all states and the set of all states that is reachable from s0, and S will be misused

to denote both.

If an execution trajectory leads to a goal state, then the accumulated cost

would be finite since the goal state is absorbing and cost-free. Otherwise, the

accumulated cost would be infinite since our MDP definition only allows positive

costs for transitions from non-goal states. Thus, a policy π has a finite expected

cost V π(s) if and only if all possible trajectories by applying this policy from state

s lead to a goal state. A policy is proper at state s if applying this policy from

state s lead to goals with probability 1. Otherwise, it is improper at state s. A

policy is proper if it is proper at all states. Otherwise, it is improper. A proper

policy does not always exists for an MDP, and it only exists for MDPs without

9



dead-ends, which are states from which the goals cannot be reached. Clearly, if

s is a dead-end, V π(s) is infinite for any policy π. On the other hand, there

must exist a proper policy for MDPs without dead-ends. In this dissertation, we

will refer to MDPs without dead-ends as Stochastic Shortest-Path MDPs (SSP-

MDPs) [Mausam and Kolobov, 2012; Geffner and Bonet, 2013], which is another

MDP model.1 In the rest of this subsection, the MDP algorithms we will review

are specific for SSP-MDPs and we will also refer SSP-MDPs as MDPs.

2.1.3 Value Iteration (VI)

Value Iteration (VI) is an algorithm for computing the optimal expected cost

function V ∗ for SSP-MDPs. VI first sets a cost value function V0(s) as 0 for

goals and an arbitrary value for non-goal states. Then, VI uses Equation 2.2

to perform updates in parallel over all non-goal states to get a new cost value

function repeatedly. The update is

Vk(s)← min
a∈A

∑
s′∈S

T (s, a, s′)(C(s, a, s′) + Vk−1(s′)) (2.4)

where Vk is the cost value function after performing the update iteration k times.

This update of calculating a new cost value function is called Bellman update or a

full DP update. The cost value function approach V ∗ as more and more Bellman

updates are performed. The algorithm terminates when the values converge at

the kth iteration, that is, the maximum difference between Vk−1 and Vk of any

state is less than a user-defined threshold ε, i.e., ∀s, Vk(s) − Vk−1(s) < ε. The

above difference is called the residual.

1This model is actually the weak definition of SSP-MDPs. The strong definition of SSP-

MDPs allow non-positive costs and it guarantee any policies π that is improper at s would

result in an infinity expected cost from s, i.e., V π(s) = +∞.

10



2.2 Partial Observation Markov Decision Pro-

cess

In this subsection, we formally define POMDPs and describe solution approaches

for POMDPs.

2.2.1 POMDP Definition

POMDPs generalize MDPs by allowing states to be partially observable through

sensors that map the actual state of the world into observations according to

known probabilities. There are also different POMDP models, and we focus on

one formalization – Goal-Directed POMDPs (GD-POMDPs) [Bonet and Geffner,

2009; Geffner and Bonet, 2013] – in this dissertation.

A GD-POMDP is defined by a tuple 〈S,A,T,C,G,Ω,O, b0〉, where:

• S, A, T, C and G are the same as the corresponding components in the MDP

definition.

• Ω is the finite set of all observations.

• O : S×A×S×Ω→ [0, 1] is an observation function that gives the probability

O(s, a, s′, o) of receiving observation o when the action a is executed in state

s and state s′ is reached.

• b0 is the initial belief state, that is b0(s) stands for the probability of s being

the true initial state.

For GD-POMDPs, the goals are observable, i.e., O(s, a, s¬g, osg) = 0, O(s, a,

sg, osg) = 1 and O(s, a, sg, o) = 0 for all states s ∈ S, goal states sg ∈ G, non-goal

states s¬g /∈ G, actions a ∈ A, an observation osg ∈ Ω that corresponds to sg and

all other observations o 6= osg . In this dissertation, we will focus on GD-POMDPs

and will thus use the term POMDPs to refer to GD-POMDPs unless other models
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are explicitly mentioned.

In POMDPs, the observation may not accurately indicate which state the

system is in. So, the selection of the best action depends on the belief state rather

than the state. A belief state b is a probability distribution over the states such

that b(s) is the probability of s being the actual state. We use B to denote the set

of belief states. A POMDP can be viewed as an MDP over belief states, but the

space of belief states is infinite now for POMDPs. Actually, most of the discussion

for MDPs apply also to POMDPs and similar conclusions apply as well. We will

not thus repeat related discussion here.

For a POMDP, the initial belief state is given by the prior probability b0 in the

model, and the belief states following an execution are defined recursively. The

belief state boa(s), which denotes the belief state after performing action a in belief

state b and observing o, is

boa(s) =

∑
s′∈S b(s

′)T (s′, a, s)O(s′, a, s, o)

P (b, a, o)
(2.5)

where P (b, a, o) =
∑

s∈S

∑
s′∈S b(s)T (s, a, s′)O(s, a, s′, o) is the probability of ob-

serving o after performing action a in belief state b′. We also define C(b, a, boa)

as

C(b, a, boa) =

∑
s∈S

∑
s′∈S b(s)T (s, a, s′)O(s, a, s′, o)C(s, a, s′)

P (b, a, o)
(2.6)

which denotes the cost expectation of observing o after executing action a in belief

state b.

A POMDP policy π : B→ A is a mapping from belief states to actions, which

is also stationary with respect to belief states. Similar to MDPs, the objective is

to find a policy π∗ with the minimum expected cost V ∗(b0), defined by

V ∗(b) = min
a∈A

∑
o∈Ω

P (b, a, o)(C(b, a, boa) + V ∗(boa)) (2.7)
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for all belief states b ∈ B.

An optimal policy π∗ can be obtained from the optimal expected cost function

V ∗, as:

π∗(b) = argmin
a∈A

∑
o∈Ω

P (b, a, o)(C(b, a, boa) + V ∗(boa)) (2.8)

As for MDPs, we will refer to POMDPs without dead-ends as Stochastic

Shortest-Path POMDPs (SSP-POMDPs), which is another POMDP model.2 In

the rest of this subsection, the POMDP algorithms we will review are specific for

SSP-POMDPs and we will also refer SSP-POMDPs as POMDPs for simplicity.

2.2.2 Value Iteration

Similar to VI for MDPs, a VI-like algorithm solves POMDPs exactly and we also

call it VI. Since the number of belief states in POMDPs is infinite, policies and

cost value functions cannot be stored explicitly as MDP in algorithms. As in VI

for MDPs, the full DP update should map a value function Vk−1 over all belief

states b into the value function Vk. So, exact POMDP algorithms [Kaelbling et

al., 1998] use a finite set Γ of |S|-dimensional real vectors, in which each vector

can be seen as a cost value function and each element in a vector corresponds to

the cost value α(s) of starting at a particular state s. If we pick the minimum

vector for each belief state, the set forms a piecewise linear and concave function

over the belief state space, and this function represents the cost value function.

Then, the expected cost of a belief state b is:

V (b) = min
α∈Γ

∑
s

b(s)α(s) (2.9)

2This model is actually the weak definition of SSP-POMDPs. The strong definition of SSP-

POMDPs allow non-positive costs and it guarantee any improper policies would result in an

infinity expected cost [Geffner and Bonet, 2013]
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VI would set the initial vector set Γ0 to only contain one vector, in which cost

values of all goal states are zero, i.e., α(sg) = 0 for all sg ∈ G. If we define a

function v : Ω→ Γk−1 to map each observation to the |S|-dimensional real vector

in the previous (k− 1)th iteration, and Vk−1 as the set of all such functions, then

the full set of possible vectors after the update in iteration k is:

Γk = {αa,v | a ∈ A, v ∈ Vk−1} (2.10)

where αa,v(s) =
∑

s′,o T (s, a, s′)(C(s, a, s′) + O(s, a, s′, o)v(o)(s′)). Some of these

vectors are dominated by others in the sense that they do not yield the minimum

at any belief state b. Such vectors can be identified by solving linear programs and

removed [Kaelbling et al., 1998]. Similar to VI for MDPs, algorithms iteratively

perform full DP updates to update the vector set Γ until it converges.
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Chapter 3

Risk Attitudes

In this section, we will first describe how utility functions can be used to represent

different risk attitudes before describing the risk-sensitive criterion, a specific risk

attitude that we will adopt and optimize for in this dissertation.

3.1 Utility Functions

Recall that the Minimizing Expected Cost (MEC) criterion, defined in Sec-

tion 2.1.2, is the typical objective for MDPs and POMDPs. According to this

criterion, the optimal policies of MDPs and POMDPs are those with the mini-

mum expected cost, which is equivalent to assuming a risk-neutral attitude. Util-

ity theory assumes that there exist many different risk attitudes aside from the

risk-neutral attitude, and it uses different utility functions to describe the di-

verse risk attitudes [Liu and Koenig, 2005a; 2005b]. Formally, a utility function

U : W → R is a mapping from the wealth level to a utility, where W is the set

of all possible wealth levels. Also, utility functions are assumed to be strictly

monotonically non-decreasing.

Utility functions are an expressive representation for risk attitude, and the
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MEC criterion, namely risk-neutral attitude, is equivalent to having a linear util-

ity function that is monotonically increasing. Aside from linear functions, many

utility functions with nonlinear forms are studied for different MDP settings, such

as exponential functions [Liu and Koenig, 2005a], one-switch functions [Liu and

Koenig, 2005b], and skew symmetric bilinear functions [Gilbert et al., 2015]. Ad-

ditionally, researchers have also solved MDPs with utility functions and worst-case

guarantees [Ermon et al., 2012], and it is equivalent to having a utility function

that maps to negative infinity when the wealth level is smaller than a threshold

w⊥, i.e., U(w) = −∞ if w < w⊥.

In general, utility functions in any form can be approximated by Piecewise Lin-

ear (PWL) functions, and PWL utility functions are studied for both MDPs [Liu

and Koenig, 2006] and POMDPs [Marecki and Varakantham, 2010]. For MDPs

and POMDPs, if an initial wealth level w0 is assumed, a PWL function can

be represented by an ordered list of tuples (wi, ki, bi) for i = 1, 2, . . . , n, where

−∞ = w0 < w1 < . . . < wn = w0. A PWL function is formally defined as

U(w) = kiw + bi where w ∈ (wi−1, wi]. If an initial wealth level w0 is assumed,

each execution trajectory would correspond to a wealth level, which equals to

the initial wealth level minus the accumulated cost. Based on a specific utility

function, we can get the utility of an execution trajectory. We can also compute

the expected utility of a policy π, which is the sum of the utilities of the different

trajectories that are possible given π weighted by their probabilities.

3.2 Risk-Sensitive Criterion

For MDPs and POMDPs, if the system only has a limited cost budget at the

start and the objective is to accomplish some tasks before the cost budget is
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used up, then maximizing the probability of achieving the goals without using

up the cost budget may be a more reasonable criterion than the MEC criterion.

We call this probability the reachable probability.1 With this motivation in mind,

Yu et al. [1998] proposed the Risk-Sensitive criterion (RS-criterion) for MDPs.

The objective of this criterion is to find a policy that maximizes the reachable

probability, which is equivalent to finding a policy that maximizes the probability

of reaching a goal state with an accumulated cost that is no larger than an initial

cost threshold. But, actually, the RS-criterion also represents a risk attitude that

can be applied on more general situations. For example, the objective of the

regular MEC criterion is to find optimal policies with the minimum expected

cost. While such a policy is good in the expected case, it cannot provide any

guarantee that it would not result in an exorbitantly high accumulated cost. If

the system only executes the optimal policy of the MEC criterion once, the system

may encounter an exorbitantly high accumulated cost, which should be avoided.

If the system can identify an accumulated cost level and considers accumulated

cost greater than this level as risk, then this is also a scenario that the RS-criterion

can describe and, hence, the RS-criterion is a risk-sensitive criterion. From the

viewpoint of MDPs with utility functions, the RS-criterion is equivalent to having

a initial wealth level w0 = θ0 and a step utility function:

U(θ) =

 0 if θ < 0

1 if θ ≥ 0
(3.1)

1The notion of reachable probabilities is also used in regular goal-directed MDPs and

POMDPs to refer to the probability of reaching a goal state without considering cost bud-

gets. As this definition is equivalent to ours when the cost budget is infinite, we will misuse this

terminology to refer to both concepts.
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where θ is the current cost threshold (equivalent to wealth level), and the utility

is 1 when the cost threshold is non-negative, and 0 otherwise.

In this dissertation, we will discuss Risk-Sensitive MDPs (RS-MDPs) and Risk-

Sensitive POMDPs (RS-POMDPs), which combine the RS-criterion with MDPs

and POMDPs, respectively.
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Chapter 4

Risk-Sensitive MDPs (RS-MDPs)

Risk-Sensitive MDPs (RS-MDPs) is the probabilistic planning model that com-

bine Markov Decision Processes (MDPs) and the Risk-Sensitive criterion (RS-

criterion). This section begins by describing the RS-MDP (Risk-Sensitive MDP)

model in Section 4.1. Then, four algorithms – Functional Value Iteration (FVI),

Augmented MDPs, Depth First Search (DFS) and Dynamic Programming (DP)

– are introduced for RS-MDPs in Section 4.2. Sections 4.3 show the theoretical

result for RS-MDPs that allow costs to be negative, and 4.4 discusses RS-MDPs

that allow costs to be zero and introduce two new algorithms for it. Section 4.5

gives the complexity of RS-MDPs and its corresponding proof. Finally, we show

the experimental result of different RS-MDP algorithms in Section 4.6.

4.1 RS-MDP Model

Risk-Sensitive MDPs (RS-MDPs) are MDPs with the objective of optimizing for

the RS-criterion. Specifically, given a cost budget θ0, the goal is to find a policy

that maximizes the reachable probability of the start state P (s0, θ0), that is, a

policy that maximizes the probability of reaching a goal state. Specifically, the
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reachable probability P (s, θ) can be formally defined under the situation that the

system execution start from state s and the available cost budget is θ. Recall

that a general policy π, which may not be stationary, would define a probability

P π(τ) for each execution trajectory τ starting from a state s and each execution

trajectory τ defines a accumulated cost C(τ); the reachable probability is defined

as P (s, θ) =
∑

τ∈T P
π(τ), where T = {τ | C(τ) ≤ θ}.

Formally, an RS-MDP is defined by the tuple 〈M,Θ, θ0〉, where:

• M is an MDP

• Θ is the set of all possible cost thresholds

• θ0 ∈ Θ is a predefined initial cost threshold.

For RS-MDPs, the optimal action choice and the optimal reachable probability

depend not only on the current state s, but also on the current cost threshold θ. It

means that the optimal policies for RS-MDPs may be non-stationary with respect

to the state. Since the cost threshold θ summarizes all necessary information of

initial cost threshold θ0 and the whole execution history, the optimal policies for

RS-MDPs are stationary with respect to both state and cost thresholds. Thus,

rather than the expected cost function and optimal policy form under the MEC

criterion, the reachable probability function and optimal policies have forms as

functions P : S×Θ→ [0, 1] and π : S×Θ→ A, where Θ is the set of all possible

cost thresholds.

4.2 RS-MDP Algorithms

We describe two general classes of algorithms to solve RS-MDPs. The first is

done by representing the RS-criterion using continuous value functions, and then

using Functional Value Iteration (FVI) [Liu and Koenig, 2005b; 2006; Marecki
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and Varakantham, 2010] to solve the problem. The second is done by implicitly

representing RS-MDPs as augmented MDPs, and then using classical methods

like depth-first search and dynamic programming to solve the problem.

4.2.1 Functional Value Iteration

Functional Value Iteration (FVI) [Liu and Koenig, 2005b; 2006] is an algorithm

that solves MDPs with arbitrary utility functions. As such, we first describe its

general approach for arbitrary utility functions before describing how we optimize

it for the utility functions corresponding to the RS-criterion.

Similar to RS-MDPs, the optimal action choice for MDPs with utility functions

depend on both states and wealth levels, which are the cost thresholds when the

initial cost threshold equals the initial wealth level, i.e., θ0 = w0, namely the

amount of unused cost. The expected utility function V : S ×W → R and

optimal policies π : S×W→ A have forms as functions of the pairs of state and

wealth level. By considering the above form of expected utility function, it forms

an equation similar to the Bellman equation:

V (s, w) = max
a∈A

∑
s′∈S

T (s, a, s′)V (s′, w − C(s, a, s′)) (4.1)

The set of possible wealth level W is actually infinitely countable, so the

expected utility function cannot be represented as a finite table. FVI considers

W as a continues space and represents the expected utility functions V (s, w)

as a function that maps states to utility functions with form W → R, namely

functions from wealth levels to utilities. Formally, the expected utility functions

are represented as the form V : S→ (W→ R). Then, the above equation can be

rewritten as:

21



V (s)(w) = max
a∈A

∑
s′∈S

T (s, a, s′)V (s′)(w − C(s, a, s′)) (4.2)

which operates on utility functions rather than numbers. FVI first sets the func-

tion of goal states as the utility function, and uses the above equation to perform

updates in parallel over all non-goal states to get a new utility functions repeat-

edly. FVI looks like original VI except that it uses functions for the original states

instead of single numbers.

Recall that any arbitrary risk attitudes can be represented as utility functions,

which can then be approximated by Piecewise Linear (PWL) utility functions (see

Section 3.1). Since the utility function corresponding to the RS-criterion is a step

function (see top left subfigure in Figure 4.1), the FVI update iteration would

produce a specific type of PWL functions – Piecewise Constant (PWC) utility

functions. While FVI can be used with any PWL functions, we now describe

how it can be optimized when it is used with PWC functions (specific for the

RS-criterion).

For PWC utility functions generated by FVI under the RS-criterion, it is clear

that they would have zero utility when the cost level is negative. Thus, if an initial

cost threshold θ0 is given, then utility functions are enough to only record values

over the interval [0, θ0]. Each utility function can be represented as an ordered

list of pairs (θi, pi) for i = 0, 1, 2, . . . , n, where θ0 = 0 and θ0 < θ1 < . . . < θn ≤ θ0

and a PWC function can be formally defined as U(θ) = pi while θ ∈ [θi, θi+1) and

U(θ0) = pn.

For example, Figure 4.1 shows examples of PWC utility functions. Consider

a simple MDP with S = {s0, s1, s2, s3}; G = {s1, s2, s3}; and an action a. Let us

assume T (s0, a, si) = P i, C(s0, a, si) = θi, θ1 < θ2 < θ0 and cost θ3 > θ0 exceeds

the initial cost threshold. The upper left subfigure of Figure 4.1 is the utility
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Figure 4.1: PWC Utility Functions

function of the RS-criterion, and it is the utility function for all goal states s1,

s2, and s3. The upper right and lower left subfigures of Figure 4.1 represent the

utility function components corresponding to transition (s0, a, s1) and (s0, a, s2),

respectively. Taking the upper right subfigure of Figure 4.1 as example, if the agent

is at state s0 and it has a current cost threshold θ ∈ [θ1, θ0], then it receives a utility

equal to the transition probability P 1 by applying action a since the goal state s1

can be reached safely with the transition probability P 1. The utility function of

the initial state s0 is thus the sum of these two utility function components and

is shown in the lower right of Figure 4.1, which is a PWC function.

4.2.2 Representing RS-MDPs as Augmented MDPs

We now describe how RS-MDPs can be represented as augmented MDPs, which

will allow classical MDP algorithms to be adapted to solve them. Each RS-MDP

〈M,Θ, θ0〉, where M = 〈S,A,T,C,G, s0〉 is an MDP, can be modeled as an

augmented MDP 〈Ŝ,A, T̂,R, Ĝ, ŝ′0〉, where:
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• Ŝ : S×Θ is the set of augmented states (s, θ);

• the transition function T̂ : Ŝ×A× Ŝ→ [0, 1] is T̂ ((s, θ), a, (s′, θ′)) = T (s, a, s′)

if θ′ = θ − C(s, a, s′), otherwise it equals 0;

• the reward function R : Ŝ×A× Ŝ→ [0, 1] is R((s, θ), a, (s′, θ′)) = 1 if s /∈ G,

s′ ∈ G, θ′ = θ − C(s, a, s′) and θ′ ≥ 0, otherwise it equals 0;

• the set of goal states Ĝ = {(sg, θ) | sg ∈ G, θ ≥ 0}; and

• the initial augmented state ŝ0 = (s0, θ0).

Based on this line of thought, one can also generate augmented MDPs for

MDPs with utility functions, but the augmented state space S ×W would be

infinite because the set of possible wealth levels W is countable infinite. But

for RS-MDPs, it is possible to merge all augmented states with negative cost

thresholds to a state ŝ⊥ and ignore any transitions for ŝ⊥ because the reachable

probabilities of all augmented states with negative cost are actually 0. Unlike the

set of wealth levels W, it is enough to only consider Θ as the set of non-negative

possible cost thresholds, and then the set of possible cost threshold Θ would be

finite. If we define Θ0 = {θ0} and Θi = {θ | θ = θ′ − c, θ′ ∈ Θi−1, c ∈ C, θ ≥ 0},

then Θ can be obtained by inductively computing Θi until it does not change

anymore, i.e., Θ = Θk when Θk = Θk+1. Unlike regular MDPs, the goal here

would be to find a policy that maximizes the expected reward (equivalent to

maximizing the reachable probability in RS-MDPs). Such an MDP is also called a

MAXPROB MDP [Kolobov et al., 2011; Kolobov, 2013], which is further discussed

in Chapter 7.

For example, Figure 4.2 shows the transition graphs of an example MDP and

its corresponding augmented MDP. The left subfigure of Figure 4.2 shows the

original MDP and the cost functions. We assume s0 is the initial state and s3

is the only goal state. If the initial cost threshold is 6, the right subfigure of
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Figure 4.2: Augmented MDP

Figure 4.2 shows its corresponding augmented MDP and the transition graph only

shows all reachable augmented states. From the figure, if there exists a transition

(s0, a1, s1) and its corresponding cost is 2, then the corresponding transitions in

the augmented state space will be ((s0, 6), a1, (s1, 4)) and ((s0, 2), a1, (s1, 0)). We

omit the transitions in the figure. We also omit the rewards of augmented MDP in

the figure. For the augmented MDP, all rewards equal 0 except for the transition

((s2, 3), a3, (s3, 2)), where R((s2, 3), a3, (s3, 2)) = 1 since it is the transition that go

into a goal state from a non-goal state with positive cost threshold. In addition,

the augmented state (s0,−2) and (s2,−1) can be combined to one augmented

state since they are with negative cost.
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4.2.3 Depth First Search (DFS)

Once an RS-MDP is represented as an augmented MDP, we can use classical

methods like depth-first search to solve it. Clearly, the reachable probabilities

of any augmented goal states ŝg ∈ Ĝ and augmented states with negative cost

thresholds are 1 and 0, respectively. By assigning the reachable probabilities

of augmented goal states and augmented states with negative cost thresholds in

advanced, the relationship between the reachable probability of augmented state

(s, θ) and its successor (s′, θ − C(s, a, s′)) can be summarize as follows:

P (s, θ) = max
a∈A

∑
s′∈S

T (s, a, s′)P (s′, θ − C(s, a, s′)) (4.3)

Generating the augmented MDP explicitly is very inefficient with respect to

both time and memory. If we do not generate the augmented MDP, then aug-

mented goal states and augmented states with negative cost thresholds can be

ignored and one can also characterize the reachable probabilities with the follow-

ing system of equations:

P (s, θ) = max
a∈A

∑
s′∈S


0 if θ < C(s, a, s′)

T (s, a, s′) if s′ ∈ G, θ ≥ C(s, a, s′)

T (s, a, s′)P (s′, θ − C(s, a, s′)) if s′ /∈ G, θ ≥ C(s, a, s′)

(4.4)

Equation 4.4 shows the components of reachable probability from augmented state

(s, θ) assuming that one takes action a from state s and transitions to successor

state s′, which have three cases, as below:

• If the cost threshold θ is smaller than the action cost C(s, a, s′), then the

successor can only be reached by exceeding the cost threshold. Thus, the

reachable probability is 0.
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• If the successor is a goal state and the cost threshold is larger than or equal to

the action cost C(s, a, s′), then the successor can be reached without exceeding

the cost threshold. Thus, the reachable probability is the transition probability

T (s, a, s′).

• If the successor is not a goal state and the cost threshold is larger than or equal

to the action cost C(s, a, s′), then the successor can be reached without ex-

ceeding the cost threshold. Thus, the reachable probability can be recursively

determined as the transition probability T (s, a, s′) multiplied by the reachable

probability of a new augmented state P (s′, θ − C(s, a, s′)).

One can extract the optimal policy by taking the action that is returned by the

maximization operator in Equation 4.4 for each augmented state (s, θ).

Because all costs are positive, any augmented successor states have a smaller

cost threshold than its predecessor, and the reachable probability of augmented

states only depend on the reachable probabilities of augmented states with smaller

cost thresholds. The augmented MDP would form a transition graph, in which

each node is an augmented state (s, θ). Any transition edges in the transition

graph go from augmented states with larger cost thresholds to augmented states

with smaller cost thresholds, which indicates that there are no cycles in the tran-

sition graph. Therefore, the transition graph forms a Directed Acyclic Graph

(DAG) of augmented states. Since the transition graph is a DAG of augmented

states and augmented states form no cycles, a Depth First Search (DFS) style

algorithm can be proposed to traverse the transition graph from the initial aug-

mented state (s0, θ0) and calculate reachable probability P (s, θ) for each reachable

augmented state (s, θ) based on the reverse topological sort. Algorithm 1 shows

the pseudocode of the algorithm.

In Algorithm 1, it first applies a DFS style procedure Reverse-Topology-
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Algorithm 1: DFS(θ0,M)

1 〈(s1, θ1), (s2, θ2), . . . , (sn, θn)〉 = Reverse-Topology-Order(s0, θ0)

2 for augmented state (si, θi) with indices i = 1 to n do

3 Update(si, θi)

4 end

Order, which traverses all augmented states that is reachable from the initial

augmented state (s0, θ0), decides their reverse topological sort and record its corre-

sponding indices (line 1). Then the algorithm invokes procedure Update for each

augmented states based on their reverse topological sort (lines 2-4). Procedure

Update computes the reachable probability P (s, θ) based exactly on Equation 4.4

(lines 5-22). Every time the reachable probability is computed for an augmented

state (s, θ), the procedure records the reachable probability P (s, θ) and the opti-

mal action π(s, θ) (lines 23-24).

In practice, DFS can be implemented recursively, which will improve its effi-

ciency. The recursive version of DFS executes Update(s0, θ0) directly and the

Procedure Update has one more line Update(s′, θ′) between lines 13 and 14.

An important design decision when implementing some of the RS-MDP al-

gorithms, including DFS, is the choice of the global data structure to store the

reachable probabilities P (s, θ). We can either store them as utility functions that

dynamically grow (as is used by FVI) or in a fixed-size latticed table (as is used

by VI on augmented MDP). Choosing the latter method requires determining the

size of the set Θ in advanced, as the size of the latticed table is proportional to the

size of that set. The former method alleviates the need for such restrictions as the

size of the utility function can grow as required. However, this comes at the cost

of longer runtimes to search and insert elements into the data structure, which

take O(log(|Θ|)) and O(|Θ|), respectively. The runtime for these two operations
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Procedure Update(s, θ)

5 P ∗ = 0

6 for a ∈ A do

7 Pa = 0

8 for s′ ∈ S | T (s, a, s′) > 0 do

9 if θ ≥ C(s, a, s′) then

10 if s′ ∈ G then

11 Pa = Pa + T (s, a, s′)

12 else

13 θ′ = θ − C(s, a, s′)

14 Pa = Pa + T (s, a, s′) · P (s′, θ′)

15 end

16 end

17 end

18 if Pa > P ∗ then

19 P ∗ = Pa

20 a∗ = a

21 end

22 end

23 P (s, θ) = P ∗

24 π(s, θ) = a∗

is only O(1) when using a latticed table.

If the RS-MDP has integer costs only, i.e., the cost function is C : S×A×S→

Z+, the set of possible cost threshold Θ can be assumed to be {0, 1, 2, . . . , θ0}.

Thus, a latticed table, where each element [s, i] of the table is used to store the

reachable probability P (s, θ = i), can be used. This allows one to use i as the

index to reference P (s, θ), which makes the search and insert operations to be

very fast in practice.
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In fact, even when the costs are not integers, any real number must have limited

precision in a real machine and one can convert problems with higher precision

costs and cost thresholds to problems with integer costs and cost thresholds by

multiplying them with a sufficiently large constant. If the memory needed for the

latticed table with exact precision is too big, the cost threshold can be equally

discretized in order to bound the size of the latticed table. Formally, interval [0, θ0]

can be equally discretized as n interval, and the costs c would be approximated as

i·θ0
n

if c ∈ ( (i−1)·θ0
n

, i·θ0
n

], and the set of possible cost threshold can be approximated

as Θ = { i·θ0
n
} where i = 0, 1, . . . , n. Thus, all possible cost threshold can be

indexed directly by an integer i. DFS using this form of latticed table to represent

P (s, θ) is equivalent to having a perfect hash scheme for augmented states.

4.2.4 Dynamic Programming (DP)

Dynamic Programming (DP) is another algorithm to solve RS-MDPs, which can

be very effective when it uses a latticed table to store the reachable probabilities.

For simplicity, we assume that the costs are all integers in our pseudocode and

our description below. It is fairly straightforward to generalize this algorithm

for non-integer costs or when utility functions are used to store the reachable

probabilities.

For RS-MDPs, the reachable probabilities of augmented states only depend on

augmented states with smaller cost thresholds, which is showed by Equation 4.4

because all costs are positive. Thus, the key idea of DP is that reachable prob-

abilities in table P [s, θ] can be updated from index 0 to θ0. Algorithm 2 shows

the pseudocode of the DP when a latticed table P [s, θ] is used to represent the

reachable probability P (s, θ).

Unlike DFS, which traverses the transition graph from initial augmented state
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Algorithm 2: DP(θ0,M)

25 for sg ∈ G do

26 Mark-Predecessor(sg, 0)

27 end

28 for s ∈ S do

29 if s ∈ G then

30 P [s, 0] = 1

31 else

32 P [s, 0] = 0

33 end

34 end

35 for θ = 1 to θ0 do

36 for s ∈ S do

37 if (s, θ) is marked then

38 Update(s, θ)

39 if P [s, θ] > P [s, θ − 1] then

40 Mark-Predecessor(s, θ)

41 end

42 else

43 P [s, θ] = P [s, θ − 1]

44 π[s, θ] = π[s, θ − 1]

45 end

46 end

47 end
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(s0, θ0), DP traverse the transposed graph of the connectivity graph of augmented

states, where the direction of all transition edges are reversed, from all augmented

state (sg, 0) with a originial goal state and cost threshold 0. The traversal would

stop when it encountered augmented states (s, θ) with cost threshold θ greater

than θ0. Firstly, Algorithm 2 mark all predecessors of augmented goal states by

a procedure Mark-Predecessor (lines 25-27). Then, DP would update the

reachable probabilities in table P [s, θ] from index 0 to θ0. When the index is 0,

set P [sg, 0] to 1 while sg is a goal state, 0 otherwise (lines 28-34). From index

1 to θ0, if the corresponding augmented states are marked during traversal, DP

update it using Procedure Update and continue the traversal, otherwise set it as

P [s, θ] = P [s, θ − 1] (lines 35-47). An augmented state is marked only if it needs

to be updated, and an augmented state needs to be updated only if one of its

successor state is updated with a larger reachable probability (lines 39-41).

While DFS is efficient in that it only updates reachable augmented states

and ignores the unreachable ones, the policy that DFS finds is not available for

all possible augmented states. If the value of the initial threshold θ0 changes,

sometimes one has to run DFS one more time to compute policy for the new

initial augmented state. The new round of DFS can be accelerated by reusing

previous solution information of reachable probabilities. On the other hand, like

FVI, DP finds optimal policies for all thresholds.

4.3 RS-MDPs with Negative Costs

Up to here, almost all the discussion is based on the assumption that the costs

are strictly positive except for transitions from goal states. For RS-MDPs, if the

costs are allowed to be negative, Theorem 1 shows that solving RS-MDPs with
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negative costs is undecidable.

Theorem 1 Solving RS-MDPs with negative costs is undecidable.

Proof: For RS-MDPs with negative costs, if an execution trajectory does not

arrive at any goal state, its accumulated cost may not be positive infinite, and

sometimes it could even be negative infinity. Stationary policies with respect to

the augmented state space may form full negative cost cycles, which is similar

to negative-weight cycles in shortest path problems. If a stationary policy with a

full negative cost cycle exists, then its expected cost would be negative infinity.

The agent can gain enough cost budget along the full negative cost cycle before

then turn to goal states. So, stationary policies with respect to augmented state

may not be optimal for RS-MDPs anymore. It has been shown that checking for

the existence of a policy, which may not be stationary, that guarantees reaching

a goal with an arbitrarily small expected cost is undecidable [Chatterjee et al.,

2016]. The objective of RS-MDPs subsumes the above objective. As such, it is

undecidable as well.

4.4 RS-MDPs with Zero Costs

If RS-MDPs can have zero costs, then FVI and VI on augmented MDPs can still

be used to solve them. However, the DFS and DP algorithms will be erroneous

due to cycles with zero costs in the augmented MDP. To overcome this limitation,

we combine them with the Topological Value Iteration (TVI) [Dai et al., 2011]

algorithm, which results in the TVI-DFS and TVI-DP algorithms. Below, we first

describe the TVI algorithm before describing how it can be used to form the two

algorithms.
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4.4.1 Topological Value Iteration (TVI)

It is possible to partition the connectivity graph or the transition graph of the

MDP into Strongly Connected Components (SCCs) in such a way that they form

a Directed Acyclic Graph (DAG) [Tarjan, 1972; Dai et al., 2011]. More formally,

an SCC of a directed graph G = (V,E) is a maximal set of vertices Y ⊆ V such

that every pair of vertices u and v in Y are reachable from each other. Since the

SCCs form a DAG, it is impossible to transition from a state in a downstream

SCC to a state in an upstream SCC.

The upper left subfigure of Figure 4.3 shows one example of an SCC and

the right subfigure of Figure 4.3 shows one example of DAG of SCCs, which

corresponds to a connectivity graph. In Figure 4.3, we use circles to represent

states, arrows to represent action and rectangles to represent SCC. From the

example SCC, we could see that each state in this SCC have transition paths to

reach every other state, and if a transition go out this SCC, the transition will

never return to the SCC. For the DAG example, we omit the states and transitions

inside each SCC and only show the transitions between SCCs. The leaves of the

DAG are SCCs formed by a single goal state, namely goal SCCs, and we mark

the indices of the non-goal SCCs in reverse topological sort order on the upper

left corner of rectangles. For MDPs with dead-ends, if a leaf SCC is not a goal

SCC, then all states in this SCC are dead-ends

For SSP-MDPs, Topological Value Iteration (TVI) [Dai et al., 2011] is an algo-

rithm that exploits an MDP’s graphical structure property revealed by the DAG

of SCCs. Since the SCCs form a DAG, states in an SCC only affect the states in

upstream SCCs. Thus, by choosing the SCCs one by one in reverse topological

sort order, TVI performs Bellman update for all states in one SCC until they

converge, and then it no longer needs to consider SCCs whose states are already
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Figure 4.3: SCC and DAG of SCCs in Connectivity Graph

converged anymore.

If all states in transition graph except goal states form only one SCC, then the

update iteration process is equivalent to VI, and it would be even slower. TVI

would be much more efficient than VI if the transition graph have many SCCs.

4.4.2 TVI-DFS

When the RS-MDP costs can be zero, the connectivity graph of augmented MDPs

would have cycles of augmented states, which must be formed by transition edges

with cost zero. Thus, the augmented states could form SCCs, but all augmented

states in one SCCs must have exact same cost threshold because transition edges

that form cycles must be with cost zero. Notice that both the original MDP and

the augmented MDP form connectivity graphs, which can be identified as the

DAG of SCCs, but the DAG and SCCs are different between the original MDP

and the augmented MDP.

For example, Figure 4.4 shows the transition graph of one MDP with zero

costs and its corresponding augmented MDP. The left of Figure 4.4 shows the
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Figure 4.4: Augmented MDP of RS-MDP with Zero Costs

original MDP and cost functions are listed in the subfigure. We assume s0 is the

initial state and the s4 is the only goal state. If the initial cost threshold is 6, the

right subfigure of Figure 4.4 shows its corresponding augmented MDP and the

transition graph only shows all reachable augmented states. In the figure, we also

use rectangles to denote each SCC for both the original MDP and the augmented

MDP. It shows the SCCs from the original MDP and augmented MDP are different

and all augmented states in one SCC have exactly the same threshold.

For the DFS algorithm, we modified it to solve RS-MDPs with zero costs, and

we call the new algorithm TVI-DFS, which adopts ideas from Topological Value

Iteration (TVI) [Dai et al., 2011]. Similar to DFS, TVI-DFS also traverses the

augmented state space from initial augmented state (s0, θ0). After the DAG of

SCCs are identified, TVI-DFS updates augmented states of SCCs in the reverse

topological sort. When augmented states in an SCC are updated in parallel, it

performs the update iteration repeatedly until convergence, which is equivalent to

performing VI on the set of augmented states in this SCC. At a high level, TVI-
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Algorithm 3: TVI-DFS(θ0,M)

48 Y = Find-SCCs(s0, θ0)

49 for SCCs yi ∈ Y with indices i = 1 to n do

50 Update-SCC(yi)

51 end

Procedure Update-SCC(yi)

52 for (s, θ) ∈ yi do

53 P (s, θ) = 0

54 end

55 repeat

56 residual = 0

57 for (s, θ) ∈ yi do

58 P ′(s, θ) = P (s, θ)

59 Update(s, θ)

60 if residual < |P (s, θ)− P ′(s, θ)| then

61 residual = |P (s, θ)− P ′(s, θ)|

62 end

63 end

64 until residual < ε;

DFS is identical to TVI, except that it operates on an augmented MDP instead

of a original MDP and it uses Equation 4.4 to update the reachable probabilities

of each augmented state instead of using the Bellman equation to update the cost

value of each state. Recall that TVI is efficient when there are many SCCs in

the transition graph, augmented MDPs have this property since each SCC can

only contain augmented states with same cost threshold. Algorithm 3 shows the

pseudocode of the algorithm.

TVI-DFS first partitions the augmented MDP state space into SCCs with
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Tarjan’s algorithm [Tarjan, 1972], which traverses the transition graph in a depth-

first manner and marks the SCC membership of each state (line 48). Tarjan’s

algorithm returns an SCC transition tree Y , where the SCC indices are in reverse

topological sort order. Then, TVI-DFS updates the augmented states in the

SCCs in reverse topological sort order (lines 49-51). Notice that the SCCs TVI-

DFS identified in Y do not include any augmented goal states and augmented

states with negative cost thresholds. This process is similar to popping elements

of a stack that are pushed in depth-first order. For each SCC, the algorithm

performs a VI-like update using Equation 4.4 until the residual of all augmented

states, defined as the difference in the reachable probability between subsequent

iterations, are within ε (lines 55-64). Additionally, in the case that one SCC is

formed by augmented states with dead-ends in original state space, TVI-DFS

initializes the reachable probabilities as 0 before the update (lines 52-54) and this

can be omitted if dead-ends can be identified in the original state space and all

reachable probabilities of augmented states with dead-ends are predefined as 0.

4.4.3 TVI-DP

Corresponding to TVI-DFS, another algorithm – TVI-DP – is available for RS-

MDPs with zero costs. Like DP, TVI-DP would perform updates on augmented

states from smaller cost thresholds to higher cost thresholds. TVI-DP traverses the

transposed graph rooted at all augmented states (sg, 0) where sg ∈ G. Figure 4.5

show the transposed graph corresponding to the RS-MDP in Figure 4.4 and the

transposed graph is rooted at (s4, 0).

TVI-DP only use Equation 4.4 to explicitly update the reachable probability of

augmented state that is traversed in the transposed graph rooted at all augmented

states (sg, 0) where sg ∈ G. This is because any augmented states that is not in
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Figure 4.5: Transposed Graph of of RS-MDP with Zero Costs

the transposed graph have the exact same reachable probability as augmented

states with the same original state and the adjacent cost threshold that is less.

For these augmented state with adjacent cost threshold, the key observation is that

there exists exactly the same possible trajectories that reach goal state with non-

negative cost threshold. Thus, TVI-DP will assign the same reachable probability

for those augmented state. For example, in the RS-MDP showed by Figure 4.4, the

reachable probability of augmented state (s0, 4) is the same as that of augmented

state (s0, 3). So, only P (s0, 3) is updated explicitly and P (s0, 4) is assigned as

P (s0, 3), i.e., P (s0, 4) = P (s0, 3). Like TVI-DFS, TVI-DP performs a VI-like

update on one SCC by another SCC of augmented states. And similar to DP, an

SCC of augmented states needs to be updated only if one of its successor state

is goal or updated with a larger reachable probability. Additionally, when the

augmented states with same cost threshold are update, TVI-DP perform updates

based on the reverse topology order of SCCs. TVI-DP will only update augmented

states with cost threshold θ ∈ [0, θ0], so the augmented states (s0,−1) and (s0, 7)
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Algorithm 4: TVI-DP(θ0)

65 for sg ∈ G do

66 P (sg, 0) = 1

67 end

68 Y = Find-Transposed-SCCs(G, 0)

69 for θ = 0 to θ0 do

70 for SCCs yθj ∈ Y with indices j = 1 to m do

71 Update-SCC(yθj )

72 end

73 for (s, θ) /∈ Y do

74 if θ = 0 then

75 P [s, 0] = 0

76 else

77 P [s, θ] = P [s, θ − 1]

78 π[s, θ] = π[s, θ − 1]

79 end

80 end

81 end

in Figure 4.4 will be ignored by TVI-DP. Algorithm 4 shows the pseudocode

of TVI-DP. Like for DP, we assume here that the costs are all integers in the

pseudocode and use a latticed table to store the reachable probabilities.

In Algorithm 4, TVI-DP first sets P [sg, 0] to 1 while sg is a goal state (lines 65-

67). Then, TVI-DP runs Tarjan’s algorithm on the transposed graph from all

augmented states (sg, 0) while sg ∈ G (line 68). Once the DAG of SCCs is found,

TVI-DP updates the augmented states starting from the augmented states with

thresholds θ = 0 to the states with thresholds θ = θ0 (lines 69-81). For each

group of augmented states with the same threshold, TVI-DP updates the aug-

mented states in the SCCs in reverse topological sort order (lines 70-72). An
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Figure 4.6: SCC of augmented states with a particular cost threshold

important property here is that all augmented states in an SCC must have the

same threshold. For each augmented state (s, 0) that is not traversed by Find-

Transposed-SCCs, TVI-DP set the reachable probability to 0. For each aug-

mented state (s, θ) that is not not traversed by Find-Transposed-SCCs and

θ 6= 0, TVI-DP updates its reachable probability and record the optimal action

to that in the augmented state (s, θ − 1) (lines 73-80).

Instead of running Tarjan’s algorithm to find SCCs in the augmented state

space, one can optimize this process by running Tarjan’s algorithm on the original

state space, and map those SCCs to the augmented state space. Taking the

original MDP in Figure 4.4 as an example, the left subfigure of Figure 4.6 shows

the corresponding DAG of SCCs when we only consider transitions with zero costs,

and the right subfigure of Figure 4.6 shows the DAG of SCCs of augmented states

with a particular cost threshold. The figure illustrates that the DAG of SCCs

of augmented states with a particular cost threshold and corresponding original

states is exactly the same as the DAG of SCCs in the original state space when
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we only consider the transitions with zero costs.

4.5 RS-MDP Complexity

The complexity of MDPs are proved in [Papadimitriou and Tsitsiklis, 1987]. By

following similar technical steps, we show the complexity of RS-MDPs in this

subsection.

Theorem 2 Solving RS-MDPs optimally is P-hard in the original state space.

Proof: To show P-hardness, we shall reduce Circuit Value Problems (CVPs) to

RS-MDPs. A CVP can be defined as a finite sequence of triples C = ((oi, pi, qi), i =

1, 2, . . . , n), where oi is one of the “operations” – TRUE, FALSE, AND, and OR,

and pi and qi are non-negative integers smaller than i. If oi is either FALSE or

TRUE, then the triple is called an input, and pi = qi = 0. If oi is either AND or

OR, then the triple is called a gate and pi, qi > 0. The value of a triple is defined

recursively as follows: (1) The value of an input (TRUE, 0, 0) is true, and that of

(FALSE, 0, 0) is false; (2) The value of a gate (oi, pi, qi) is the Boolean operation

denoted by oi applied to the values of the pi-th and qi-th triples. The value of

CVP is the value of the last gate. A CVP needs to decide if its value is true.

A CVP can be reduced to an RS-MDP here. Given a circuit C =

((oi, pi, qi), i = 1, 2, . . . , n), we construct an MDP 〈S, s0,A,T,C,G〉 as follows:

S has one state si for each triple (oi, pi, qi). The set of goal states G is the set of

states corresponding to all input triples. If (oi, pi, qi) is an AND gate, then there

is only 1 available action a0 for state si, with T (si, a0, spi) = T (si, a0, sqi) = 0.5,

which means that the next state can be either spi or sqi . If (oi, pi, qi) is an OR gate,

then there are 2 available actions a1, a2 for state si and the transition function is

T (si, a1, spi) = 1 and T (si, a2, sqi) = 1, which means that we decide whether the
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next state is going to be spi or sqi . The initial state s0 is sn, corresponding to the

last gate in CVP. If oi is FALSE, then we set the cost function C(s, a, si) = θ⊥,

where s and a could be any state and action with T (s, a, si) > 0, θ⊥ is a constant

larger than n, and all other costs are 1. Finally, we set the initial cost threshold

as a positive constant n < θ0 < θ⊥. Combining the MDP and θ0, we get desirable

RS-MDP.

We claim that the optimal reachable probability is 1 if and only if the value of

CVP was TRUE. Let us first assume that the reachable probability is indeed 1.

Then, by following the optimal RS-MDP policy, all potential execution trajectories

will finally reach a goal state corresponding to a TRUE input. Otherwise, the

goal state corresponding to a FALSE input would result in a cost θ′ that is larger

than θ0. Following the potential execution trajectories starting from these goal

states, it easy to deduce that the value of CVP is TRUE. If the value of CVP

was TRUE, then it is easy to construct the optimal RS-MDP policy by picking

actions corresponding to TRUE triples among spi , sqi for each OR gate. Then,

the potential execution trajectories would always reach goal states corresponding

to TRUE input triples, and the reachable probability is 1.

Notice that RS-MDPs are not in P in the original state space, because solving

them requires specifying an action for each augmented state in the set Ŝ : S×Θ,

which, in turn, could be exponential in the size of S if |Θ| = 2|S|.

4.6 RS-MDP Experimental Results

We ran experiments on three domains: (1) randomly generated MDPs, (2) the

Navigation domain from the ICAPS 2011 International Probabilistic Planning

Competition (IPPC), and (3) a taxi domain [Ziebart et al., 2008; Varakantham et
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al., 2012] generated from real-world data. While there are other IPPC domains,

we chose the Navigation domain because it is the only one with dead-ends in the

original MDP state space. Therefore, this domain highlights the feasibility of our

approaches beyond SSP-MDPs, which do not have dead-ends.

In all our three domains, we generated two types of MDPs – ones without

zero costs and ones with zero costs. For the former, we compared the following

algorithms: FVI, VI on the augmented MDP (which we label as AUG-VI), DFS,

and DP. For the latter, we replaced DFS and DP with their TVI-DFS and TVI-DP

extensions that work with zero costs. As the performance of DFS, DP, TVI-DFS,

and TVI-DP may differ based on the data structure that they use to store the

reachable probabilities, we evaluated them for both data structures, where we

use “F” or “T” in parentheses to indicate that they are using utility functions or

latticed tables to represent the probabilities, respectively.

We report scalability in terms of the percentage of instances solved (%); aver-

age runtime in milliseconds of instances solved (t); and average reachable proba-

bility of all instances (P ).1 We impose a timeout of 10 minutes. All experiments

were conducted on a 3.40 GHz machine with 16GB of RAM.

4.6.1 Randomly Generated MDPs

We ran two types of experiments here – one where we vary the number of states

|S| from 2500 to 40000, and another where we vary the cost threshold θ0 from 1.25

to 5 times of C∗d , where C∗d is the accumulated cost of the shortest deterministic

path from the start state s0. Each randomly generated MDP has 2 actions per

1When an instance is not solved, some algorithms may have found suboptimal solutions

for this instance. We include the reachable probabilities of these suboptimal solutions when

computing the average.
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state and 2 successors per action. We randomly selected a state as the start state

and a different state as the goal state, and we chose the costs from the range [0,

1000]. Tables 4.1 and 4.2 show the results for the MDPs without zero costs and

with zero costs, respectively. Results are averaged over 50 randomly generated

instances.

We make the following observations for MDPs without zero costs:

• In general, either DFS or DP is faster than AUG-VI and FVI. The reason is

that they are designed to solve RS-MDPs specifically and, thus, exploits the

specific transition properties present in RS-MDPs. In contrast, AUG-VI and

FVI do not exploit those properties.

• The runtime of DFS(T) mostly depends on two factors: (1) The initialization

time of the latticed table, which increases with increasing state size but is in-

dependent of the cost threshold; and (2) The runtime of each of its operations

in accessing and manipulating the reachable probabilities in that table is in

constant time, independent of the state size and the cost threshold. On the

other hand, the runtime of DFS(F) mostly depends on a single factor: Main-

taining and updating its utility function, which depends on the complexity

of the function (i.e., the number of “pieces” in piecewise constant functions

that are needed to represent it). The complexity of such piecewise functions

increases with increasing cost thresholds. The worst-case runtime complexity

of the search and insert operations are O(log(|Θ|)) and O(|Θ|), respectively,

where Θ is the set of cost thresholds.

In Table 4.1, when the cost threshold is kept at a constant ratio of θ0 =

2.00 · C∗d , DFS(F) is faster than DFS(T) because the overhead of initializing

the latticed table is larger than the savings DFS(T) gained from its runtime

operations, which is in constant time. As such, the difference in runtime also
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increases with the state size. In Table 4.1, when the state size is kept constant,

DFS(F) is faster than DFS(T) when cost thresholds are small and vice versa

when cost thresholds are large. The reason is that when the cost thresholds

are small, the overhead is still larger than the savings in runtime operations.

But when the cost thresholds are large, the reverse holds.

• For DP, unlike DFS, DP(T) is usually faster than DP(F) in Tables 4.1. The

reason is the following: In both versions, DP has to update the reachable prob-

abilities for the augmented states sequentially from those with cost threshold

θ = 0 up to those with the initial cost threshold θ = θ0. As such, it needs to

order the augmented states that need to be updated according to their cost

threshold. When DP uses a latticed table, it can directly mark the cells in

the table to indicate whether it needs to be updated or not. However, when

DP uses utility functions, it needs to order them using a heap, which will be

more expensive, especially as the size of the heap grows with the state size and

initial cost threshold.

In addition, for the same reason, DP(F) may use more memory than DP(T)

as it will need to store this heap. As a result, when θ0 = 5.00 · C∗d , DP(F) only

solved 76% of instances. For about half of the instances that it failed to solve,

they were due to timeouts and the rest were due to DP(F) running out of

memory.

• Between the two algorithms, DFS has a slightly larger runtime when updating

the reachable probability of a single augmented state. The reason is because

it needs to check if its successor augmented states have already been updated

while DP does not. This check is in O(1) if it uses a latticed table and is

in O(log(|Θ|)) if it uses utility functions. However, DFS updates fewer aug-

mented states as it only needs to update those states that are reachable from
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the starting augmented state. In contrast, DP needs to update the reachable

probabilities for all augmented states whose cost threshold θ ≤ θ0 is no larger

than the initial cost threshold. Therefore, when the initial cost threshold is

small, the latter effect dominates the former and DFS is faster.

When the initial cost threshold is large, after a certain intermediate cost

threshold θ′ < θ0, almost all augmented states with cost threshold θ ≤ θ′ are

also reachable augmented states and are thus updated by both DFS and DP.

As a result, the overall overhead of DFS is larger than its savings, and DFS is

slower than DP.

• Finally, as expected, the reachable probability P of the augmented start state

increases with increasing threshold θ0. Additionally, since all the algorithms

are optimal algorithms, they find solutions with the same reachable probability.

For MDPs with zero costs, most of the trends from above also apply, except for

the following:

• TVI-DFS(T) is faster than TVI-DFS(F). The reason is the following: With

zero costs, there may be loops in the transition graph (within an SCC), which

will cause augmented states within the SCC to be repeatedly updated by VI

across multiple iterations before convergence. As the operations on the latticed

table, which are in O(1), are faster than the operations with utility functions,

which is in O(log(|Θ|)), this difference is exaggerated here when there are zero

costs. For this reason, the speedup of TVI-DFS(T) over TVI-DFS(F) also

increases with increasing state size and cost threshold.

• TVI-DP(T) is faster than TVI-DFS(F) for the same reason as above.

47



|S| FVI DFS(F) DP(F)

% t P % t P % t P

2500 100 896 9.60e-2 100 7 9.60e-2 100 705 9.60e-2

5000 100 2199 7.17e-2 100 14 7.17e-2 100 1436 7.17e-2

10000 100 7441 5.13e-2 100 45 5.13e-2 100 7677 5.13e-2

20000 100 15243 4.03e-2 100 118 4.03e-2 100 18013 4.03e-2

40000 100 57448 2.68e-2 100 361 2.68e-2 100 53225 2.68e-2

|S| AUG-VI DFS(T) DP(T)

% t P % t P % t P

2500 100 2900 9.60e-2 100 508 9.60e-2 100 148 9.60e-2

5000 100 6846 7.17e-2 100 1270 7.17e-2 100 311 7.17e-2

10000 100 17199 5.13e-2 100 4186 5.13e-2 100 1078 5.13e-2

20000 100 39269 4.03e-2 100 9686 4.03e-2 100 2870 4.03e-2

40000 100 96839 2.68e-2 100 27768 2.68e-2 100 8147 2.68e-2

|S| FVI DFS(F) DP(F)

% t P % t P % t P

1.25·C∗d 100 261 1.24e-2 100 7 1.24e-2 100 88 1.24e-2

1.50·C∗d 100 1133 2.51e-2 100 14 2.51e-2 100 550 2.51e-2

2.00·C∗d 100 14121 5.16e-2 100 52 5.16e-2 100 8782 5.16e-2

3.00·C∗d 96 129913 1.07e-1 100 4861 1.07e-1 100 91823 1.07e-1

5.00·C∗d 24 407102 1.89e-1 100 128576 2.02e-1 76 316178 1.96e-1

|S| AUG-VI DFS(T) DP(T)

% t P % t P % t P

1.25·C∗d 100 10639 1.24e-2 100 195 1.24e-2 100 212 1.24e-2

1.50·C∗d 100 13061 2.51e-2 100 808 2.51e-2 100 347 2.51e-2

2.00·C∗d 100 17802 5.16e-2 100 4378 5.16e-2 100 1191 5.16e-2

3.00·C∗d 100 27600 1.07e-1 100 15613 1.07e-1 100 6321 1.07e-1

5.00·C∗d 100 46960 2.02e-1 100 39087 2.02e-1 100 19255 2.02e-1

Table 4.1: RS-MDP Results of Randomly Generated MDPs without Zero Costs

4.6.2 Navigation Domain

For the navigation domain, we use all 10 IPPC instances. However, we changed the

costs to randomly vary from [1, 1000] for RS-MDPs without zero costs and from

[0, 1000] for RS-MDPs with zero costs. This domain is specified by a gridworld,

where each cell in the gridworld is a state, and a robot needs to navigate from its

start state to its goal state, both of which are specified by the instance. It can

move in the four cardinal directions and it will move to the neighboring state with
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|S| FVI TVI-DFS(F) TVI-DP(F)

% t P % t P % t P

2500 84 10801 7.06e-3 100 508 7.06e-3 100 1367 7.06e-3

5000 86 17215 1.44e-3 100 1878 1.44e-3 100 4237 1.44e-3

10000 96 32623 2.05e-4 100 4013 2.05e-4 100 7847 2.05e-4

20000 88 51013 4.38e-4 100 12806 4.38e-4 100 24201 4.38e-4

40000 86 77977 1.95e-4 100 23980 1.95e-4 100 54071 1.95e-4

|S| AUG-VI TVI-DFS(T) TVI-DP(T)

% t P % t P % t P

2500 100 10934 7.06e-3 100 234 7.06e-3 100 369 7.06e-3

5000 98 23569 1.44e-3 100 866 1.44e-3 100 1020 1.44e-3

10000 100 65304 2.05e-4 100 1946 2.05e-4 100 2151 2.05e-4

20000 94 120126 4.38e-4 100 6424 4.38e-4 100 6778 4.38e-4

40000 76 123923 1.95e-4 100 12984 1.95e-4 100 14122 1.95e-4

|S| FVI TVI-DFS(F) TVI-DP(F)

% t P % t P % t P

1.25·C∗d 90 8067 2.74e-6 100 1273 2.74e-6 100 2830 2.74e-6

1.50·C∗d 90 14300 2.63e-5 100 2316 2.63e-5 100 4804 2.63e-5

2.00·C∗d 90 30526 1.82e-3 100 5192 1.82e-3 100 9885 1.82e-3

3.00·C∗d 88 61007 1.62e-2 100 12741 1.62e-2 100 22757 1.62e-2

5.00·C∗d 86 136390 2.69e-2 98 26235 2.70e-2 98 44333 2.69e-2

|S| AUG-VI TVI-DFS(T) TVI-DP(T)

% t P % t P % t P

1.25·C∗d 100 32032 2.74e-6 100 967 2.74e-6 100 1157 2.74e-6

1.50·C∗d 100 40562 2.63e-5 100 1396 2.63e-5 100 1598 2.63e-5

2.00·C∗d 100 59143 1.82e-3 100 2352 1.82e-3 100 2507 1.82e-3

3.00·C∗d 98 83579 1.62e-2 100 4366 1.62e-2 100 4332 1.62e-2

5.00·C∗d 96 145365 2.71e-2 100 8756 2.71e-2 100 8156 2.71e-2

Table 4.2: RS-MDP Results of Randomly Generated MDPs with Zero Costs

100% probability. However, when it enters a state, it has a probability to fail.

These probabilities can differ between states and are specified by the instance;

they follow some logical structure and are specified by human IPPC designers.

We vary the cost threshold θ0 from 1.25 to 5 times of C∗d , and Tables 4.3 and 4.4

show the results for the MDPs without zero costs and with zero costs, respectively.

We make the following observations for the case without zero costs, where we focus

only on the trends that differ between those in the randomly generated MDPs and
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|S| FVI DFS(F) DP(F)

% t P % t P % t P

1.25·C∗d 100 40 2.00e-4 100 42 2.00e-4 100 19 2.00e-4

1.50·C∗d 100 50 1.71e-2 100 66 1.71e-2 100 26 1.71e-2

2.00·C∗d 100 72 1.90e-1 100 133 1.90e-1 100 37 1.90e-1

3.00·C∗d 100 67 4.15e-1 100 226 4.15e-1 100 43 4.15e-1

5.00·C∗d 100 69 5.12e-1 100 388 5.12e-1 100 44 5.12e-1

|S| AUG-VI DFS(T) DP(T)

% t P % t P % t P

1.25·C∗d 100 661 2.00e-4 100 639 2.00e-4 100 21 2.00e-4

1.50·C∗d 100 801 1.71e-2 100 948 1.71e-2 100 26 1.71e-2

2.00·C∗d 100 1078 1.90e-1 100 1495 1.90e-1 100 47 1.90e-1

3.00·C∗d 100 1604 4.15e-1 100 2632 4.15e-1 100 53 4.15e-1

5.00·C∗d 100 2714 5.12e-1 100 4939 5.12e-1 100 81 5.12e-1

Table 4.3: RS-MDP Results of Navigation Domain without Zero Costs

those in this Navigation domain:

• Unlike in randomly generated MDPs, here, DP is fastest, followed by FVI,

DFS, and AUG-VI. The reason why DP and FVI are faster than DFS and

AUG-VI in this domain is the following: The utility functions in this domain

are relatively simple and can be represented by only few piecewise constant

functions. As a result, FVI is able to update these functions very efficiently.

Additionally, because these utility functions are simple, they also often do not

vary across two augmented states (s, θ) and (s, θ − 1) with the same state s

but different adjacent thresholds. Therefore, DP can simply copy the utility

function of (s, θ− 1) for (s, θ) (lines 43-44 of Algorithm 2). DFS and AUG-VI

do not exploit this characteristic and are, thus, slower.

• For the same reason as above, both DFS and DP are faster when they use

utility functions to represent the reachable probabilities than when they use

latticed tables.

For the case with zero costs, most of the trends from above also apply, except for

the following:
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|S| FVI TVI-DFS(F) TVI-DP(F)

% t P % t P % t P

1.25·C∗d 100 50 2.80e-5 100 118 2.80e-5 100 123 2.80e-5

1.50·C∗d 100 61 1.36e-4 100 194 1.36e-4 100 166 1.36e-4

2.00·C∗d 100 84 1.78e-2 100 348 1.78e-2 100 242 1.78e-2

3.00·C∗d 100 108 2.47e-1 100 641 2.47e-1 100 342 2.47e-1

5.00·C∗d 100 115 3.67e-1 100 1150 3.67e-1 100 384 3.67e-1

|S| AUG-VI TVI-DFS(T) TVI-DP(T)

% t P % t P % t P

1.25·C∗d 100 4469 2.80e-5 100 237 2.80e-5 100 222 2.80e-5

1.50·C∗d 100 5551 1.36e-4 100 344 1.36e-4 100 268 1.36e-4

2.00·C∗d 100 7440 1.78e-2 100 558 1.78e-2 100 360 1.78e-2

3.00·C∗d 100 11255 2.47e-1 100 990 2.47e-1 100 536 2.47e-1

5.00·C∗d 100 18730 3.67e-1 100 1848 3.67e-1 100 884 3.67e-1

Table 4.4: RS-MDP Results of Navigation Domain with Zero Costs

• FVI is faster than TVI-DP. The reason is because there is a large number of

SCCs with only a few augmented states in them, and these instances are very

structurally similar to those without zero costs. As a result, the runtime of FVI

in these two cases are similar. However, TVI-DP is slower than DP because

it has the initial overhead of first running Tarjan’s algorithm to construct the

SCCs. Further, VI within TVI-DP will need to run for several iterations in each

SCC, thereby performing updates multiple times per augmented state. Even

in the special case where an SCC has only a single augmented state, VI will

need to run at least two iterations, once to update the reachable probability

of that state and another to check for convergence. As a result, FVI is now

faster than TVI-DP.

Note that this trend differs from the one for randomly generated MDPs

with zero costs, where TVI-DP is faster than FVI. The reason is because the

runtime of FVI is highly dependent on the complexity of the utility functions.

Therefore, in summary, FVI should be preferred when utility functions are

simple and TVI-DP should be preferred when utility functions are complex.
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|S| FVI DFS(F) DP(F)

% t P % t P % t P

1.25·C∗d 100 416 2.16e-9 100 4 2.16e-9 100 637 2.16e-9

1.50·C∗d 100 670 1.28e-5 100 19 1.28e-5 100 1329 1.28e-5

2.00·C∗d 100 1399 2.29e-2 100 138 2.29e-2 100 3254 2.29e-2

3.00·C∗d 100 2735 1.74e-1 100 442 1.74e-1 100 6723 1.74e-1

5.00·C∗d 100 3965 6.29e-1 100 280 6.29e-1 100 10162 6.29e-1

|S| AUG-VI DFS(T) DP(T)

% t P % t P % t P

1.25·C∗d 100 926 2.16e-9 100 31 2.16e-9 100 126 2.16e-9

1.50·C∗d 100 1140 1.28e-5 100 84 1.28e-5 100 202 1.28e-5

2.00·C∗d 100 1579 2.29e-2 100 218 2.29e-2 100 353 2.29e-2

3.00·C∗d 100 2476 1.74e-1 100 473 1.74e-1 100 575 1.74e-1

5.00·C∗d 100 4192 6.29e-1 100 704 6.29e-1 100 752 6.29e-1

Table 4.5: RS-MDP Results of Taxi Domain without Zero Costs

4.6.3 Taxi Domain

For the taxi domain, states are composed of the tuple 〈zone z, time interval t〉,

where there are 100 zones and each time interval is 10 minutes long. Each taxi

has two actions: (a1) move to a zone and (a2) look for passengers in its zone.

Taxis executing a1 will move to their desired zone with probability 1 and cost

c. Taxis executing a2 have probability pz,t of successfully picking up a passenger

and they can accurately observe pz,t. If it fails to pick up a passenger, it ends

up in the same zone with cost c. The probability pz,t; the transition function,

which determines which zone a hired taxi moves to; and the cost function, which

determines the cost of the hired taxi, is generated with real-world data. As we

have data for 24 hours, we partitioned it into 8 instances, where each instance

uses data for 3 hours. In each of these instances, we randomly choose a start state

and goal states are those states with t = 18, which means that the optimization

lookahead is for the whole 3 hours. Results are averaged over all 8 instances.

Like in the Navigation domain, we vary the cost threshold θ0 from 1.25 to

5 times of C∗d , and Tables 4.5 and 4.6 show the results for the MDPs without
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|S| FVI TVI-DFS(F) TVI-DP(F)

% t P % t P % t P

1.25·C∗d 100 554 8.84e-9 100 8 8.84e-9 100 1202 8.84e-9

1.50·C∗d 100 851 2.90e-6 100 39 2.90e-6 100 2135 2.90e-6

2.00·C∗d 100 1615 1.16e-2 100 191 1.16e-2 100 4351 1.16e-2

3.00·C∗d 100 2883 3.21e-1 100 336 3.21e-1 100 7978 3.21e-1

5.00·C∗d 100 4012 6.90e-1 100 242 6.90e-1 100 11489 6.90e-1

|S| AUG-VI TVI-DFS(T) TVI-DP(T)

% t P % t P % t P

1.25·C∗d 100 999 8.84e-9 100 41 8.84e-9 100 1192 8.84e-9

1.50·C∗d 100 1219 2.90e-6 100 94 2.90e-6 100 1486 2.90e-6

2.00·C∗d 100 1688 1.16e-2 100 249 1.16e-2 100 2089 1.16e-2

3.00·C∗d 100 2635 3.21e-1 100 495 3.21e-1 100 3157 3.21e-1

5.00·C∗d 100 4563 6.90e-1 100 742 6.90e-1 100 4930 6.90e-1

Table 4.6: RS-MDP Results of Taxi Domain with Zero Costs

zero costs and with zero costs, respectively. As the actual cost function from the

real-world data includes zero costs, we incremented all the costs by 1 for the case

without zero costs. We make the following observations for the case without zero

costs, where we focus only on the trends that differ between those in the randomly

generated MDPs and those in this taxi domain

• Like randomly generated MDPs, DFS is better than DP, FVI, and AUG-VI

when the cost thresholds are small. However, when cost thresholds are large,

unlike randomly generated MDPs, where DP is better, DFS is still better here.

This may be due to the fact that our experiments did not increase the cost

threshold to a sufficiently larger value to observe the change in dominance

between DFS and DP.

• Interestingly, the runtime of DFS(F) decreased when the cost threshold in-

creased from θ0 = 3.00 · C∗d to 5.00 · C∗d . The reason is that when the cost

threshold is sufficiently large, the reachable probability of a large number of

states is 1.0, indicating that it has 100% probability of reaching a goal state.

As a result, the utility function representing this reachable probability is made
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up of only a single “piece”, and the operations of DFS(F) is significantly faster.

While DP(F) and FVI also use utility functions, they are not able to exploit

this property as they propagate information from the augmented goal states,

which are those states with θ = 0, up to the augmented start state with θ = θ0.

For both algorithms, some of the utility functions will eventually merge into

one with a single “piece” at some iteration, but they still have to consider the

more complicated functions in the previous iterations.

For the case with zero costs, the corresponding trends for randomly generated

MDPs also apply here, except for the following:

• TVI-DFS is faster than TVI-DP. The reason is that TVI-DFS only explores

a significantly smaller number of reachable augmented states than TVI-DP in

this domain compared to in randomly generated MDPs.

• TVI-DFS is faster when it uses utility functions to represent reachable prob-

abilities results than when it uses latticed tables. The reason is the same as

above: As it only explores a small number of reachable augmented states,

the overhead of initializing the latticed table is larger than the savings in the

operations when it uses a latticed table.
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Chapter 5

Risk-Sensitive POMDPs

(RS-POMDPs)

Similar to Risk-Sensitive MDPs (RS-MDPs), the Risk-Sensitive POMDP (RS-

POMDP) model can be obtained by combining Partially Observable Markov De-

cision Processes (POMDPs) and the Risk-Sensitive criterion (RS-criterion). This

section begins by introducing RS-POMDPs and explaining related cost obser-

vation issues in Section 5.1. Then, Functional Value Iteration (FVI) [Marecki

and Varakantham, 2010] is adopted to solve RS-POMDPs in Section 5.2.1. Sec-

tion 5.2.2 shows how to solve RS-POMDPs by generating and solving their cor-

responding augmented POMDPs. We show how to adapt Depth First Search

(DFS) and Dynamic Programming (DP) to solve RS-POMDPs in Sections 5.2.3

and 5.2.4, respectively. Section 5.3 give the complexity of RS-POMDPs and corre-

sponding proof. Finally, we show the experimental results of different RS-POMDP

algorithms in Section 5.4
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5.1 RS-POMDP Model

Formally, like RS-MDPs, an RS-POMDP is defined by the tuple 〈P ,Θ, θ0〉, where:

• P is a POMDP

• Θ is the set of all possible cost thresholds

• θ0 ∈ Θ is a predefined initial cost threshold.

For POMDPs, the execution trajectory based on states can not be observed,

but the execution history based on observations can be observed. Let us assume

a general policy π, which may not be stationary, is executed, and the system

produce an execution history h : 〈a0, o0, a1, o1, . . .〉, Then, a probability can be

defined, according to π and h, for a execution trajectory τ : 〈s0, a0, s1, a1, s2, . . .〉,

which is P π(τ) = b0(s0) ·
∏∞

i=0 P (si, ai, si+1, oi), where ai is the action chosen by

π to be executed at the time step i and P (si, ai, si+1, oi) = T (si,ai,si+1)O(si,ai,si+1,oi)∑
s∈S T (si,ai,s)O(si,ai,s,oi)

,

which is the probability that state si+1 is arrived where action ai is applied in state

si and observation oi is received. Thus, we can define the reachable probability

with respect to the initial belief state b0 and initial cost threshold θ0 as Pb0,θ0 =∑
τ∈T P

π(τ), where T = {τ | C(τ) ≤ θ0} and C(τ) is the accumulated cost of

execution trajectory τ . Similar to RS-MDPs, the objective of RS-POMDPs is to

find a policy that maximizes Pb0,θ0 .

For original POMDPs, the optimal actions only depend on the belief states,

i.e., a stationary policy with respect to belief states could be optimal for original

POMDPs. But for RS-POMDPs, the situation is different. From the discussion

about RS-criterion for RS-MDPs, we know that the optimal decision is also based

on the cost threshold. If two execution trajectory prefixes end at a same state

s, their corresponding belief states would both contain s, but their corresponding

cost thresholds could be different. So even if the belief states is the same for

56



an RS-POMDP, the optimal decision choice would be different. Instead of the

original belief states, the optimal action choices of RS-POMDPs depend on the

augmented belief state, which is probability distributions b̂ : S × Θ → [0, 1] on

the pair of state and cost threshold. Similar to RS-MDPs, we call pairs (s, θ)

augmented states and the augmented state space is Ŝ : S × Θ. Thus, b̂(s, θ)

denote the probability that the system is in state s and with cost threshold θ, and

namely b̂(s, θ) is the probability of the augmented state (s, θ). Let us denote all

possible augmented belief state as B̂. Then optimal policies of RS-POMDP have

the form B̂ → A, and the reachable probability of augmented belief states can

be defined as P : B̂ → [0, 1]. The above policy form is stationary with respect

to augmented belief state. Corresponding to the initial belief state b0 and initial

cost threshold θ0, the initial augmented state can be defined as b̂0(s, θ) = b0(s)

if θ = θ0, b̂0(s, θ) = 0 otherwise. Thus, the reachable probability Pb0,θ0 can be

denoted as P (b̂0) as well, i.e., Pb0,θ0 = P (b̂0).

5.1.1 Cost Observation

We know that the optimal action choice of RS-POMDPs depend on the cost

threshold, but deciding the cost threshold is highly depend on whether the cost

can be observed during execution. In most existing POMDP literature, it is

often not explicitly stated if agents can or cannot observe the actual cost incurred

during execution [Kaelbling et al., 1998; Geffner and Bonet, 2013; Marecki and

Varakantham, 2010]. In some real-world applications, the actual costs can indeed

be observed. For example, for a robot, costs can correspond to the amount of

battery power used, and the robot can observe the drop in its internal battery

power. Similarly, if costs correspond to the duration of time taken by an action,

time can also be observed. Therefore, in this subsection, we distinguish between
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the two cases of whether costs can be observed or not, and we also describe the

deficiency of popular POMDP models in existing literature.

In existing POMDP literature, rather than the observation function form we

defined in this dissertation, the observation function normally have the simpler

form O¬c : A× S×Ω¬c → [0, 1], where Ω¬c is the set of corresponding observa-

tion. This simpler form assumes that the probability of observing an observation

depends on only the action executed and the state reached. When the cost can

be observed during execution, the cost observation can not be included in the

observations based on this simpler form. For example, let us assume that the

observation o¬c contain information of cost observations and the observed cost

corresponding to o¬c is co¬c . Then, O¬c(a, s, o¬c) is positive if the cost of cor-

responding transition is co¬c , i.e., C(s, a, s′) = co¬c , otherwise it should equal to

0. But O¬c(a, s, o¬c) is just one fixed number and it can not reflect the above

situations based on different conditions.

When we assume that the cost can be observed, the POMDP model is con-

sistent if and only if all the parameters of the cost function are also parameters

of the observation function. Thus, based on the example above, one can make

the POMDP model consistent if we include the predecessor state as a param-

eter of the observation function (i.e., O : S × A × S × Ω → [0, 1]) because

the cost function depends on the predecessor state, action, and successor state

(i.e., C : S×A× S→ [0,+∞)).

Whether the cost can be observed is not only important for RS-POMDPs,

and it is also important for original POMDPs. If the cost can be observed, more

accurate belief states can be obtained by considering the information of cost ob-

servation, and the simpler form of the observation function can not model it. Fur-

thermore, in cases where actual costs can be observed, most POMDP algorithms
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do not explicitly use them to update the belief state. Thus, these algorithm may

get a less accurate result. In the special case where the cost function depends only

on the action (i.e., C : A → [0,+∞)), the actual cost can always be accurately

inferred as it does not depend on the predecessor or successor states, and this

information can thus be used to refine the belief state. Therefore, in this special

case, it does not matter if one assumes whether costs can be observed or not.

In this dissertation, we assume that the observation function of POMDPs have

a more general form O : S×A×S×Ω→ [0, 1], which assumes the probability of

observing a observation depend on the whole transition (s, a, s′). If the cost can

be observed, given a POMDP with the simpler form of observation functions, a

corresponding POMDP with the general observation function can be generated by

augmenting the observation. Let us denote the simpler form observation function

as O¬c and its corresponding observation as o¬c, which do not contain information

of cost observations. Then, the observation of POMDPs with a general observation

form would be a pair (c, o¬c), in which c is the observed cost. Then, the general

observation function in the new POMDP would be as below:

O(s, a, s′, (c, o¬c)) =

 O¬c(a, s
′, o¬c) if c = C(s, a, s′)

0 otherwise
(5.1)

If we consider the above equation as a constraint, the observation function must

equal to 0 if the observed cost is not the same as the cost of the corresponding

transition, i.e., c 6= C(s, a, s′). Any POMDP models that can not satisfy this

constraint are not consistent with the assumption that the cost can be observed,

even if they use the general form for observation functions.

Actually, when the cost can be observed, RS-POMDPs can be discussed with

the simpler observation function, and they are relatively compact [Hou et al.,

2016]. Nonetheless, the discussion in the rest of the subsections would be based
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on the more general form of observation functions because we want to give a

uniform description for both situations whether cost can or cannot be observed.

Additionally, we assume that in both cases, the agent can accurately detect if

the actual accumulated cost of its execution trajectory is greater than its initial

cost threshold, i.e., when its resource is depleted or its deadline has passed, and

it will then stop executing actions. This is an important assumption for RS-

POMDPs. Otherwise, the agent would keep executing actions even if goal states

can not be reached with accumulated cost less than initial cost thresholds.

5.2 RS-POMDP Algorithms

Similar to RS-MDPs, there are the same two general classes of algorithms to solve

RS-POMDPs: Functional Value Iteration (FVI) [Marecki and Varakantham, 2010]

and classical methods like depth-first search and dynamic programming. However,

in addition to these algorithms, we also introduce their point-based variants that

are more scalable.

5.2.1 Functional Value Iteration

Functional Value Iteration (FVI) has been proposed for POMDPs with Piece-

wise Linear (PWL) utility functions [Marecki and Varakantham, 2010], but the

existing version is designed for Finite-Horizon POMDPs and the simpler obser-

vation function. In this subsection, we describe how to generalize FVI to solve

goal-directed RS-POMDPs with or without cost observations. Additionally, we

describe some possible optimizations of FVI for this formalization.

For POMDPs, recall that when the objective is to minimize the expected cost.

Cost value functions are represented as a set Γ of |S|-dimensional real vectors. For
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POMDPs with utility functions, FVI represents the utility value function as a set

Γ of |S|-dimensional vectors, and each element of these vectors is a function that

map states to value functions with form W → R. In other words, each vector in

Γ is a mapping S→ (W→ R). Corresponding to Equation 2.10, which describes

the update of the vector set, vectors in the new set after the update in iteration

k is:

αa,v(s)(w) =
∑
s′,o

T (s, a, s′)O(s, a, s′, o)v(o)(s′)(w − C(s, a, s′)) (5.2)

which also operates on value functions.

FVI Update: Similar to RS-MDPs, the value functions for RS-POMDPs are

Piecewise Constant (PWC) functions that describe the reachable probability as

functions of cost thresholds. In other words, each vector in Γ is a mapping S →

(Θ→ [0, 1]), that is, a particular state s ∈ S maps to a PWC value function, and

a particular cost threshold θ ∈ Θ maps to a reachable probability in that value

function. Then, the reachable probability of an augmented belief state b̂ is:

P (b̂) = max
α∈Γ

∑
s,θ

b̂(s, θ)α(s)(θ) (5.3)

For RS-POMDPs, since the intial cost threshold θ0 is given, value functions

need to only record values over the interval [0, θ0]. Each value function can be

represented as an ordered list of pairs (θi, pi) for i = 0, 1, 2, . . . , n, where θ0 = 0

and θ0 < θ1 < . . . < θn ≤ θ0 and a PWC function can be formally defined as

U(θ) = α(s)(θ) = pi while θ ∈ [θi, θi+1) and U(θ0) = α(s)(θ0) = pn.

Similar to exact algorithms of original POMDPs, FVI iteratively updates the

vector set Γ until convergence. The full set of possible vectors after the update in

61



iteration k + 1 is still:

Γk+1 = {αa,v | a ∈ A, v ∈ Vk} (5.4)

where Vk is the set of functions v, and the definition of v : Ω → Γk is similar to

the one defined for original POMDPs. Also, the update of the vectors αa,v are

applied on value functions and Equation 5.2 can be rewritten here:

αa,v(s)(θ) =
∑
s′,o

T (s, a, s′)O(s, a, s′, o)v(o)(s′)(θ − C(s, a, s′)) (5.5)

When costs can be observed, the observation function O(s, a, s′, o) would be

0 if the observed cost is not equal to the cost function C(s, a, s′). Thus, when

the above equation is calculated, transitions can be ignored if the observed cost

is different from the cost of the transition.

For FVI’s update process, we need to initialize the vector set Γ0 to represent

the initial utility value function. Γ0 would contain only one vector, in which the

value functions equal to 1 if corresponding states are goal states, and equal to 0

otherwise, i.e., α(sg)(θ) = 1 if sg ∈ G and α(s¬g)(θ) = 0 if s¬g /∈ G. Thus, when

the update produce new vectors, all value functions associated with goal states

would always be α(sg)(θ) = 1 because goal states are absorbing and cost-free.

Notice that if the value function of dead-ends is initialized with any other

value rather than 0, FVI may get incorrect reachable probabilities. Since RS-

POMDPs are based on GD-POMDPs, FVI can be optimized by ignoring dead-

ends in original state space. If we divide the transition graph into a Directed

Acyclic Graph (DAG) of Strongly Connected Components (SCCs), dead-ends are

states in SCCs whose downstream SCCs do not contain any goals. Thus, we

can traverse the original state space and indicate all dead-ends. When an FVI

update is performed, dead-ends are ignored and their value functions can be set
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as α(s)(θ) = 0.

If states in the original state space that are neither dead-ends or goal state,

form more than one SCC, FVI can be optimized by adopting the ideas of TVI.

Like TVI, by choosing the SCCs one by one in reverse topological sort order, FVI

perform update by only considering value functions of all states in one SCC until

they converge, and it no longer needs to update value functions of states in SCCs

that are already converged when upstream SCCs are updated.

Dominated Vectors Pruning: We now describe how to prune dominated vec-

tors from Γ to scale up FVI. Note that vector αi is not dominated by other vectors

if the following holds for all vectors αj ∈ Γ:

∃b̂ :
∑
s,θ

b̂(s, θ) [αi(s)(θ)− αj(s)(θ)] ≥ 0 (5.6)

For one PWC value function, we observe that the reachable probabilities are

same for all cost thresholds in each “piece”. If we take the union of all cost

thresholds in the ordered list of pairs over all value functions αi(s) in all vec-

tors αi ∈ Γ, an ordered threshold list 〈θ0
all, θ

1
all, . . . , θ

n
all〉 can be obtained, and

segments of cost threshold [θ0
all, θ

1
all), [θ

1
all, θ

2
all), . . . , [θ

n−1
all , θ

n
all) and [θnall, θ

n+1
all ] are

formed, where θn+1
all > θ0 is a constant. In order to compute αi(s)(θ) − αj(s)(θ)

efficiently for our PWC value functions, observe that the reachable probability

for all cost thresholds θ ∈ [θkall, θ
k+1
all ) are identical for all value function of all

states in all vectors. Therefore, instead of considering all cost thresholds θ in

Equation 5.6, one can divide the utility functions into segments of cost thresholds

[θ0
all, θ

1
all), [θ

1
all, θ

2
all), . . . , [θ

n−1
all , θ

n
all) and [θnall, θ

n+1
all ), where, for each value function

αi(s), the reachable probabilities αi(s)(θ) = αi(s)(θ
′) are identical for all cost

thresholds θ, θ′ ∈ [θkall, θ
k+1
all ) within a segment.

In the case where actual costs cannot be observed, since the computation of
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the difference αi(s)(θ) − αj(s)(θ) is for the same state s, one can optimize the

process above by computing ordered threshold list 〈θ0
s , θ

1
s , . . . , θ

n
s 〉 and segments

[θ0
s , θ

1
s), [θ

1
s , θ

2
s), . . . , [θ

n−1
s , θns ) and [θns , θ

n+1
s ) for each state s in order to minimize

the number of segments. Similar to above, θn+1
s > θ0 is also a constant. Then,

one can use the following condition to check for dominance:

∃b̂ :
∑
s,k

∑
θ∈[θks ,θ

k+1
s )

b̂(s, θ)
[
αi(s)(θ

k
s )− αj(s)(θks )

]
≥ 0 (5.7)

where θks is the start of the k-th cost threshold segment for state s. This dominance

check can be implemented with a single linear program.

In the case where actual costs can be observed, recall that for a particular

belief state b̂, all pairs (s, θ) with non-zero probability b̂(s, θ) > 0 have exactly the

same cost threshold θ. Therefore, one needs to only check the following condition

for that particular cost threshold θ:

∃b̂ :
∑
s

b̂(s, θ)
[
αi(s)(θ

k
all)− αj(s)(θkall)

]
≥ 0 (5.8)

where θ ∈ [θkall, θ
k+1
all ) and θkall is the start of the k-th cost threshold segment in the

union of all cost threshold segments over all states and all vectors. This dominance

check can be implemented with n, which is the number of cost threshold segments,

linear programs, where θ = θkall in the k-th linear program.

5.2.2 Representing RS-POMDPs as Augmented

POMDPs

Like RS-MDPs, solving an RS-POMDP is equivalent to solving an augmented

POMDP, which can be constructed by considering pairs of state and cost threshold

as augmented states ŝ = (s, θ). Based on augmented states (s, θ), an augmented
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POMDP 〈Ŝ,A, T̂,R, Ĝ,Ω, Ô, b̂0〉 can be generated. In the augmented POMDP,

Ŝ, T̂, R and Ĝ are the same as the corresponding components in augmented

MDPs for RS-MDPs. The observation function Ô : Ŝ × A × Ŝ × Ω → [0, 1] is

Ô((s, θ), a, (s′, θ′), o) = O(s, a, s′, o) if θ′ = θ − C(s, a, s′), otherwise it equal to

0. Like augmented MDPs for RS-MDPs, augmented POMDPs can also merge all

states with negative cost threshold to one state ŝ⊥. Unlike regular POMDPs, the

goal here would be to find a policy that maximizes the expected reward (equivalent

to maximizing the reachable probability in RS-POMDPs).

5.2.3 Depth First Search (DFS)

Similar to the Depth First Search (DFS) algorithm for RS-MDPs with positive

costs, it can also be adapted to solve RS-POMDPs with positive costs. Instead

of augmented states that are reachable from initial augmented state (s0, θ0), DFS

for RS-POMDPs traverses augmented belief states that are reachable from initial

augmented belief states b̂0. For an augmented belief state b̂ and any augmented

state (s, θ) that b̂(s, θ) > 0, its successors have smaller cost thresholds since all

costs are positive. Along the transition, the augmented belief state would finally

have a negative cost threshold or it reached goal states. We know any augmented

states with negative cost thresholds would have reachable probability 0, so they

can be combined and ignored. Thus, all augmented belief states that are reachable

from initial augmented state b̂0 would also form a graph without cycles. Since

augmented belief states do not form cycles, DFS traverses all augmented belief

states and updates their reachable probabilities based on the reverse topological

sort order.

In RS-POMDPs, the update is on augmented belief states rather than the

original belief states in original POMDPs. Since we assume that goal states and
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negative cost thresholds are observable, the agent would certainly know if the cost

threshold become negative or goal states are reached. Thus, the belief update is

only necessary for receiving an observation o that indicate neither goal states or

negative cost threshold. Let us use b̂oa to denote successor augmented belief state

after performing action a in belief state b and observing o, which indicate neither

goal states or negative cost threshold. b̂oa can be calculated as below:

b̂oa(s, θ) =
1

Z

∑
s′,θ′

b̂(s′, θ′)T (s′, a, s)O(s′, a, s, o) (5.9)

where θ = θ′ − C(s, a, s′) and Z is the normalizing factor
∑

s′,θ′
∑

s,θ b̂(s, θ)

T (s, a, s′)O(s, a, s′, o). Notice that for every augmented state (s, θ) where

b̂oa(s, θ) > 0, s is not a goal state and θ is non-negative, i.e., s /∈ G and θ ≥ 0.

For an augmented belief state b̂, one can compute its reachable probability

P (b̂) using the system of linear equations below:

P (b̂) = max
a

∑
s′,θ′


0 if θ′ < 0∑

s,θ b̂(s, θ)T (s, a, s′) if s′ ∈ G, θ′ ≥ 0∑
s,θ b̂(s, θ)T (s, a, s′)

∑
oO(s, a, s′, o)P (b̂oa) if s′ /∈ G, θ′ ≥ 0

(5.10)

where θ′ = θ − C(s, a, s′).

The above equation shows the component of reachable probability from an

augmented belief state b̂. For each possible augmented transition ((s, θ), a, (s′, θ′))

from b̂, i.e., b̂(s, θ) > 0, T (s, a, s′) > 0 and θ′ = θ − C(s, a, s′), the agent takes

action a from augmented state (s, θ) and transits to successor augmented state

(s′, θ′), which have three cases, as below:

• If the resulting cost threshold θ′ is negative, then the successor cannot be

reached. Thus, the reachable probability is 0. Note that there is no need to
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Algorithm 5: DFS()

82 DFS-Update(b̂0)

consider the observation here since agents can accurately identify if the cost

threshold is negative.

• If the successor s′ is a goal state and the resulting cost threshold θ′ is non-

negative, the agent would observe this situation and the goal state can be

reached. Thus, the reachable probability is b̂(s, θ)T (s, a, s′), which is the prob-

ability the agent transits from (s, θ) to (s′, θ′). Note that there is no need to

consider the observation function here since agents can accurately identify if

they have reached goal states.

• If the successor is not a goal state and the resulting cost threshold is non-

negative, then the successor can be reached. Thus, the reachable probability

can be recursively computed as the probability b̂(s, θ)T (s, a, s′) multiplied by

the product of the observation probability O(s, a, s′, o) and the reachable prob-

ability of the resulting belief state P (b̂oa) summed over all observations o.

One can extract the optimal policy by taking the action that is returned by the

maximization operator in Equations 5.10 for each belief b.

DFS would traverse all augmented belief states that are reachable from the ini-

tial augmented belief states. Since it is pretty hard to design a efficient mechanism,

such as a hash table, to search and insert related information of an augmented

belief, pruning a subtree of augmented belief states by checking if it has been tra-

versed before may not accelerate the algorithm. For RS-POMDPs, one possible

way to store all reachable augmented belief states and their related information

is to save the policy tree corresponding to possible execution histories. Without

pruning, Algorithm 5 shows one possible pseudo-code of DFS for RS-POMDP.
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Procedure DFS-Update(b̂)

83 P ∗(b̂) = 0

84 for actions a ∈ A do

85 Pa = 0

86 for observations o ∈ Ω do

87 Pa,o = 0

88 end

89 for augmented states (s, θ) | b̂(s, θ) > 0 do

90 for states s′ ∈ S | T (s, a, s′) > 0 do

91 θ′ = θ − C(s, a, s′)

92 if s′ ∈ G and θ′ ≥ 0 then

93 Pa = Pa + b̂(s, θ) · T (s, a, s′)

94 else if s′ /∈ G and θ′ ≥ 0 then

95 for observations o ∈ Ω do

96 Pa,o = Pa,o + b̂(s, θ) · T (s, a, s′) ·O(s, a, s′, o)

97 end

98 end

99 end

100 for observations o ∈ Ω | Pa,o > 0 do

101 b̂oa ← Belief Update(b, a, o)

102 DFS-Update(b̂oa)

103 Pa = Pa + Pa,o · P ∗(b̂oa)

104 end

105 end

106 if Pa > P ∗ then

107 P ∗(b̂) = Pa

108 π∗(b̂) = a

109 end

110 end
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Algorithm 5 is implemented recursively and it calls Procedure DFS-Update

starting from the initial augmented belief state b̂0. Procedure DFS-Update cor-

responds to Equation 5.10, where it computes the reachable probability for each

belief state. For each belief state b̂, Procedure DFS-Update uses variable P ∗(b̂)

to store the reachable probability and it is initialized as 0 at the beginning (line 83).

Additionally, temporary variables Pa (line 85) and Pa,o (lines 86-88) are used to

record the reachable probability for all possible actions a and the transition prob-

ability of transiting from belief state b̂ to b̂oa by taking action a. For each possible

augmented transition ((s, θ), a, (s′, θ′)), lines 89-105 compute the components of

the reachable probability with respect to a and add them up to get Pa. Corre-

sponding to Equation 5.10, if an augmented transition reach an augmented state

with negative cost, it is ignored; otherwise the algorithm add up the correspond-

ing transition probability to Pa if the successor state is a goal state (lines 92-93)

or to Pa,o if the successor state is a non-goal state (lines 94-98). Lines 100-104

add the reachable probability component of successor augmented belief state to

Pa. The function Belief Update implements Equations 5.9 (line 101). For each

reachable augmented belief state, DFS update its reachable probability based on

reverse topological sort order (line 102). Finally, it stores the largest probability

P ∗(b̂) and the optimal action π∗(b̂) (lines 106-109).

If costs can be observed, then the augmented belief state b̂ would have a specific

form, in that all pairs (s, θ) with non-zero probability b̂(s, θ) > 0 have exactly the

same cost threshold θ since costs can be observed. In the implementation, the

augmented belief states can be simplified as (b, θ), where b is the belief state on

original state space, because the cost threshold for all augmented states are same.

Finally, all dead-ends in original state space can be identified and ignored by

assuming their value functions always equal to 0.
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5.2.4 Dynamic Programming (DP)

Similar to the Dynamic Programming (DP) algorithm for RS-MDPs, it can also

be adapted to solve RS-POMDPs when costs can be observed. However, instead

of augmented states, DP for RS-POMDPs operate on augmented belief states.

Additionally, like in RS-MDPs, the reachable probabilities of augmented belief

states only depend on augmented belief states with smaller cost thresholds. Thus,

the high-level idea here, too, is that the reachable probabilities of each augmented

belief state b̂(s, θ) can be updated from θ = 0 to θ = θ0.

DP partitions the augmented POMDP into multiple partitions corresponding

to the available cost threshold θ. Thus, each partition contains all the augmented

belief states b̂(s, θ) with the same cost threshold θ. Further, transitions between

partitions must be from an upstream augmented belief state b̂(s, θ) to a down-

stream augmented belief state b̂(s′, θ′), where θ > θ′. Therefore, DP sequentially

solves the partitions, where each partition corresponds to a regular POMDP, start-

ing from the partition for θ = 0 up to the partition for θ = θ0.

Note that this approach applies only when costs can be observed. The reason is

that through this assumption, all pairs (s, θ) with non-zero probability b̂(s, θ) > 0

have exactly the same cost threshold θ. Thus, all these augmented belief states

are in the same partition, and DP can solve the different partitions sequentially.

If costs cannot be observed, then the set of augmented belief states with non-zero

probabilities may be distributed across multiple partitions, thereby requiring all

partitions to be solved concurrently.

5.2.5 Point-Based Algorithms

Since the number of vectors in Γ grows exponentially in each update iteration,

researchers have introduced point-based algorithms [Pineau et al., 2003; Shani
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et al., 2013] that update the vectors by considering only a restricted subset of

belief state points. In each iteration, these algorithms keep only a vector with

the smallest cost for each belief point, thereby restricting the number of vectors

in Γ to the number of belief state points. Naturally, this comes at the cost of

optimality and most point-based algorithms do not have quality guarantees on

the solutions found.

Similar to point-based POMDP algorithms, one can extend FVI, VI for aug-

mented POMDPs, and DP to their point-based counterparts Point-Based FVI

(PB-FVI), Point-Based VI (PB-VI), and Point-Based DP (PB-DP). For all these

point-based algorithms, they update their vectors in Γ by considering only a re-

stricted subset of augmented belief state points. In each of their iterations, they

keep only a vector with the largest reachable probability for each augmented be-

lief state point, thereby restricting the number of vectors in Γ to the number of

augmented belief state points. A difference between the three algorithms is that

FVI and augmented VI maintain only a single subset of augmented belief state

points to represent the whole augmented state space, but DP maintains a single

subset for each partition of the augmented POMDP.

5.3 RS-POMDP Complexity

The complexity of POMDPs is proved in [Papadimitriou and Tsitsiklis, 1987]. By

following similar technical steps, we show the complexity of RS-POMDPs in this

subsection.

Theorem 3 Solving RS-POMDPs optimally is PSPACE-hard in the original

state space.

Proof: To show PSPACE-hardness, we shall reduce Quantified SAT (QSAT)

71



to RS-POMDP. A QSAT can be defined as a logic formula F (x1, . . . , xn), which

has n variables x1, . . . , xn. Each variable xi is either an existential or universal

variable. By a standard transformation, formula F (x1, . . . , xn) can be transformed

to Conjunctive Normal Form (CNF) C1∧C2∧ . . .∧Cm with m clauses C1, . . . , Cm.

A QSAT needs to decide if its value is true.

A QSAT can be reduced to an RS-POMDP here. Starting from any quanti-

fied formula ∃x1 . . . ∃xk∀xk+1 . . . ∀xnF (x1, . . . , xn), with n variables (existential or

universal) and m clauses C1, . . . , Cm, we construct an RS-POMDP such that its

optimal policy has reachable probability 1 if and only if the formula is true.

We first describe S, b0, and G. The initial belief state b0 includes only one

state s0, i.e. b0(s0) = 1. Besides s0, S contains six states sTi,j, s
F
i,j, t

T
i,j, t

F
i,j, f

T
i,j,

fFi,j that each corresponds to clause Ci and variable xj. There are also 2m states

sTi,n+1, sFi,n+1. Finally, there is a goal state sg that forms the set of goal states G.

Next, we describe A, T, and C. There are, in total, three actions a, at, and af ,

i.e. A = {a, at, af}. At s0, there is only one applicable action a, leading to the

states sFi,1, i = 1, . . . ,m with equal probability. If xj is an existential variable, then

there are two applicable actions at and af for states sTi,j, leading with certainty

from sTi,j to tTi,j and fTi,j, respectively. Similarly, there are two applicable actions at

and af for states sFi,j, leading with certainty from sFi,j to tFi,j and fFi,j, respectively.

If xj is a universal variable, then there is only one applicable action a for state

sTi,j, leading with equal probability from sTi,j to tTi,j and fTi,j. Similarly, there is only

one applicable action a for states sFi,j, leading with equal probability from sFi,j to

tFi,j and fFi,j. From the states tTi,j, f
T
i,j, t

F
i,j, and fFi,j, there is only one applicable

action a that leads with certainty from tTi,j, f
T
i,j, t

F
i,j, and fFi,j to sTi,j+1, sTi,j+1, sFi,j+1,

and sFi,j+1, respectively, with two exceptions: If xj appears positively in Ci, then

the transition from tFi,j is to sTi,j+1 instead of sFi,j+1; and if xj appears negatively
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in Ci, then the transition from fFi,j is to sTi,j+1 instead of sFi,j+1. Finally, out of

sTi,n+1 and sFi,n+1, there is only one applicable action a, leading to the goal state sg

with certainty. In the entire process, all actions have cost 1, except for the action

out of sFi,n+1, which incurs a cost of 2. Finally, we set the initial cost threshold

θ0 = 2n + 2. Then, the threshold set Θ is naturally {0, 1, 2, . . . , 2n + 2}. This

completes the construction of the process.

We claim that the optimal reachable probability is 1 if and only if the value

of QSAT was TRUE. Let us first assume that the reachable probability is indeed

1. Then by following the optimal RS-POMDP policy, all potential execution

trajectories will finally reach states sTi,n+1 and their accumulated costs will be

all 2n + 2. Otherwise, a transition from sFi,n+1 will result in a cost of 2 and its

accumulated costs will be 2n+ 3, which is larger than θ0. Following the potential

execution trajectories, it easy to deduce that the formula value is TRUE under all

possible combination of variables’ assignments. If the value of QSAT was TRUE,

it is easy to construct the optimal RS-POMDP policy by picking corresponding

actions that transit to states that will transit to sTi,j+1 for each existential variable

xj, then the potential execution trajectories would always reach states sTi,n+1, and

the reachable probability is 1.

Notice that RS-POMDPs are not in PSPACE in the original state space, be-

cause solving them requires specifying an action for each augmented belief state,

and the augmented state space could be exponential in the size of the original

state space S if |Θ| = 2|S|.
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Observable Actual Costs Unobservable Actual Costs

With Zero Costs

• FVI
• FVI

• AUG-VI
• AUG-VI

• DP

Without Zero Costs

• FVI
• FVI

• AUG-VI
• AUG-VI

• DP
• DFS

• DFS

Table 5.1: RS-POMDP Configurations and their Applicable Algorithms

5.4 RS-POMDP Experimental Results

We ran experiments on the same three domains as in RS-MDPs, except that

they now have partial observability: (1) randomly generated POMDPs, (2) the

Navigation domain from the ICAPS 2011 International Probabilistic Planning

Competition (IPPC), and (3) a taxi domain [Ziebart et al., 2008; Varakantham

et al., 2012] generated from real-world data. Also, just like in RS-MDPs, we

generated two types of POMDPs here as well – ones without zero costs and ones

with zero costs. Along a different dimension, we also differentiated the two cases

of whether the actual costs can be observed or cannot be observed. Therefore, for

each domain, we will have four different configurations.

In general, we compared the following algorithms: FVI, VI on the augmented

POMDP (which we label as AUG-VI), DP, and DFS. For the first three algorithms,

we experimented with their different variants: with pruning, without pruning, and

their point-based counterparts, where we varied the number of points between 10

and 1000. However, some of the algorithms are only applicable in certain con-

74



figurations, and we only applied them there. Specifically, DP is only applicable

for configurations where actual costs can be observed and DFS is only applicable

in configurations without zero costs. FVI and AUG-VI are applicable in all con-

figurations. Table 5.1 tabulates the applicable algorithms for each configuration.

While we have results for all four configurations in all three domains described

above, to improve readability, we only show the results for RS-POMDPs without

zero costs but observable actual costs in the subsections below. The results for

the other configurations are provided in the appendix.

Similar to the results for RS-MDPs, we report scalability in terms of the per-

centage of instances solved (%); average runtime in milliseconds of instances solved

(t); and average reachable probability of all instances (P ). We impose a timeout

of 10 minutes. All experiments were conducted on a 3.40 GHz machine with 16GB

of RAM.

5.4.1 Randomly Generated POMDPs

Just like in the RS-MDP experiment, we ran two types of experiments here – one

where we vary the number of states |S| from 25 to 200, and another where we

vary the cost threshold θ0 from 1.25 to 3 times of C∗d , where C∗d is the accumulated

cost of the shortest deterministic path from the start state s0. We fix the cost

threshold θ = 1.5 · C∗d when we vary the number of states, and we fix the number

of states |S| = 50 when we vary the cost thresholds.

Each randomly generated POMDP has 2 actions per state, 2 successors per

action, and 2 possible observations per transition. We randomly selected a state

as the start state and another state as the goal state, and we chose the costs from

the range [0, 100]. Tables 5.2 and 9.1 to 9.3 show the results for the four different

POMDP test configurations. Results are averaged over 50 randomly generated
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(a) FVI

|S| w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)
% t P % t P % t P % t P % t P

25 8 6084 1.61e-1 18 9639 2.03e-1 100 4 2.67e-1 100 28 2.89e-1 100 347 2.90e-1
50 6 7 5.31e-2 8 7490 6.01e-2 100 7 1.61e-1 100 65 2.19e-1 100 1067 2.23e-1
100 2 33 4.89e-2 6 125913 5.00e-2 100 23 1.21e-1 100 409 1.57e-1 100 7846 1.65e-1
200 0 – 1.21e-2 0 – 1.21e-2 100 54 6.15e-2 100 749 1.06e-1 100 41453 1.22e-1

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P
1.25·C∗d 12 1004 6.68e-2 18 52917 7.96e-2 100 1 1.66e-1 100 25 1.91e-1 100 455 1.92e-1
1.50·C∗d 12 17506 6.19e-2 12 3099 7.30e-2 100 4 2.13e-1 100 102 2.43e-1 100 1481 2.46e-1
2.00·C∗d 6 12 6.19e-2 8 1690 7.06e-2 100 24 2.57e-1 100 932 3.08e-1 100 32117 3.14e-1
3.00·C∗d 2 62 4.78e-2 4 270480 5.05e-2 100 223 3.07e-1 100 34486 4.06e-1 62 119265 4.18e-1

(b) AUG-VI

|S| w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)
% t P % t P % t P % t P % t P

25 8 10071 1.54e-1 18 53691 2.09e-1 100 63 2.67e-1 100 184 2.89e-1 100 438 2.90e-1
50 6 41 5.31e-2 8 71881 6.58e-2 100 105 1.61e-1 100 416 2.19e-1 100 1344 2.23e-1
100 2 1029 4.89e-2 6 194281 5.04e-2 100 541 1.21e-1 100 2555 1.57e-1 100 9382 1.65e-1
200 0 – 8.90e-3 0 – 1.21e-2 100 1152 6.15e-2 100 6177 1.06e-1 98 49222 1.22e-1

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P
1.25·C∗d 12 1947 6.68e-2 16 88291 8.18e-2 100 62 1.66e-1 100 169 1.91e-1 100 557 1.92e-1
1.50·C∗d 12 30942 6.19e-2 12 37720 8.42e-2 100 130 2.13e-1 100 641 2.43e-1 100 1993 2.46e-1
2.00·C∗d 6 213 6.19e-2 8 46738 7.30e-2 100 452 2.57e-1 100 5435 3.08e-1 98 25275 3.14e-1
3.00·C∗d 2 126 3.98e-2 2 9626 7.33e-2 100 1644 3.07e-1 100 29195 4.06e-1 68 95499 4.25e-1

(c) DP

|S| w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)
% t P % t P % t P % t P % t P

25 8 1814 9.02e-2 54 88521 2.33e-1 100 11 2.86e-1 100 714 2.90e-1 100 16518 2.90e-1
50 6 1 4.21e-2 16 108098 1.22e-1 100 37 1.82e-1 100 4221 2.23e-1 98 198203 2.21e-1
100 2 125 4.01e-2 8 23757 5.05e-2 100 128 1.25e-1 100 23447 1.65e-1 18 195205 1.06e-1
200 0 – 0.00e+0 0 – 1.37e-2 100 291 6.71e-2 100 69943 1.22e-1 6 247197 2.23e-2

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P
1.25·C∗d 12 812 3.98e-2 32 71190 1.07e-1 100 16 1.74e-1 100 2836 1.92e-1 96 120095 1.92e-1
1.50·C∗d 12 8587 4.60e-2 18 15482 1.13e-1 100 33 2.18e-1 100 4992 2.46e-1 86 181167 2.41e-1
2.00·C∗d 6 19 4.60e-2 12 68226 1.15e-1 100 81 2.76e-1 100 10047 3.14e-1 60 243267 2.78e-1
3.00·C∗d 2 1 4.60e-2 8 26823 1.15e-1 100 196 3.38e-1 100 21021 4.32e-1 22 196940 3.11e-1

(d) DFS

|S| % t P θ0 % t P
25 88 21236 2.58e-1 1.25·C∗d 96 2657 1.85e-1
50 84 5103 1.89e-1 1.50·C∗d 86 16287 2.11e-1
100 88 26557 1.53e-1 2.00·C∗d 62 32669 1.93e-1
200 76 57157 9.68e-2 3.00·C∗d 26 70590 1.04e-1

Table 5.2: RS-POMDP Results of Randomly Generated POMDPs without Zero
Costs but Observable Actual Costs
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(a) FVI

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 20 8 5.36e-3 50 22906 7.84e-3 100 1 0.00e+0 100 19 4.79e-3 100 490 7.81e-3

1.50·C∗d 20 41097 2.10e-2 50 201174 4.73e-2 100 1 0.00e+0 100 11 5.05e-3 100 1007 6.54e-2

2.00·C∗d 10 20 2.10e-2 30 129184 4.41e-2 100 1 0.00e+0 100 35 5.23e-3 100 2773 1.08e-1

3.00·C∗d 10 239 4.21e-3 10 1009 5.37e-2 100 1 0.00e+0 100 203 5.08e-2 100 29020 2.19e-1

(b) AUG-VI

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 40 83984 7.84e-3 30 140743 7.84e-3 100 38 0.00e+0 100 93 4.79e-3 100 605 7.81e-3

1.50·C∗d 20 792 2.49e-2 30 189695 3.10e-2 100 45 0.00e+0 100 177 5.05e-3 100 2403 6.54e-2

2.00·C∗d 10 142 3.17e-2 10 2818 4.39e-2 100 67 0.00e+0 100 766 5.23e-3 100 8732 1.08e-1

3.00·C∗d 10 849 2.52e-2 10 28141 3.75e-2 100 126 0.00e+0 100 7259 5.08e-2 90 13476 2.19e-1

(c) DP

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 60 1711 1.45e-2 70 115671 1.45e-2 100 48 4.58e-3 100 2993 1.45e-2 100 41284 1.45e-2

1.50·C∗d 30 152099 6.11e-2 60 115092 6.27e-2 100 70 6.59e-3 100 5547 6.80e-2 100 78387 6.80e-2

2.00·C∗d 20 1685 6.78e-2 40 171183 8.52e-2 100 78 7.55e-3 100 13247 1.15e-1 90 92916 1.22e-1

3.00·C∗d 10 15 6.80e-2 30 186990 1.33e-1 100 155 3.58e-2 100 33922 2.92e-1 80 127857 3.11e-1

(d) DFS

θ0 % t P

1.25·C∗d 80 37074 5.36e-3

1.50·C∗d 70 28569 5.20e-2

2.00·C∗d 50 4849 7.49e-2

3.00·C∗d 40 58267 1.62e-1

Table 5.3: RS-POMDP Results of Navigation Domain without Zero Costs but

Observable Actual Costs
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(a) FVI

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 29 0.00e+0 100 498 1.79e-5 100 23374 1.64e-4

1.50·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 13 0.00e+0 100 935 9.83e-3 100 130153 2.25e-2

2.00·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 74 1.25e-1 100 13949 5.36e-1 62 404460 6.18e-1

3.00·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 257 1.00e+0 100 2024 1.00e+0 100 31566 1.00e+0

(b) AUG-VI

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 95 0.00e+0 100 896 1.79e-5 100 17175 1.64e-4

1.50·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 133 0.00e+0 100 1583 9.83e-3 100 59432 2.25e-2

2.00·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 592 1.25e-1 100 18536 5.36e-1 100 147611 6.18e-1

3.00·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 2106 1.00e+0 100 3857 1.00e+0 100 22053 1.00e+0

(c) DP

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 0 – 0.00e+0 37 160259 1.67e-4 100 63 1.19e-4 100 480 1.30e-4 100 21803 1.98e-4

1.50·C∗d 0 – 0.00e+0 0 – 2.47e-4 100 134 1.58e-2 100 1117 2.10e-2 100 27934 2.29e-2

2.00·C∗d 0 – 0.00e+0 0 – 2.47e-4 100 334 5.24e-1 100 2997 6.20e-1 100 47479 6.23e-1

3.00·C∗d 0 – 0.00e+0 0 – 2.47e-4 100 707 1.00e+0 100 6830 1.00e+0 100 90851 1.00e+0

(d) DFS

θ0 % t P

1.25·C∗d 100 12283 1.98e-4

1.50·C∗d 100 96307 2.29e-2

2.00·C∗d 100 386248 6.23e-1

3.00·C∗d 100 429773 1.00e+0

Table 5.4: RS-POMDP Results of Taxi Domain without Zero Costs but Observ-

able Actual Costs
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instances.

We make the following observations for POMDPs without zero costs but ob-

servable actual costs:

• With increasing initial cost threshold or number of states, in general, scalability

decreases and runtime increases for all algorithms. The reason is that with a

larger cost threshold or a larger number of states, each algorithm has to search

over a larger search space.

• DFS is faster and more scalable than DP, FVI, and AUG-VI because DFS

ignores non-reachable belief states while DP, FVI, and AUG-VI do not.

• DP is faster and more scalable than FVI and AUG-VI because it partitions

the augmented belief states into several partitions, one for each cost threshold,

and updates the reachable probabilities sequentially from one partition to the

next. As a result, once convergence is reached for a partition, it is no longer

updated. In contrast, FVI and AUG-VI update the reachable probabilities for

all augmented belief states concurrently. Thus, they may continue to check

belief states that have already converged. This reason is also similar to the

reason why TVI (for MDPs) is faster and more scalable than VI (for MDPs).

• The point-based versions of DP, FVI, and AUG-VI are faster and more scalable

than their respective optimal counterparts. They find better solutions with

increasing number of belief points but at the cost of increasing runtime and

decreasing scalability. So much so that with 1000 belief points, PB-DP is less

scalable than DFS even though DFS is an optimal algorithm and PB-DP is

not.

• Finally, pruning improves the scalability of FVI, AUG-VI, and DP.

For the other POMDP configurations, the above observations generally apply

as well. However, we can also make the following additional observation: All
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the optimal algorithms generally found better solutions (with larger reachable

probabilities) when costs can be observed because they can exploit the observed

cost to more accurately update the beliefs. This observation may not hold for the

point-based algorithms as they are not guaranteed to solve the problem optimally.

5.4.2 Navigation Domain

For the navigation domain, similar to RS-MDPs, we also use all 10 IPPC instances.

This domain is as described in Section 4.6.2. However, the range of costs is now

only up to 100 instead of 1000. Further, the robot now may not have complete

certainty on its actual state and must maintain a belief over its possible states.

Tables 5.3 and 9.4 to 9.6 show the results for the four different RS-POMDP

configurations described in Table 5.1.

In general, all the observations from the randomly generated POMDP domain

apply here as well except for the following: The point-based algorithms success-

fully solve most of the instances in all configurations. However, they often do not

find good quality solutions unlike in randomly generated POMDPs. For example,

PB-FVI finds infeasible solutions (the reachable probability is 0) when the number

of points is small (= 10) in Table 5.3. This observation highlights the fact that

the behavior of point-based algorithms is highly dependent on domain structure.

5.4.3 Taxi Domain

For the taxi domain, it is as described in Section 4.6.3. However, states now

include the hired rate level pz,t in its tuple, which is either high (= 0.75) or low

(= 0.25). Taxis looking for passengers in its zone (i.e., action a2) have probability

pz,t of successfully picking up a passenger and they can accurately observe pz,t with

probability 0.8. This probability is generated with the same real-world dataset.
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Finally, we reduce the number of zones from 100 to 10, by clustering some of the

original zones into a single zone. Tables 5.4 and 9.7 to 9.9 show the results for

the four different RS-POMDP configurations described in Table 5.1.

In general, all the observations from the randomly generated POMDP and

Navigation domains apply here as well except for the following: Unlike those two

domains, FVI, AUG-VI, and DP often failed to solve all instances, and they must

rely on their point-based counterparts to find suboptimal solutions. However, sur-

prisingly, DFS successfully solved all instances (see Tables 5.4 and 9.7). Therefore,

this result shows that in this domain, there is a very large number of meaningful

augmented belief states, but only a small number of them are reachable.
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Chapter 6

Local Search

Instead of solving Risk-Sensitive MDPs (RS-MDPs) optimally using the algo-

rithms described in Chapter 4, we now introduce a local search algorithm that

solves them approximately.

6.1 Local Search Algorithm

In theory, if an optimal policy of the Minimizing Expected Cost (MEC) criterion is

executed on an RS-MDP, the quality is unbounded. However, in some problems,

optimal policies based on the MEC-criterion can provide pretty good solution

qualities.

Figure 6.1 show one such example. In this instance, the initial state is s0 and

all other states are goal states. There are two actions – a1 and a2 – from s0, and

the corresponding transition and cost functions are shown in the figure. Based

on the MEC-criterion, a2 is the optimal action since it has an expected cost of 16

(= 0.8 · 15 + 0.2 · 20) and a1 has an expected cost of 17 (= 0.3 · 10 + 0.7 · 20).

However, based on the RS-criterion, when the initial cost threshold is between

θ0 = [10, 15), the optimal action is a1 as it has a reachable probability of 0.3 and
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s0 

s1 

s2 s4 

s3 

a1 a2 

C(s0, a1, s1) = 10 
T(s0, a1, s1) = 0.3 

C(s0, a1, s2) = 20 
T(s0, a1, s2) = 0.7 

C(s0, a2, s3) = 15 
T(s0, a2, s3) = 0.8 

C(s0, a2, s4) = 20 
T(s0, a2, s4) = 0.2 

Figure 6.1: MDP Example Illustrating the Relationship between MEC- and RS-

optimal Policies

a2 has a reachable probability of 0. When the initial cost threshold is between

θ0 = [15, 20), then the optimal action is a2 with reachable probability 0.8, while

action a1 has a reachable probability of 0.3. Thus, the MEC optimal policy is the

same as the RS optimal policy when the initial cost threshold is between [15, 20).

This example also highlights a qualitative observation that the the MEC optimal

policy and RS optimal policy are close to each other when the initial cost threshold

is close to the optimal expected cost.

Since finding an optimal MEC policies is normally easier than finding an op-

timal RS policy, We introduce an approximate algorithm – Local Search (LS),

whose primary idea is to adjust the optimal MEC policy to adapt to the risk-

sensitive criterion. The high-level ideas of LS is as follows: It will first solve for

and obtain an optimal policy based on the MEC-criterion, and then assume that

every augmented state (s, θ) for a state s and all possible cost thresholds θ have

the same policy. Let us call this augmented policy an abstracted policy. Given

this abstracted policy, we can compute the set of reachable augmented states.

Then, we iterate through this set of reachable augmented states, and for each

augmented state in this set, we evaluate all the actions and choose the action
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Algorithm 6: LS(θ0,M)

111 πc = Mec-Solver(M)

112 Evaluate(s0, θ0)

113 while π has not converged do

114 Update-Iteration(s0, θ0)

115 end

that maximizes the reachable probability under the assumption that every other

augmented state uses the abstracted policy. Once a different action is chosen for

an augmented state, we now have a new policy for this augmented state. Once

we have gone through all the reachable augmented states, we recompute the set

of reachable augmented states again with the new updated abstracted policy and

the abstracted policy will keep improve along this process. We keep repeating

this process until there are no new reachable augmented states that it can find

and the selected action for all reachable augmented states are the same as in the

previous iteration. Algorithm 6 shows the pseudocode of the LS algorithm.

In Algorithm 6, it first computes the optimal policy πc with respect to the

MEC-criterion (line 110), and evaluates the current abstracted policy on the reach-

able augmented state space (line 111). Then, LS iterates over the risk-sensitive

policy until it converges (lines 112-114).

Procedure Update-Iteration expands the reachable augmented state space

recursively based on the current abstracted policy (lines 118-123), applies the

Bellman update on each augmented state to decide which action is currently opti-

mal (lines 124-141), and updates the abstracted policy (lines 142-143). Procedure

Evaluate would evaluate the default abstracted policy on augmented states if

they are visited for the first time.

Similar to other local search algorithms, the LS algorithm may get stuck at a
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Procedure Update-Iteration(s, θ)

116 if P (s, θ) is converge then

117 return;

118 end

119 for s′ ∈ S | T (s, π(s, θ), s′) > 0 do

120 if θ ≥ C(s, π(s, θ), s′) then

121 θ′ = θ − C(s, πc(s), s
′)

122 Update-Iteration(s′, θ′)

123 end

124 end

125 P ∗ = 0

126 for a ∈ A do

127 Pa = 0

128 for s′ ∈ S | T (s, π(s, θ), s′) > 0 do

129 if θ ≥ C(s, π(s, θ), s′) then

130 if s′ ∈ G then

131 Pa = Pa + T (s, a, s′)

132 else

133 θ′ = θ − C(s, π(s, θ), s′)

134 Pa = Pa + T (s, π(s, θ), s′) ·Evaluate(s′, θ′)

135 end

136 end

137 end

138 if Pa > P ∗ then

139 P ∗ = Pa

140 a∗ = a

141 end

142 end

143 P (s, θ) = P ∗

144 π(s, θ) = a∗
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Procedure Evaluate(s, θ)

145 if visited(s, θ) then

146 return P (s, θ)

147 end

148 P (s, θ) = 0

149 π(s, θ) = πc(s)

150 for s′ ∈ S | T (s, πc(s), s
′) > 0 do

151 if θ ≥ C(s, πc(s), s
′) then

152 if s′ ∈ G then

153 P (s, θ) = P (s, θ) + T (s, πc(s), s
′)

154 else

155 θ′ = θ − C(s, πc(s), s
′)

156 P (s, θ) = P (s, θ) + T (s, πc(s), s
′) ·Evaluate(s′, θ′)

157 end

158 end

159 end

160 return P (s, θ)

local optima and, thus, do not guarantee optimality. The reason is that it would

terminate when the optimal actions do not change based on the current abstracted

policy, but the current abstracted policy may not be optimal.

6.2 Using a Random Policy as the Initial Policy

We proposed using an optimal MEC policy as the initial policy of the local search

as we hypothesized that this policy is very similar to the optimal RS policy.

However, this may not be true in practice. Further, the computation time to

search for the MEC policy can relatively larger than the computation time of

the local search improvements. Therefore, we also propose a variant of the local
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search algorithm, where we start with a random policy as the initial policy and

continuously improve this policy until convergence.

6.3 Local Search Experimental Results

We ran experiments on two domains in the RS-MDPs section: (1) randomly

generated POMDPs and (2) a taxi domain [Ziebart et al., 2008; Varakantham et

al., 2012] generated from real-world data. The Navigation domain from the ICAPS

2011 International Probabilistic Planning Competition (IPPC) is not applied here

because it has dead-ends and it is impossible to compute optimal policy based on

the MEC-criterion. For instances with zero costs, local search needs to expand

the reachable state space once in every value iteration even when the reachable

states do not change anymore. So, it is rather inefficient. For algorithms with

utility functions, it is impossible to maintain consistency (augmented states with

higher cost thresholds must have equal or higher reachable probability) by only

maintaining one utility function. If we maintain two utility functions, it would

involve a large number of copy operations, which would be inefficient. Further,

maintaining multiple utility functions would contradict the original motivation of

using utility functions, that is, to potentially use less memory. Thus, we only show

the results for instances without zero costs and with algorithms that are based

on latticed tables. Every experiment setting is exactly the same as in Chapter 4.

Finally, we compared both local search variants – LS-MEC refers to the variant

that uses the optimal MEC policy as the initial policy and LS-RAND refers to the

variant that uses a random policy – against DFS and DP in these experiments.

Since the initial policy of LS-RAND is randomized, we average each data point

over 5 different runs for each instance.
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|S| DFS(T) DP(T) LS-MEC(T) LS-RAND(T)

% t P % t P % t P % t P

2500 100 508 9.60e-2 100 148 9.60e-2 100 215 9.45e-2 100 32 2.42e-2

5000 100 1270 7.17e-2 100 311 7.17e-2 100 475 6.99e-2 100 81 1.04e-2

10000 100 4186 5.13e-2 100 1078 5.13e-2 100 1595 5.00e-2 100 218 5.92e-3

20000 100 9686 4.03e-2 100 2870 4.03e-2 100 5980 3.93e-2 100 638 3.75e-3

40000 100 27768 2.68e-2 100 8147 2.68e-2 66 22073 1.61e-2 66 1285 8.98e-4

θ0
DFS(T) DP(T) LS-MEC(T) LS-RAND(T)

% t P % t P % t P % t P

1.25·C∗d 100 195 1.24e-2 100 212 1.24e-2 100 1425 1.14e-2 100 123 6.77e-4

1.50·C∗d 100 808 2.51e-2 100 347 2.51e-2 100 1428 2.37e-2 100 121 1.77e-3

2.00·C∗d 100 4378 5.16e-2 100 1191 5.16e-2 100 1593 5.01e-2 100 224 4.31e-3

3.00·C∗d 100 15613 1.07e-1 100 6321 1.07e-1 100 5759 1.06e-1 100 2993 1.18e-2

5.00·C∗d 100 39087 2.02e-1 100 19255 2.02e-1 100 56418 2.01e-1 100 48159 4.66e-2

Table 6.1: RS-MDP Results of Randomly Generated MDPs without Zero Costs

6.3.1 Randomly Generated MDPs

Table 6.3.1 shows the results for randomly generated MDPs without zero costs.

We make the following observations:

• Generally, LS-MEC has comparable performance as DFS and DP. Normally,

LS-MEC finds a solution very close to the optimal solution.

• For MDPs with different state sizes and the same initial cost threshold level

(θ0 = 2.00 · C∗d), DP is faster than DFS because it has a larger overhead

of expanding augmented states than DP; the reason is further elaborated in

detail in Section 4.6. In these problems, LS-MEC is faster than DFS but slower

than DP. The overhead in expanding augmented states for LS-MEC is similar

to that for DFS. When combined with the fact that LS-MEC expands fewer

augmented states than DFS before it converges, LS-MEC is thus faster than

DFS. However, since the overhead of LS-MEC is larger than DP, it is still

slower than DP despite expanding fewer augmented states.

When the instances become lager (|S| = 40000), LS-MEC solves fewer
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instances, and it fails because it ran out of memory. The reason is that LS-

MEC actually requires more memory since it needs to store more latticed

tables than DP and DFS. Specifically, LS-MEC also needs latticed tables to

store optimal actions and to mark convergence of augmented states.

• For MDPs with different initial cost threshold levels and the same state size,

LS-MEC is slower at the start, then faster, and finally slower again as the

cost threshold increases. At the start, RS-MDPs are actually easy to solve

compared to corresponding regular MDPs. Thus, the running time of LS-MEC

is actually dominated by the running time to solve the regular MDPs with

respect to the MEC-criterion (θ0 = 1.25 · C∗d to 2.00 · C∗d). When θ0 = 3.00 · C∗d ,

the initial cost threshold becomes close to a certain ratio level of the expected

optimal cost, under which the optimal policy with respect to the MEC-criterion

and RS-criterion are mostly similar. Thus, LS-MEC can converge very quickly

after a few number of iterations. When the initial cost threshold becomes

larger (θ0 = 5.00 · C∗d), then the optimal policy with respect to the RS-criterion

become more different compared to the optimal MEC policy again. Thus,

LS-MEC becomes slower again since it needs relatively much more iterations

before converging.

• Comparing LS-MEC and LS-RAND, LS-RAND is much faster but the solu-

tions found have worse qualities since it starts from a random policy.

6.3.2 Taxi Domain

Table 6.3.2 shows the results for taxi domain without zero costs. Recall that DFS

is faster than DP in the taxi domain as it traverses fewer augmented states. See

description in Section 4.6 for details. As the running time of LS-MEC and DFS

are comparable, LS-MEC is thus also faster than DP. Other observations from the
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θ0
DFS(T) DP(T) LS-MEC(T) LS-RAND(T)

% t P % t P % t P % t P

1.25·C∗d 100 31 2.16e-9 100 126 2.16e-9 100 27 1.82e-9 100 3 0.00e+0

1.50·C∗d 100 84 1.28e-5 100 202 1.28e-5 100 78 1.28e-5 100 1 0.00e+0

2.00·C∗d 100 218 2.29e-2 100 353 2.29e-2 100 221 2.29e-2 100 13 3.10e-3

3.00·C∗d 100 473 1.74e-1 100 575 1.74e-1 100 481 1.74e-1 100 89 1.40e-1

5.00·C∗d 100 704 6.29e-1 100 752 6.29e-1 100 648 6.27e-1 100 84 6.25e-1

Table 6.2: RS-MDP Results of Taxi Domain without Zero Costs

randomly generated MDP domain apply here as well.
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Chapter 7

Related Work

In this section, we will discuss the literature that is related to the work presented

in this dissertation. Figure 7.1 illustrates the relationships between the different

models, where we broadly classify the related models into two large classes:

• Risk-based MDP and POMDP models, where the notion of risk is explicitly or

implicitly considered in the models. Within this large class, we further describe

four general MDP and POMDP models: (a) MDPs and POMDPs with utility

functions; (b) MDPs and POMDPs with reachable probabilities; (c) Multi-

objective MDPs and POMDPs; and (d) Uncertain MDPs and POMDPs. We

also describe how RS-MDPs and RS-POMDPs are related to each of these

models in detail in the subsections below.

• Continuous MDP and POMDP models, where certain components of the prob-

lem can be continuous. RS-MDPs and RS-POMDPs are related to these mod-

els in that RS-MDPs and RS-POMDPs can be viewed as Continuous MDPs

and POMDPs.
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Probabilistic Planning Model (MDP, POMDP) 

MDPs and POMDPs with Reachable Probabilities  

MDPs and POMDPs with Utility Functions  

Multi-Objective MDPs and POMDPs  

Risk-based MDP and POMDP Models  
 

Uncertain MDPs and POMDPs  

Continuous MDPs and POMDPs  

Figure 7.1: Overview of Related Models

7.1 Risk-based MDP and POMDP Models

We now describe the four general MDP and POMDP models that are risk based.

7.1.1 MDPs and POMDPs with Utility Functions

Recall that RS-MDPs and RS-POMDPs can be represented as MDPs and

POMDPs with Piecewise Constant (PWC) utility functions. Therefore, they are

also related to the more general problems of MDPs and POMDPs with arbitrary

utility functions. Liu and Koenig; Liu and Koenig; Liu and Koenig [2005a; 2005b;

2006] introduced the original Functional Value Iteration (FVI) algorithm to finds

optimal policies for MDPs with exponential, one-switch, and piecewise linear util-

ity functions. Finally, Marecki and Varakantham [2010] extended FVI to solve

POMDPs with piecewise linear utility functions. We have described FVI in great

detail in Section 4.2.1 and 5.2.1, including how they can be used and adapted

to solve RS-MDPs and RS-POMDPs. Therefore, we omit them here. In general,

compared to FVI, we believe that our solution approaches should scale to much

92



larger problems better as we exploit some utility-dependent properties.

Ermon et al. [2012] extended the work above for MDPs by including a require-

ment that the returned policy needs to satisfy certain worst-case guarantees in

addition to the expected utility maximization criterion. They also introduced an

approach based on dynamic programming, but the algorithm recursively solves

the problem backwards from the horizon to the starting time step. In contrast,

our dynamic programming algorithm solves the problem from a cost threshold of

0 to the user-defined maximum cost threshold.

Another related work is by McMillen and Veloso [2007], where they solve a spe-

cific type of RS-MDPs – finite-horizon RS-MDPs with zero-sum utility functions

– inspired by robot soccer. They used a dynamic programming based algorithm

similar to that introduced by Ermon et al. [2012], which performs a one-swap

backup from the horizon to the starting time step, to solve their problem.

7.1.2 MDPs and POMDPs with Reachable Probabilities

Another important body of work that is relevant to ours are the MDP and

POMDP models that explicitly uses the reachable probabilities in their optimiza-

tion criteria [Kolobov, 2013; Steinmetz et al., 2016; Chatterjee et al., 2016]. A

general issue with goal-directed MDPs is the presence of dead-ends. Dead-ends

can be classified into two types: avoidable and unavoidable dead-ends. Dead-ends

are avoidable if there exist proper policies, which are policies that reach goal states

with probability 1. However, some MDPs may not have proper policies, in which

case the dead-ends are unavoidable. In such MDPs with unavoidable dead-ends,

finding policies that minimize the expected cost is futile since all policies have a

cost of −∞, as they continuously incur a positive cost at dead-ends.

To remedy this issue, Kolobov et al. introduced the MAXPROB MDP
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model, which is a goal-directed MDP with the objective of maximizing the

probability of getting to a goal independent of cost [Kolobov et al., 2011;

Kolobov, 2013]. MAXPROB MDPs treat reachable probabilities as the reward

function. In other words, it sets the transition to goal states to have a reward of

1 while all other transitions have a reward of 0. Thus, transitioning to dead-end

states will accumulate a reward of 0 instead of incurring a cost of −∞ as in regular

MDPs. As such, it is possible to solve MAXPROB MDPs using Value Iteration.

In summary, a MAXPROB MDP is equivalent to an RS-MDP where the objective

is to find a policy π that maximizes Pr(cπ(s0) < ∞).

For MDPs with avoidable dead-ends, Chatterjee et al. [2016] introduced a

different optimization criterion for POMDPs called as the Optimal Cost Almost-

Sure Reachability criterion. Here, they are interested in finding a policy that

minimizes the expected cost but guarantees that the reachable probability of the

starting belief with this policy is 1. The general approach that they take to solve

goal-directed POMDPs with this criterion is similar to local search, where they

first find a proper policy and iteratively improve this policy while guaranteeing

that the new policy found is also a proper policy.

Therefore, in summary, one can classify goal-directed MDPs and POMDPs as

belonging to three categories, each with a reasonable criterion that one should

optimize for.

• Goal-directed MDPs and POMDPs without dead-ends: In such (classical)

problems, one should use the classical criterion of minimizing the expected

cost since all policies can reach goals with probability 1.

• Goal-directed MDPs and POMDPs with avoidable dead-ends: In such prob-

lems, one should use the Optimal Cost Almost-Sure Reachability criterion since

we are interested in differentiating between policies that can reach goals with
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probability 1.

• Goal-directed MDPs and POMDPs with unavoidable dead-ends: In such prob-

lems, since no policy can reach goals with probability 1, we should use the

MAXPROB criterion, which is to find a policy with the highest reachable

probability, independent of cost.

However, in practice, an issue is that one typically cannot directly identify if the

goal-directed MDP or POMDP at hand has dead-ends or not, let alone whether

the dead-ends are avoidable or unavoidable. To solve this issue, one can combine

the three criteria above in the following way to obtain a general criteria that can

be used for all goal-directed MDPs and POMDPs:

(1) Solve the MDP or POMDP using the MAXPROB criteria. If there are un-

avoidable dead-ends (i.e., the reachable probability of the policy returned with

the MAXPROB criteria is less than 1), then the problem is solved as it does

not make sense to optimize for the remaining two criteria.

(2) If there are no unavoidable dead-ends (i.e., the reachable probability of the

policy returned with the MAXPROB criteria is 1), then use Tarjan’s algorithm

to construct strongly connected components (SCCs) for the MDP or POMDP.

If there exists a leaf SCC without any goal states, then there exists a dead-end

and one should find a policy that optimizes the Optimal Cost Almost-Sure

Reachability criterion.

(3) If there are no leaf SCCs without goal states, then there are no dead-ends, and

one can use the classical criterion of minimizing the expected cost.

One limitation of the above criteria is that they only use reachable probabilities

and expected costs of those trajectories as metrics to measure the quality of the

trajectories. However, there may be other metrics that one might want to consider,

especially domain-dependent metrics that may exist in some applications. We now
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describe the body of work that investigates the use of these other metrics.

In general, this body of work categorizes trajectories into different types, based

on a particular chosen metric. For example, for the metric of reachable probabil-

ities, we can separate the trajectories into those that reach a goal and those that

do not. Similarly, for the metric of expected costs, we can separate the trajectories

into those that incur a cost larger than a particular cost threshold and those that

incur a cost within the threshold. In RS-MDPs and RS-POMDPs, the objective

is to find trajectories that reach a goal and whose cost is within a cost threshold.

If we wish to enforce that the probability of trajectories being in a category

(e.g., that its cost is within a cost threshold) is within some probability thresh-

old (e.g., the trajectories are in a category with probability greater than 0.7),

then those satisfaction conditions can be enforced by chance constraints. De-

fourny et al. [2008] introduced one such criterion, where they seek to find a

policy π that minimizes the expected cost and satisfies the chance constraint

Pr(cπ(s0) ≤ θ0) ≥ p, where p is a user-defined minimum probability threshold.

de Rodrigues Quemel e Assis Santana et al. [2016] proposed a different metric

to distinguish the different trajectories: Whether a trajectory crosses a particular

undesirable state s or not. They then enforce the requirement that the trajectories

should cross undesirable states with probability no larger than a user-defined

probability threshold using chance constraints. Specifically, they use the chance

constraint Pr(s ∈ τ | s ∈ C ∧ τ ∈ T π) ≤ p, where C is a set of user-defined

undesirable states, T π is the set of all execution trajectories of policy π, and we

misuse the notation s ∈ τ to indicate that the execution trajectory τ crosses

state s. Therefore, they seek to find policies that will avoid undesirable states

with probability 1 − p. Aside from using this criterion for MDPs and POMDPs,

researchers have also used it for scheduling problems [Fang et al., 2014; Yu et al.,
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2015].

The Optimal Cost Almost-Sure Reachability criterion described above can also

be viewed as an optimization with chance constraints: It is seeking a policy π

that minimizes the expected cost and satisfying the chance constraint Pr(s ∈ τ |

s ∈ G ∧ τ ∈ T π) ≥ p, except that p = 1. Thus, this constraint isn’t strictly a

“chance” constraint since it does not allow trajectories that violate the constraint.

7.1.3 Multi-Objective MDPs and POMDPs

One can view RS-MDPs and RS-POMDPs from the lens of multi-objective op-

timization, where two objectives are optimized – expected cost and reachable

probability. In Multi-Objective MDPs and POMDPs [Roijers et al., 2013], there

are n, potentially competing, objective functions that must be taken into account.

Typical methods weigh each objective i by a weight wi. If the weights are defined

a priori, then one can optimize for the weighted sum of all the objectives. If

the weights are not known a priori but are known at runtime, then one can find

the convex hull for all possible weights. Finally, the last approach finds solutions

at the Pareto frontier, which may be fed to users to rank. Roijers et al. [2013]

provides a detailed overview and characterization of all these methods.

Another recent approach proposed by Wray et al.; Wray and Zilberstein [2015;

2015] is for MDPs and POMDPs with multiple cost functions that must be opti-

mized. However, instead of weights for each of these cost functions, they proposed

a lexicographical ordering on the functions. Then, the goal is to first optimize for

the first cost function, and allowing a certain slack in the optimal cost values after

the optimal costs are found. Then, among all policies that are within the slack

range, they optimize for the second cost function, and allowing a certain slack

again. This process continues until all the objectives are optimized for.
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In RS-MDPs and RS-POMDPs, we also consider two objectives: The proba-

bility of reaching a goal and the expected cost of doing so. Both of these mea-

surements are encapsulated within the reachable probability definition. One can

cast RS-MDPs and RS-POMDPs using a multi-objective optimization framework

that is similar to the one above, by first optimizing for trajectories that reach

the goal while allowing a slack on the range of cost thresholds θ0 ≥ θ∗0, where θ∗0

is the actual user-defined cost threshold. Then, among all trajectories that are

within the slack range, we only consider the trajectories whose costs are within

θ∗0. However, it is likely that this method will not be very efficient as there is a

lot of search effort that is expanded but not needed (e.g., by searching for trajec-

tories that have costs larger than θ∗0), and it is more efficient to encapsulate both

objectives and optimize for them together as is done by the current RS-MDP and

RS-POMDP algorithms.

Finally, another related body of work are Constrained MDPs and

POMDPs [Altman, 1999; Dolgov and Durfee, 2005; Poupart et al., 2015], where

the goal is to optimize for one of the objectives, while enforcing constraints on

the expected value of other objectives. For example, it may seek to find a policy

π that maximizes the reachable probability and satisfying the constraint that the

expected cost of that policy is no larger than some user-defined threshold. To

solve Constrained MDPs and POMDPs, one can no longer use standard MDP or

POMDP algorithms as the optimal policy is now a stochastic policy instead of a de-

terministic one. Therefore, different variants of linear and non-linear programing

methods are typically used to solve them [Altman, 1999; Dolgov and Durfee, 2005;

Poupart et al., 2015]. They can be used to model a number of applications. For

instance, in spoken dialog systems [Williams and Young, 2007] the main objective

may be to minimize the number of turns while ensuring that the probability of
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completing a booking task is above some threshold. In mobile assistive technolo-

gies [Hoey et al., 2012], the goal may be to maximize the probability of completing

a task while bounding energy consumption. In wireless communications, the goal

of opportunistic spectrum access [Zhao et al., 2007] is to maximize the utilization

of wireless spectrum by allowing multiple devices to use the same wireless channel

while satisfying regulatory requirements on the maximum collision rate between

devices.

While RS-MDPs and RS-POMDPs share similar motivations with Constrained

MDPs and POMDPs, their key difference is on the thresholds required by the

problems. Constrained MDPs and POMDPs require thresholds on the expected

value (e.g., expected costs must be within some threshold) while RS-MDPs and

POMDPs require thresholds on the exact value (e.g., actual accumulated costs

must be within some threshold). In some applications, setting thresholds on the

expected value is reasonable (e.g., the wait time for patients in a hospital should

be on average 10 minutes). Therefore, Constrained MDPs and POMDPs can be

applied in those applications. However, in some applications, setting thresholds on

the actual value is more realistic (e.g., the amount of power used by a robot must

be within the available battery charge) than thresholds on the expected value.

Therefore, in such applications, RS-MDPs and RS-POMDPs are more applicable.

In the event that the problem is deterministic, then, clearly, both models are

equivalent.

7.1.4 Uncertain MDPs and POMDPs

The notion of risk in RS-MDPs and RS-POMDPs is due to the stochasticity

in the cost, transition, and observation functions. However, RS-MDPs and RS-

POMDPs assume that such functions are known accurately. However, in real-
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world scenarios, such functions are usually approximated, through advice from

domain experts and/or approximated from real-world observations. As such, there

is a different notion of risk incurred when planning based on a model that is

possibly inaccurate.

Uncertain MDPs and POMDPs model the uncertainty in these parameters

explicitly and techniques for such models typically take these uncertainty fac-

tors into account. For example, researchers have taken proactive approaches to

solve Uncertain MDPs by explicitly representing the cost and transition func-

tions as fixed but unknown parameters. Some assume that the parameters

are elements of a known bounded set, called the uncertainty set, and use ro-

bust optimization techniques to solve the Uncertain MDPs [Givan et al., 2000;

Iyengar, 2005; Nilim and Ghaoui, 2005; Regan and Boutilier, 2009; 2011;

Mannor et al., 2012]. Alternatively, some assume that the parameters are ran-

dom variables that follow some distribution and use percentile optimization tech-

niques [Delage and Mannor, 2010], distributional robustness [Xu and Mannor,

2012], or sampling-based approaches [Ahmed et al., 2013] to solve the Uncer-

tain MDPs. Many proactive Uncertain MDP and POMDP techniques are also

based on minimax-like methods [Iyengar, 2005; Wiesemann et al., 2013], where

the idea is to find a policy with the minimum expected cost across all worst-case

scenarios. In addition, there also exists some work that keep a baseline policy and

directly minimize the regret with respect to the current policy [Ahmed et al., 2013;

Ghavamzadeh et al., 2016].

In contrast, researchers have also proposed reactive approaches to solve the

Uncertain MDPs without explicitly representing the uncertainty in the cost and

transition functions [Hou et al., 2014a]. Instead, they find a policy for their current

(possibly incorrect) MDP model, execute it, and if inconsistencies between the
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environment and the model are observed, then the model is updated and the

agent searches for a new policy for the new model. This process repeats until

the agent gets to its goal. The goal in such problems is typically to reuse as

much information as possible between subsequent searches to speed up the search

process. Researchers have also applied this reactive approach to deterministic

planning problems, where they are called incremental search techniques [Stentz,

1995; Koenig and Likhachev, 2002; Koenig et al., 2004; Likhachev et al., 2003;

Sun et al., 2008; 2009; 2010a; 2010b]. Incremental search algorithms typically use

A* [Hart et al., 1968] to find a plan for the initial problem, and replans each time

the problem changes.

Another category of reactive approaches is based on reinforcement learn-

ing [Sutton and Barto, 1998; Thomas, 2015], which is useful in problems where

only partial information about the model is known (e.g., only the range of the tran-

sition and cost functions are known). By applying reinforcement learning based

methods, more information on the model can be learned (e.g., the transition and

cost functions can be made more accurate), and this new information can be used

to find new and improved policies, while ensuring that the probability of bad poli-

cies being proposed is low. Note that the scenario where this approach is useful

assumes that very little information is known about the underlying MDP model,

even less than that assumed by Uncertain MDPs and the incremental approaches

above.

7.1.5 Alternative Risk Criteria for MDPs and POMDPs

Aside from the four general models above, researchers have also correlated the risk

of a policy with the variance in the distribution of cumulative cost of that policy,

where a policy is riskier if it has a larger variance [Mannor and Tsitsiklis, 2011;
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2013]. In such formulations, the goal can be to find a policy with the smallest

expected cost and break ties in favor of policies with smaller cost variance, or to

find a policy with the smallest expected cost among a set of policies whose cost

variance is within some user-defined threshold.

Another criterion is one called dynamically consistent risk measure [Ruszczyn-

ski, 2010; Petrik and Subramanian, 2012], which uses the regular MDP/POMDP

optimization criterion – minimizing expected cost – except that it penalizes some

specific trajectories of the policy. Specifically, given a reference probability for

each transition function, all adverse realizations (with probability greater than

the reference probability) are penalized in the regular optimization criterion.

7.2 Continuous MDPs and POMDPs

When formalizing RS-MDPs and RS-POMDPs as augmented MDPs and

POMDPs, the augmented state space is continuous. These MDPs and POMDPs

are normally considered as Continuous MDPs and POMDPs [Guestrin et al., 2004;

Li and Littman, 2005; Marecki et al., 2007; Sanner et al., 2011; Zamani et

al., 2012]. Different from discrete MDPs and POMDPs, the continuous mod-

els assume that their components (i.e., states, actions, and both transition and

cost/reward functions) may be continuous. There are many different Continu-

ous MDP and POMDP variants, where each variant makes different assumptions

on which component is continuous [Guestrin et al., 2004; Li and Littman, 2005;

Marecki et al., 2007; Sanner et al., 2011; Zamani et al., 2012]. In general, the

algorithm to solve Continuous MDPs depend on which components are assumed

to be continuous [Guestrin et al., 2004; Li and Littman, 2005; Marecki et al., 2007;

Sanner et al., 2011; Zamani et al., 2012].
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It is usually clear from the name of the model which component is assumed

to be continuous. For example, the Continuous State MDP model assumes that

states are continuous. A simple and straightforward way to solve this problem ap-

proximately is to discretize the continuous state space into a discrete state space

and use regular techniques for discrete MDPs to solve it. This method is thus

similar to how point-based POMDP methods approximate exact POMDP meth-

ods. Alternatively, if the costs are continuous values, they too can be discretized

into bins (e.g., by rounding them to the nearest integer). By carefully designing

the rounding strategies based on the underlying problem structure, some times

the complexity of solving some specific probabilistic problems can reduce from

exponential to polynomial [Wu et al., 2014].

A different way to solve the problem exactly is to use continuous functions

to represent the value function of the continuous state space. Then, one can

update these value functions using a modified Bellman equation, similar to how

FVI updates its value functions. But since the continuous value functions can

be of any arbitrary form (e.g., piecewise constant, piecewise linear, exponential

functions, one-switch functions, skew symmetric bilinear functions, etc.), updating

them exactly, in general, can be difficult. However, updating the value functions of

specific types exactly may be significantly simpler and more efficient. For example,

the RS-MDP algorithms we have proposed assume that the value functions are

piecewise constant functions and our update procedures are tailored for that type

of functions only. As such, Continuous State MDPs typically assume that their

value functions have specific forms or can be approximated by specific forms. For

example, Discrete and Continuous State MDPs (a model with both continuous and

discrete states) assume that their value functions are hyper-rectangle piecewise

linear functions [Sanner et al., 2011].
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As we mentioned above, as RS-MDPs and RS-POMDPs have continuous aug-

mented state spaces, they can be viewed as one type of Continuous MDPs and

POMDPs. Nonetheless, the number of states that need to be considered is finite

because the cost function is discrete and the cost thresholds that need to be con-

sidered are only positive cost thresholds that are within the initial cost threshold.

Therefore, we are able to adopt classical MDP and POMDP methods (e.g., DFS

and DP) in addition to Continuous MDP and POMDP methods (e.g., FVI) to

solve RS-MDPs and RS-POMDPs.

One category of Continuous MDPs and POMDPs that are closely related

to RS-MDPs and POMDPs are MDPs and POMDPs with real-valued re-

sources. Many MDP and POMDP models with limited resources have been

proposed [Marecki et al., 2007; Marecki and Tambe, 2009]. One such model in-

cludes finite-horizon MDPs, where the resource is the number of time steps. For

finite-horizon problems, Li and Littman [2005] assumes that transition and cost

functions are continuous and they apply Continuous MDP techniques to solve

them. To achieve computing efficiency, they use piecewise constant functions

to approximate the value functions after each iteration. Marecki et al. [2007]

assumes that actions have associated durations and time is a limited resource. In-

stead of approximating the value functions as piecewise constant functions, they

approximate the probability distributions of the action durations using phase-type

distributions, which allow them to better approximate the overall value functions.

Both of these models and RS-MDPs assume that there is a limited resource bud-

get. But both of those models seek to maximize the accumulated reward under

the limited resource budget, while RS-MDPs seek to maximize the probability of

reaching a goal under the limited resource budget.

The other category of Continuous MDPs and POMDPs that are closely
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related are Temporal MDP and POMDP models that are typically used to

model scheduling problems. In these temporal models, actions have associ-

ated durations and time is part of the augmented state space. As such, the

state space is continuous since time is continuous [Younes and Simmons, 2004;

Little et al., 2005; Mausam and Weld, 2008]. If the durations are deter-

ministic, then these problems can be reduced to classical discrete MDPs and

POMDPs and be solved using classical techniques [Younes and Simmons, 2004].

If the durations are stochastic, then they must be solved using Continuous

MDP and POMDP techniques. Further, some more complex models even al-

low for concurrent actions to be taken at the same time [Little et al., 2005;

Mausam and Weld, 2008]. These temporal models are related to RS-MDPs and

RS-POMDPs in that the augmented state space contains both the actual state el-

ement as well as a resource element. In the case of temporal models, that resource

element is time, while in RS-MDPs and RS-POMDPs, that resource element is

the cost budget. In both models, the resource is continuous, and, as a result, the

augmented state space is continuous as well.
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Chapter 8

Conclusions and Future Work

In this dissertation, we revisit the Risk-Sensitive MDP (RS-MDP) model and gen-

eralize it to Risk-Sensitive POMDPs (RS-POMDPs). Unlike conventional MDPs

and POMDPs, the goal in these problems is to find a policy that maximizes the

probability that an agent achieves its goal with an accumulated cost that is no

larger than a predefined threshold. We showed that this specific risk-sensitive

criterion can be viewed as a specific type of risk attitude. Most risk attitudes can

be represented by utility functions, and our risk-sensitive criterion corresponds to

a step function.

To solve the new models, we adapted and optimized the existing Functional

Value Iteration (FVI), which can be applied on more general risk attitudes, to solve

RS-MDPs and RS-POMDPs. Additionally, we show that one can naively represent

RS-(PO)MDPs as augmented (PO)MDPs and solve them using the traditional

Value Iteration (VI) algorithm on the augmented (belief) state space. Finally, we

also introduce a number of new algorithms, based on Depth First Search (DFS)

and Dynamic Programming (DP) techniques, that also operate on this augmented

(belief) state space. For RS-MDPs with zero costs, we also combine the DFS- and
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DP-based algorithms with Topological Value Iteration (TVI).

Additionally, we implemented the DFS- and DP-based algorithms to use two

different kinds of data structures – latticed tables and utility functions – to store

their reachable probabilities as there are inherent tradeoffs between the two. Lat-

ticed tables have a small worst-case runtime for the search and insert operations,

which are both O(1). However, its memory requirement to store the table is pro-

portional to O(|S| · |Θ|), where S is the original state space and Θ is the set of

all possible cost thresholds. In contrast, utility functions have a larger worst-case

runtime for the search and insert operations, which are O(log(|Θ|)) and O(|Θ|),

respectively. However, its memory requirement grows with the complexity of the

utility function and, in many cases, will be smaller than the memory requirement

to store latticed tables.

We empirically compare these algorithms on three domains: Randomly gen-

erated (PO)MDPs, the Navigation domain from the ICAPS 2011 International

Probabilistic Planning Competition (IPPC), and a taxi domain generated from

real-world data. Our experimental results for RS-MDPs show that either the new

DFS- or DP-based algorithms are faster than VI and FVI. The exception is when

utility functions are extremely simple, such as in the Navigation domain, where

FVI is the fastest. When utility functions are simple, both DFS- and DP-based

algorithms are typically faster when they use utility functions than when they use

latticed tables. Finally, DFS is typically faster than DP when most of the state

space is not reachable or when utility functions are simple.

In RS-POMDPs, most of the trends from RS-MDPs still apply. However, DFS

and DP are not applicable in some RS-POMDP configurations, in which case we

must rely on FVI or VI. As expected, FVI, VI, and DP are typically faster and

more scalable when they are able to prune the belief state space. Their point-based
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counterparts are also more scalable but at the cost of reduced solution quality.

Finally, in this dissertation, we distinguish between the two cases of whether costs

can or cannot be observed, and the algorithms typically find better solutions

when they can observe the costs. This dissertation thus provides a comprehensive

evaluation of these algorithms on a large number of RS-MDP and RS-POMDP

configurations.

For future work, there are multiple promising directions that one can pursue.

The first is the relationship between our Risk-Sensitive (RS) criterion with the

Minimizing Expected Cost (MEC) criterion. For example, an interesting question

is whether a theoretical error bound exists between the optimal reachable prob-

ability of a policy that optimizes the RS-criterion and the reachable probability

of a policy that optimizes the MEC criterion. In general, a tight bound does not

exist as it is possible to construct examples where the error is close to 1 (i.e., the

reachable probability of the MEC policy is almost 0 while the optimal reachable

probability is marginally less than 1). However, one may be able to exploit spe-

cific problem structures to obtain a tighter bound. Further, this line of research

actually applies to the more general class of all risk attitudes discussed in Chap-

ter 7, and not just restricted to the RS-criterion To the best of our knowledge, the

relationships between the MEC criterion and these other risk attitudes are still

open questions.

The second possible direction is to generalize our RS-MDP and RS-POMDP

models to more general models. For example, a reasonably straightforward ex-

tension is to one where the utility function can have constant tails with arbitrary

values. More formally,

U(w) =

 u⊥ if w < w⊥

f(w) if w ≥ w⊥

(8.1)
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where u⊥ and w⊥ are constants and f(·) is one of any monotonically non-

decreasing functions. Ermon et al. [2012] discusses one specific example where

u⊥ = ∞. It is relatively straightforward to extend our algorithms to handle this

case as well, for example, by rewriting Equation 4.4 to the following:

V (s, θ) = max
a∈A

∑
s′∈S


u⊥ if θ′ < w⊥

T (s, a, s′) · U(θ′) if s′ ∈ G, θ′ ≥ w⊥

T (s, a, s′) · V (s′, θ′) if s′ /∈ G, θ′ ≥ w⊥

(8.2)

where θ′ = θ−C(s, a, s′). V (s, θ) now denote the expected utility with respect to

the utility function U(w) with a constant tail.

Another interesting extension is one where the model can have negative costs

but there is a negative bound on the accumulated cost of the agent, similar to

the model proposed by Brázdil et al. [2016]. This extension may readily apply

in many real-world applications. For example, in robotic navigation problems,

the initial cost threshold may correspond to the initial battery level of the robot,

which is drained when the robot takes actions with positive costs. However, the

robot may charge its battery, which corresponds to it taking an action with a

negative cost. Further, there is a capacity on the amount of charge the battery

can carry; hence the negative bound on the accumulated cost. This constraint is

important as we have shown that solving general RS-MDPs with negative costs is

undecidable (Theorem 1).

Finally, one may cast the RS-criterion as one of the other risk attitudes dis-

cussed in Chapter 7. For example, one may view the RS-criterion as a bi-objective

optimization problem with a lexicographic ordering of the objectives [Wray et al.,

2015; Wray and Zilberstein, 2015]. Then, the objective of satisfying the cost

threshold is more important than the objective of maximizing the reachable prob-

ability. Further, it may also be possible to combine the RS-criterion with other
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orthogonal risk criteria, such as the mean-variance criterion.
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Chapter 9

Appendix

The tables below are for the three RS-POMDP configurations not reported in the

RS-POMDP experimental results (see Section 5.4).
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(a) FVI

|S| w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

25 10 8 2.84e-1 30 3292 2.74e-1 100 1 2.87e-1 100 12 2.88e-1 100 398 2.88e-1

50 8 42 1.91e-1 16 15865 1.79e-1 100 1 1.79e-1 100 37 2.13e-1 100 1397 2.13e-1

100 4 19 1.20e-1 10 103965 9.91e-2 100 1 1.32e-1 100 175 1.56e-1 100 3934 1.56e-1

200 0 – 7.42e-2 0 – 4.36e-2 100 10 8.58e-2 100 1694 1.13e-1 100 34996 1.15e-1

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 16 42 1.77e-1 28 10552 1.70e-1 100 1 1.75e-1 100 14 1.89e-1 100 683 1.89e-1

1.50·C∗d 14 169 2.09e-1 20 6048 1.87e-1 100 1 2.17e-1 100 55 2.29e-1 100 1226 2.30e-1

2.00·C∗d 8 5 2.40e-1 10 315 2.00e-1 100 15 2.69e-1 100 1621 2.85e-1 94 49990 2.85e-1

3.00·C∗d 2 1 2.48e-1 8 32364 1.97e-1 100 137 3.32e-1 92 31228 3.60e-1 50 116641 3.35e-1

(b) AUG-VI

|S| w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

25 10 79 2.84e-1 22 1629 2.71e-1 100 29 2.87e-1 100 347 2.88e-1 100 9639 2.88e-1

50 8 187 1.82e-1 8 52773 1.78e-1 100 56 1.79e-1 100 1414 2.13e-1 98 35561 2.13e-1

100 4 223 9.44e-2 6 1170 9.91e-2 100 328 1.32e-1 100 5687 1.56e-1 98 131322 1.56e-1

200 0 – 3.57e-2 0 – 4.17e-2 100 1148 8.65e-2 100 35217 1.13e-1 76 199009 1.14e-1

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 16 211 1.70e-1 22 2775 1.66e-1 100 28 1.75e-1 100 582 1.89e-1 100 25078 1.89e-1

1.50·C∗d 14 611 2.01e-1 14 26163 1.85e-1 100 72 2.17e-1 100 1795 2.29e-1 100 43377 2.30e-1

2.00·C∗d 8 117 2.17e-1 10 4115 1.95e-1 100 288 2.69e-1 100 22252 2.85e-1 76 74808 2.81e-1

3.00·C∗d 2 1 2.05e-1 2 125 1.97e-1 100 937 3.32e-1 88 106480 3.60e-1 30 130739 3.06e-1

(c) DFS

|S| % t P θ0 % t P

25 88 18626 2.57e-1 1.25·C∗d 96 1439 1.83e-1

50 84 3945 1.82e-1 1.50·C∗d 88 19899 2.05e-1

100 90 32294 1.48e-1 2.00·C∗d 64 32184 1.85e-1

200 76 52754 9.24e-2 3.00·C∗d 32 113983 1.20e-1

Table 9.1: RS-POMDP Results of Randomly Generated POMDPs without Zero

Costs and Unobservable Actual Costs
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(a) FVI

|S| w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)
% t P % t P % t P % t P % t P

25 6 120184 1.90e-1 16 46121 2.03e-1 100 47 2.68e-1 100 6524 2.93e-1 96 5132 2.95e-1
50 6 6 1.35e-1 10 4320 1.38e-1 100 62 1.65e-1 100 2746 1.92e-1 92 48092 1.95e-1
100 0 – 5.58e-2 4 90858 5.58e-2 100 75 7.93e-2 100 3098 9.53e-2 90 68605 9.89e-2
200 0 – 4.64e-3 2 3683 5.76e-3 100 131 1.33e-2 100 4728 2.17e-2 80 102246 2.79e-2

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P
1.25·C∗d 8 187 5.51e-2 16 29336 6.22e-2 100 24 6.88e-2 100 1259 8.43e-2 96 17896 8.54e-2
1.50·C∗d 6 244 5.53e-2 16 36710 6.90e-2 100 83 8.53e-2 100 5416 1.11e-1 88 24080 1.13e-1
2.00·C∗d 4 351 5.51e-2 16 36841 6.43e-2 100 3419 1.13e-1 100 16842 1.38e-1 78 40443 1.47e-1
3.00·C∗d 4 367 5.51e-2 14 33672 6.43e-2 100 4995 1.63e-1 92 66782 2.15e-1 60 66226 2.24e-1

(b) AUG-VI

|S| w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)
% t P % t P % t P % t P % t P

25 6 70127 1.90e-1 20 65395 2.36e-1 100 198 2.68e-1 100 6923 2.93e-1 96 2793 2.95e-1
50 6 9 1.35e-1 10 4528 1.47e-1 100 235 1.65e-1 100 5460 1.92e-1 100 42916 1.95e-1
100 0 – 5.58e-2 6 120378 5.61e-2 100 575 7.93e-2 100 4022 9.53e-2 96 48246 9.89e-2
200 0 – 4.64e-3 2 3352 8.27e-3 100 334 1.33e-2 100 3953 2.17e-2 86 75031 2.79e-2

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P
1.25·C∗d 8 211 5.51e-2 22 69462 6.45e-2 100 131 6.88e-2 100 2027 8.43e-2 100 15969 8.54e-2
1.50·C∗d 6 280 5.53e-2 20 59783 6.91e-2 100 512 8.53e-2 98 6487 1.11e-1 96 36666 1.13e-1
2.00·C∗d 4 421 5.51e-2 20 60944 6.56e-2 98 615 1.13e-1 98 16221 1.38e-1 84 37581 1.47e-1
3.00·C∗d 4 413 5.35e-2 20 125149 6.44e-2 98 3884 1.63e-1 88 27666 2.15e-1 64 33770 2.27e-1

(c) DP

|S| w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)
% t P % t P % t P % t P % t P

25 6 3979 7.08e-2 20 104172 1.01e-1 100 67 1.49e-1 100 1486 1.50e-1 92 26478 1.44e-1
50 6 1 9.61e-2 12 497 1.10e-1 100 2380 1.15e-1 100 6423 1.26e-1 80 60790 1.27e-1
100 0 – 4.08e-2 6 11283 4.16e-2 100 34 5.72e-2 98 16076 5.95e-2 68 140716 5.77e-2
200 0 – 1.01e-3 6 76513 7.45e-3 100 51 6.95e-3 98 22090 7.14e-3 57 35683 7.16e-3

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P
1.25·C∗d 8 4 4.60e-2 24 13516 5.71e-2 100 33 4.03e-2 100 9962 4.94e-2 84 41731 4.91e-2
1.50·C∗d 6 5 4.63e-2 20 15274 5.74e-2 100 47 4.77e-2 100 13351 5.69e-2 82 66476 5.66e-2
2.00·C∗d 4 8 4.63e-2 20 16114 5.74e-2 100 86 4.85e-2 100 28837 5.93e-2 72 62545 5.70e-2
3.00·C∗d 4 8 4.63e-2 20 18313 5.74e-2 100 158 5.46e-2 94 27790 6.71e-2 64 36505 5.70e-2

Table 9.2: RS-POMDP Results of Randomly Generated POMDPs with Zero Costs
and Observable Actual Costs
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(a) FVI

|S| w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

25 6 14 2.58e-1 16 2616 2.61e-1 100 3 2.83e-1 100 196 2.87e-1 94 2949 2.87e-1

50 6 1 1.61e-1 14 4517 1.59e-1 100 169 1.67e-1 100 3687 1.91e-1 88 30156 1.92e-1

100 0 – 8.06e-2 4 2278 7.69e-2 100 33 8.12e-2 100 2255 9.54e-2 88 43629 9.76e-2

200 0 – 1.52e-2 2 165 1.32e-2 100 9 1.32e-2 100 1953 2.68e-2 84 45734 2.81e-2

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 8 8 7.01e-2 24 11662 7.25e-2 100 6 6.92e-2 98 1282 8.32e-2 96 16609 8.42e-2

1.50·C∗d 6 10 8.78e-2 22 7212 8.96e-2 100 5391 8.67e-2 100 2906 1.08e-1 88 25346 1.09e-1

2.00·C∗d 4 8 1.08e-1 20 6972 9.98e-2 100 4851 1.13e-1 100 27766 1.36e-1 76 44858 1.36e-1

3.00·C∗d 4 8 1.36e-1 16 6065 1.16e-1 100 3461 1.75e-1 86 23231 2.01e-1 56 92163 1.96e-1

(b) AUG-VI

|S| w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

25 6 15 2.58e-1 12 5773 2.59e-1 100 40 2.83e-1 100 1515 2.87e-1 94 29371 2.87e-1

50 6 5 1.61e-1 10 439 1.56e-1 100 607 1.67e-1 98 5525 1.91e-1 82 52868 1.91e-1

100 0 – 7.84e-2 2 7663 7.66e-2 100 288 8.12e-2 100 20320 9.54e-2 74 87634 9.75e-2

200 0 – 1.11e-2 2 168 1.23e-2 100 86 1.32e-2 100 15272 2.67e-2 70 119213 2.80e-2

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 8 4 7.01e-2 16 1486 7.10e-2 100 65 6.92e-2 98 10166 8.32e-2 90 43651 8.42e-2

1.50·C∗d 6 10 8.78e-2 16 5337 8.77e-2 98 461 8.67e-2 98 7397 1.08e-1 80 37693 1.09e-1

2.00·C∗d 4 7 1.08e-1 16 5421 9.93e-2 98 277 1.13e-1 96 38842 1.36e-1 60 47789 1.36e-1

3.00·C∗d 4 8 1.26e-1 14 3301 1.20e-1 98 3377 1.75e-1 84 54605 2.01e-1 42 48517 1.86e-1

Table 9.3: RS-POMDP Results of Randomly Generated POMDPs with Zero Costs

and Unobservable Actual Costs
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(a) FVI

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 20 1 7.84e-3 70 14154 1.19e-2 100 1 2.16e-4 100 13 4.61e-3 100 653 1.19e-2

1.50·C∗d 20 82 2.49e-2 60 9246 6.37e-2 100 1 2.16e-4 100 9 5.06e-3 100 832 6.33e-2

2.00·C∗d 10 2 2.51e-2 50 24341 9.77e-2 100 1 3.28e-4 100 16 6.11e-3 100 3044 9.09e-2

3.00·C∗d 10 16 2.52e-2 10 102 1.24e-1 100 1 5.44e-4 100 62 1.41e-1 100 14210 2.07e-1

(b) AUG-VI

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 90 79935 1.19e-2 50 1158 1.19e-2 100 14 2.16e-4 100 348 4.61e-3 100 36562 1.19e-2

1.50·C∗d 70 145253 6.34e-2 60 8325 6.37e-2 100 17 2.16e-4 100 430 5.06e-3 100 45524 6.33e-2

2.00·C∗d 30 28526 8.17e-2 20 34555 9.74e-2 100 25 3.28e-4 100 699 6.17e-3 90 77027 9.09e-2

3.00·C∗d 10 60 7.72e-2 20 76501 1.24e-1 100 43 5.44e-4 100 2995 1.41e-1 80 105526 2.07e-1

(c) DFS

θ0 % t P

1.25·C∗d 80 69471 5.36e-3

1.50·C∗d 70 50456 5.05e-2

2.00·C∗d 50 8043 7.48e-2

3.00·C∗d 40 87771 1.47e-1

Table 9.4: RS-POMDP Results of Navigation Domain without Zero Costs and

Unobservable Actual Costs
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(a) FVI

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 10 3 5.57e-3 70 117457 5.58e-3 100 10 0.00e+0 100 15 2.82e-3 100 1294 3.80e-3

1.50·C∗d 10 3 5.62e-3 40 23103 6.67e-3 100 1 0.00e+0 100 19 5.65e-3 100 1490 6.64e-3

2.00·C∗d 10 11 5.99e-3 30 81527 3.18e-2 100 1 0.00e+0 100 12 6.67e-3 100 2053 1.67e-2

3.00·C∗d 10 22597 5.30e-3 10 71137 4.05e-2 100 1 0.00e+0 100 18 1.09e-2 100 4417 9.36e-2

(b) AUG-VI

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 20 709 5.58e-3 50 31566 5.57e-3 100 25 0.00e+0 100 40 2.82e-3 100 1281 3.80e-3

1.50·C∗d 10 11 6.67e-3 40 139532 6.64e-3 100 36 0.00e+0 100 64 5.65e-3 100 1470 6.64e-3

2.00·C∗d 10 59 3.26e-2 30 148047 3.16e-2 100 22 0.00e+0 100 111 6.67e-3 100 2337 1.67e-2

3.00·C∗d 10 469 1.48e-2 10 72848 3.93e-2 100 49 0.00e+0 100 199 1.09e-2 100 5508 9.36e-2

(c) DP

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 20 12 2.15e-3 60 118259 5.10e-3 100 20 1.03e-3 100 302 1.03e-3 100 4321 1.03e-3

1.50·C∗d 20 195 3.23e-3 50 132747 5.10e-3 100 13 1.03e-3 100 458 1.03e-3 100 6300 1.03e-3

2.00·C∗d 10 3 4.08e-3 30 10640 6.73e-3 100 17 1.03e-3 100 764 1.03e-3 100 10589 1.03e-3

3.00·C∗d 10 11 4.08e-3 20 9668 7.25e-3 100 45 1.03e-3 100 1453 1.03e-3 100 19877 1.03e-3

Table 9.5: RS-POMDP Results of Navigation Domain with Zero Costs and Ob-

servable Actual Costs
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(a) FVI

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 20 238981 5.57e-3 80 2548 7.38e-3 100 1 1.03e-3 100 16 5.57e-3 100 3402 5.57e-3

1.50·C∗d 10 1 5.88e-3 60 2539 8.54e-3 100 1 2.78e-3 100 24 5.69e-3 100 13175 6.68e-3

2.00·C∗d 10 3 3.07e-2 50 4338 4.37e-2 100 1 1.03e-3 100 22 6.72e-3 100 71777 4.09e-2

3.00·C∗d 10 2019 1.40e-2 20 2823 8.97e-2 100 1 0.00e+0 100 1834 8.42e-2 80 93573 1.21e-1

(b) AUG-VI

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 20 74 5.57e-3 60 3354 6.91e-3 100 6 1.03e-3 100 205 5.57e-3 100 54782 5.57e-3

1.50·C∗d 20 4534 6.88e-3 60 3145 8.22e-3 100 12 2.78e-3 100 289 6.67e-3 90 30683 6.68e-3

2.00·C∗d 10 6 3.52e-2 60 14210 4.29e-2 100 10 1.03e-3 100 443 6.72e-3 90 38749 4.09e-2

3.00·C∗d 10 45 7.49e-2 20 3228 8.97e-2 100 16 0.00e+0 100 48418 8.42e-2 50 76410 1.18e-1

Table 9.6: RS-POMDP Results of Navigation Domain with Zero Costs and Un-

observable Actual Costs

(a) FVI

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 10 0.00e+0 100 652 2.38e-5 100 18254 1.98e-4

1.50·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 10 0.00e+0 100 164 0.00e+0 100 42271 2.26e-2

2.00·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 78 1.25e-1 100 7742 6.02e-1 100 60106 6.19e-1

3.00·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 183 1.00e+0 100 1375 1.00e+0 100 19474 1.00e+0

(b) AUG-VI

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 109 0.00e+0 100 4930 1.98e-4 100 207715 1.98e-4

1.50·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 1406 1.72e-2 100 13190 2.26e-2 100 307616 2.26e-2

2.00·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 4612 6.13e-1 100 24511 6.17e-1 62 413842 6.18e-1

3.00·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 2467 1.00e+0 100 16316 1.00e+0 87 498494 8.75e-1

(c) DFS

θ0 % t P

1.25·C∗d 100 28505 1.98e-4

1.50·C∗d 100 128973 2.26e-2

2.00·C∗d 100 392193 6.20e-1

3.00·C∗d 100 429201 1.00e+0

Table 9.7: RS-POMDP Results of Taxi Domain without Zero Costs and Unob-

servable Actual Costs
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(a) FVI

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 25 0.00e+0 100 396 1.32e-5 100 22001 1.07e-4

1.50·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 9 0.00e+0 100 870 4.45e-3 100 137277 1.57e-2

2.00·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 97 1.25e-1 100 9828 4.12e-1 75 420595 5.91e-1

3.00·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 215 1.00e+0 100 1980 1.00e+0 100 31100 1.00e+0

(b) AUG-VI

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 88 0.00e+0 100 683 1.32e-5 100 16353 1.07e-4

1.50·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 147 0.00e+0 100 1502 4.45e-3 100 62261 1.57e-2

2.00·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 708 1.25e-1 100 13224 4.12e-1 100 142321 5.91e-1

3.00·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 1735 1.00e+0 100 3827 1.00e+0 100 21601 1.00e+0

(c) DP

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 0 – 0.00e+0 50 299073 1.10e-4 100 48 0.00e+0 100 92 0.00e+0 100 18045 0.00e+0

1.50·C∗d 0 – 0.00e+0 0 – 2.18e-4 100 77 0.00e+0 100 115 0.00e+0 100 18113 0.00e+0

2.00·C∗d 0 – 0.00e+0 0 – 1.51e-4 100 112 0.00e+0 100 154 0.00e+0 100 18039 0.00e+0

3.00·C∗d 0 – 0.00e+0 0 – 1.51e-4 100 204 0.00e+0 100 241 0.00e+0 100 18219 0.00e+0

Table 9.8: RS-POMDP Results of Taxi Domain with Zero Costs and Observable

Actual Costs
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(a) FVI

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 7 0.00e+0 100 545 1.91e-5 100 17917 1.39e-4

1.50·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 9 0.00e+0 100 169 0.00e+0 100 37379 1.59e-2

2.00·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 93 1.25e-1 100 4626 4.83e-1 100 52932 5.94e-1

3.00·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 156 1.00e+0 100 1367 1.00e+0 100 19380 1.00e+0

(b) AUG-VI

θ0
w/o Pruning w/ Pruning PB(10) PB(100) PB(1000)

% t P % t P % t P % t P % t P

1.25·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 104 0.00e+0 100 4651 1.39e-4 100 197520 1.39e-4

1.50·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 540 5.04e-3 100 13350 1.56e-2 100 293996 1.55e-2

2.00·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 4128 5.88e-1 100 22141 5.89e-1 75 412387 5.90e-1

3.00·C∗d 0 – 0.00e+0 0 – 0.00e+0 100 1671 1.00e+0 100 16032 1.00e+0 87 496325 1.00e+0

Table 9.9: RS-POMDP Results of Taxi Domain with Zero Costs and Unobservable

Actual Costs

119



Bibliography

[Ahmed et al., 2013] Asrar Ahmed, Pradeep Varakantham, Yossiri Adulyasak,

and Patrick Jaillet. Regret based robust solutions for uncertain Markov de-

cision processes. In Proceedings of Advances in Neural Information Processing

Systems (NIPS), pages 881–889, 2013.

[Altman, 1999] Eitan Altman. Constrained Markov Decision Processes. Chapman

& Hall/CRC, 1999.

[Bellman, 1957] Richard Bellman. Dynamic Programming. Princeton University

Press, 1957.

[Bonet and Geffner, 2009] Blai Bonet and Hector Geffner. Solving POMDPs:

RTDP-Bel vs. point-based algorithms. In Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI), pages 1641–1646, 2009.

[Brázdil et al., 2016] Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik,
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