
WASHINGTON UNIVERSITY IN ST. LOUIS

McKelvey School of Engineering
Department of Computer Science and Engineering

Dissertation Examination Committee:
Roman Garnett, Chair

Chien-Ju Ho
Alvitta Ottley
William Yeoh
Roie Zivan

Dynamic Continuous Distributed Constraint Optimization Problems
by

Khoi Hoang

A dissertation presented to
the McKelvey School of Engineering

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

August 2022
St. Louis, Missouri

© 2022, Khoi Hoang

Table of Contents

List of Figures... v

List of Tables .. vii

Acknowledgments.. viii

Abstract ... xi

Chapter 1: Introduction.. 1

1.1 Overview of Contributions .. 3

1.2 Research Output... 3

1.3 Dissertation Structure .. 4

Chapter 2: Background and Motivation .. 7

2.1 Distributed Constraint Optimization Problems.. 7

2.2 DCOP Algorithms... 9

2.2.1 Distributed Pseudo-tree Optimization Procedure 9

2.2.2 Super-stabilizing DPOP.. 9

2.2.3 Maximum Gain Message ... 10

2.3 Dynamic DCOPs .. 10

2.4 Continuous DCOPs ... 11

2.5 Markov Chains ... 11

2.6 Reactive and Proactive Approaches .. 13

2.7 Distributed Radar Coordination and Scheduling Problems......................... 14

Chapter 3: Proactive Dynamic Distributed Constraint Optimization Prob-
lems ... 16

3.1 Introduction... 16

3.2 PD-DCOP Model.. 18

3.3 PD-DCOP Algorithms ... 21

ii

3.3.1 Exact Approach .. 25

3.3.2 Heuristic Approaches ... 27

3.4 Theoretical Results.. 35

3.5 Related Work ... 46

3.6 Experimental Results ... 48

3.6.1 Offline Algorithms ... 48

3.6.2 Online Algorithms ... 59

3.6.3 Comparisons with MD-DCOP Algorithms 66

3.7 Discussions and Conclusions .. 70

Chapter 4: Continuous Distributed Constraint Optimization Problems 72

4.1 Introduction... 73

4.2 C-DCOP Algorithms ... 74

4.2.1 Exact Continuous DPOP .. 74

4.2.2 Approximate Continuous DPOP... 82

4.2.3 Clustered Approximate Continuous DPOP 89

4.2.4 Continuous DSA ... 89

4.3 Theoretical Results.. 90

4.4 Related Work ... 93

4.5 Experimental Results ... 94

4.6 Discussions and Conclusions .. 98

Chapter 5: Dynamic Continuous Distributed Constraint Optimization
Problems .. 100

5.1 Introduction... 101

5.2 DC-DCOP Model.. 102

5.3 DC-DCOP Algorithms ... 104

5.3.1 Forward.. 104

5.3.2 Backward ... 106

5.4 Theoretical Results.. 107

5.5 Related Work ... 110

5.6 Experimental Results ... 114

iii

5.7 Discussions and Conclusions .. 117

Chapter 6: Conclusions and Future Work.. 119

References .. 123

iv

List of Figures

Figure 2.1: Example of DCOP .. 8

Figure 2.2: Distributed Radar Coordination and Scheduling Problem................ 14

Figure 3.1: Illustration of the SolvePD-DCOP Procedure 22

Figure 3.2: Experimental Results Varying Heuristic Weight 50

Figure 3.3: Experimental Results Varying Switching Cost............................... 51

Figure 3.4: Comparison between Sequential Greedy and Local Search for DPOP. 52

Figure 3.5: Comparison between Sequential Greedy and Local Search for MGM.. 52

Figure 3.6: Experimental Results Varying Horizon .. 53

Figure 3.7: Search Time vs. Solution Adoption Time..................................... 60

Figure 3.8: Comparison between F-DPOP and R-DPOP on Random Networks ... 62

Figure 3.9: Comparison between Hy-DPOP and R-DPOP on Random Networks . 62

Figure 3.10: Comparison between F-MGM and R-MGM on Random Networks 63

Figure 3.11: Comparison between H-MGM and R-MGM on Random Networks 63

Figure 3.12: Difference in Effective Utilities of F-DPOP minus R-DPOP on Dis-
tributed Meeting Scheduling Problems .. 65

Figure 3.13: Comparison between Hy-DPOP and R-DPOP on Distributed Meeting
Scheduling Problems ... 65

Figure 3.14: Difference in Effective Utilities of F-DPOP minus Decomposed Dis-
tributed R-learning ... 68

Figure 3.15: Difference in Effective Utilities of R-DPOP minus Decomposed Dis-
tributed R-learning ... 69

Figure 5.1: Experimental Results Varying Horizon and Switching Cost on Sparse
Random Networks .. 112

v

Figure 5.2: Experimental Results Varying Horizon and Switching Cost on Dense
Random Networks .. 113

vi

List of Tables

Table 3.1: Varying the Number of Agents on Random Graphs with γ = 0.9 55

Table 3.2: Varying the Number of Agents on Random Graphs with γ = 1 55

Table 3.3: Results for Distributed Meeting Schedling Problems with γ = 0.9 57

Table 3.4: Results for Distributed Meeting Scheduling Problems with γ = 1 57

Table 3.5: Results for Distributed Radar Coordination and Scheduling Problems
with γ = 0.9 ... 58

Table 3.6: Results for Distributed Radar Coordination and Scheduling Problem
with γ = 1 .. 59

Table 4.1: Varying the Number of Agents on Random Trees with Three Initial
Discrete Points .. 95

Table 4.2: Varying the Number of Agents on Random Graphs with p1 = 0.2 and
Three Initial Discrete Points .. 95

Table 4.3: Varying the Number of Discretized Points.................................... 95

Table 4.4: Varying the Number of Agents on Distributed Radar Coordination
and Scheduling Problems with Three Initial Discrete Points 96

Table 5.1: Varying the Number of Agents on Sparse Random Networks with
p1 = 0.2 ... 115

Table 5.2: Varying the Number of Agents on Dense Random Networks with
p1 = 0.7 .. 115

Table 5.3: Varying the Number of Agents for Distributed Radar Coordination
and Scheduling Problems ... 116

vii

Acknowledgments

First and foremost, I would like to express my deep appreciation to my advisor, William

Yeoh. You have been very patient, supportive, and provided me with your guidance through

my PhD journey. I always feel how fortunate I am to have such a great advisor, and I am

sure all of your PhD students will share the same feeling.

I would like to thank Roie Zivan and Makoto Yokoo for your mentorship and for the

collaboration throughout the years. I would like to thank the members of my committee,

Roman Garnett, Chien-Ju Ho, Alvitta Ottley, Roie Zivan, and Sanmay Das, for your valuable

recommendation and constructive feedback to my proposal and dissertation.

I would like to mention my lab-mates, who have shared the best time of my PhD journey,

Ferdinando Fioretto, Athena Tabakhi, Ping Hou, Christabel Wallace, Gan Xu, Stylianos

Vasileiou, Ashwin Kumar, and Jean Springsteen. My special thank goes to Ferdinando

Fioretto for being a great mentor when I started my PhD journey.

I would like to express my gratitude and appreciation to my cousin Uyen Pham, professor

Son Tran, and my advisor William Yeoh. Without your tremendous support, I could not

have such a great opportunity to study abroad and live in America, a country of opportunity,

to pursue my dream.

viii

I would like to thank my cousins, Khoi Nguyen and Phuong Nguyen. Especially Phuong

Nguyen, you have always supported me from my first day in the US until now.

I would like to save the last lines for my Mom and Dad. Despite being halfway around the

world, you have always showed your support and your love for me. Without your hard work

and your unconditional support, I could not achieve what I have today. I would like to

express my deep gratitude to you, and I love you, Mom and Dad.

Khoi Hoang

Washington University in St. Louis

August 2022

ix

Dedicated to my parents.

x

ABSTRACT OF THE DISSERTATION

Dynamic Continuous Distributed Constraint Optimization Problems

by

Khoi Hoang

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2022

Professor Roman Garnett, Chair

The Distributed Constraint Optimization Problem (DCOP) formulation is a powerful tool to

model multi-agent coordination problems that are distributed by nature. The formulation is

suitable for problems where the environment does not change over time and where agents seek

their value assignment from a discrete domain. However, in many real-world applications,

agents often interact in a more dynamic environment and their variables usually require a more

complex domain. Thus, the DCOP formulation lacks the capabilities to model the problems

in such dynamic and complex environments. To address these limitations, researchers have

proposed Dynamic DCOPs (D-DCOPs) to model how DCOPs dynamically change over time

and Continuous DCOPs (C-DCOPs) to model DCOPs with continuous variables. The two

models address the limitations of DCOPs but in isolation, and thus, it remains a challenge to

model problems that have continuous variables and are in a dynamic environment. Therefore,

this dissertation investigates a novel formulation that addresses the two limitations of DCOPs

together by modeling both dynamic nature of the environment and continuous nature of

the variables. Firstly, we propose Proactive Dynamic DCOPs (PD-DCOPs) which model

and solve DCOPs in dynamic environment in a proactive manner. Secondly, we propose

several C-DCOP algorithms that are efficient and we provide quality guarantee on their

xi

solution. Finally, we propose Dynamic Continuous DCOP (DC-DCOP), a novel formulation

that models the DCOPs with continuous variables in a dynamic environment.

xii

Chapter 1

Introduction

Distributed Constraint Optimization Problems (DCOPs) [19, 55, 63] are problems where

agents coordinate their value assignments to maximize the aggregate constraint utilities in

a distributed manner. The model has been applied to solve a wide range of multi-agent

coordination problems including distributed meeting scheduling, sensor and wireless network

coordination, multi-robot coordination, coalition structure generation, smart grid and smart

home automation [10, 17, 21, 22, 33, 34, 35, 37, 45, 49, 53, 54, 67, 77, 85, 95]. Recent

advances in the literature improve the state of the art [5, 6, 8, 9, 20, 35, 42, 43, 48, 60, 62,

88, 92]; solve DCOP extensions like Asymmetric DCOPs [12, 13, 50, 93]; and improve key

metrics like privacy [27, 28, 74, 75].

Typically, DCOPs assume that the variables are discrete and the environment does not change

over time. However, in many multi-agent problems, agents often interact in a more complex

and dynamic environment. For example, in distributed sensor networks, targets usually

move from one location to another location from time to time, and thus their location keeps

changing dynamically over time. To adapt to such dynamic environment, sensors should

1

be equipped with the ability to change their sensing direction when the target moves to a

new location. Thus, researchers have proposed Dynamic DCOPs (D-DCOPs) [59, 65, 71, 86,

95] that model how the problem evolves during the solving process. These models make a

common assumption that information on how the problem might change is unavailable. As

such, existing approaches react to the changes in the problem and solve the current problem

at hand. However, in several applications, the information on how the problem might change

is indeed available, or predictable, within some degree of uncertainty.

Moreover, target location usually corresponds to a wide range of possibilities (i.e., the set of

all possible locations in a two-dimensional plane or in a three-dimensional space of the sensor

network). With a number of discrete values of sensing direction, the sensors are limited in

their capability to capture the target location with high quality. To address this concern,

researchers have proposed Continuous DCOPs (C-DCOPs), which extend DCOPs to allow

for continuous variables [69]. As variables can now take values from a continuous range,

constraint utilities are also extended from tabular forms to functional forms. To solve such

problems, researchers have proposed several Max-Sum (MS) based-algorithms [18] including

Continuous MS (CMS) [69], where constraint utility functions are approximated by piecewise

linear functions, and Hybrid CMS (HCMS) [79], which combines the discrete MS algorithm

with continuous non-linear optimization methods. Specifically, agents in HCMS approximate

the utility functions with a number of samples that they iteratively improve over time. A key

limitation of CMS and HCMS is that they both do not provide quality guarantees on the

solutions found. The reason is that they rely on discrete MS as the underlying algorithmic

framework, which does not provide quality guarantees on general graphs.

2

1.1 Overview of Contributions

Since the DCOP formulation lacks the capability to model and solve the problems that are

both dynamic and continuous, this dissertation presents a novel formulation that models both

dynamic nature of the environment and continuous nature of the variables. Our contribution

are outlined as follows:

1. First, we propose Proactive Dynamic DCOPs (PD-DCOPs), which explicitly model

how the DCOP might change over time. In addition, we propose several exact and

heuristic algorithms that solve PD-DCOPs in a proactive manner.

2. Second, we propose several algorithms with quality guarantee to solve C-DCOPs.

Our algorithms are the first heuristic C-DCOP algorithms that come with the error

bounds for their solution quality. Additionally, we propose an exact algorithm to solve

C-DCOPs under a specific setting.

3. Finally, we propose Dynamic Continuous DCOPs (DC-DCOPs), which is a novel

formulation that addresses the dynamic nature of the environment and the continuous

nature of the variables.

1.2 Research Output

• Khoi D. Hoang, Ferdinando Fioretto, Ping Hou, Makoto Yokoo, William Yeoh, and

Roie Zivan. “Proactive Dynamic Distributed Constraint Optimization”. In Proceed-

ings of the International Conference on Autonomous Agents and Multiagent Systems

(AAMAS), pages 597-605, 2016.

3

• Khoi D. Hoang, Ping Hou, Ferdinando Fioretto, William Yeoh, Roie Zivan, and

Makoto Yokoo. “Infinite-Horizon Proactive Dynamic DCOPs”. In Proceedings of the

International Conference on Autonomous Agents and Multiagent Systems (AAMAS),

pages 212-220, 2017.

• Khoi D. Hoang, William Yeoh, Makoto Yokoo, and Zinovi Rabinovich. “New Algo-

rithms for Continuous Distributed Constraint Optimization Problems”. In Proceedings

of the International Conference on Autonomous Agents and Multiagent Systems (AA-

MAS), pages 502–510, 2020.

• Khoi D. Hoang, Ferdinando Fioretto, Ping Hou, William Yeoh, Makoto Yokoo,

and Roie Zivan. “Proactive Dynamic Distributed Constraint Optimization Problems”.

Journal of Artificial Intelligence Research (JAIR), pages 179-225, 2022.

• Khoi D. Hoang and William Yeoh. “Dynamic Continuous Distributed Constraint

Optimization Problems”. Submitted to International Conference on Principles and

Practice of Multi-Agent Systems (PRIMA), 2022.

1.3 Dissertation Structure

This dissertation is the result of the collaboration with other researchers. Below is the list of

the publications and the contribution of the researchers to the work of each chapter.

• Chapter 3: The work of this chapter appears in:

– Khoi D. Hoang, Ferdinando Fioretto, Ping Hou, Makoto Yokoo, William Yeoh,

and Roie Zivan. “Proactive Dynamic Distributed Constraint Optimization”. In

Proceedings of the International Conference on Autonomous Agents and Multiagent

Systems (AAMAS), pages 597-605, 2016.

4

– Khoi D. Hoang, Ping Hou, Ferdinando Fioretto, William Yeoh, Roie Zivan, and

Makoto Yokoo. “Infinite-Horizon Proactive Dynamic DCOPs”. In Proceedings

of the International Conference on Autonomous Agents and Multiagent Systems

(AAMAS), pages 212-220, 2017.

– Khoi D. Hoang, Ferdinando Fioretto, Ping Hou, William Yeoh, Makoto Yokoo,

and Roie Zivan. “Proactive Dynamic Distributed Constraint Optimization Prob-

lems”. Journal of Artificial Intelligence Research (JAIR), pages 179-225, 2022.

Yeoh, Yokoo, and Zivan proposed the idea of PD-DCOPs. Hoang proposed C-DPOP,

which is an exact algorithm to solve PD-DCOPs, and proposed local search approaches

to solve PD-DCOPs. Hou proposed greedy approaches to solve PD-DCOPs. Yeoh

proposed the idea of comparing algorithms in an online setting. Fioretto, Hou, and

Hoang collaboratively worked on the theoretical results. Hoang developed, evaluated

the algorithms, and collected experimental results. Yeoh, Fioretto, Hou, and Hoang

collaboratively wrote the two conference papers, which were published in AAMAS-16

and AAMAS-17. Yeoh and Hoang collaboratively wrote the article that was published

in JAIR-22.

• Chapter 4: The work of this chapter appears in:

– Khoi D. Hoang, William Yeoh, Makoto Yokoo, and Zinovi Rabinovich. “New

Algorithms for Continuous Distributed Constraint Optimization Problems”. In

Proceedings of the International Conference on Autonomous Agents and Multiagent

Systems (AAMAS), pages 502–510, 2020.

Yeoh, Yokoo, and Rabinovich suggested the idea of working on new algorithms for

C-DCOPs. Hoang proposed EC-DPOP, an exact algorithm, and C-DSA, a scalable

heuristic algorithm. Yeoh proposed AC-DPOP and CAC-DPOP. Yokoo proposed a

5

method to derive the error bound for AC-DPOP. Hoang developed, evaluated the

algorithms, and collected experimental results. Yeoh and Hoang collaboratively wrote

the paper.

• Chapter 5: The work of this chapter appears in:

– Khoi D. Hoang and William Yeoh. “Dynamic Continuous Distributed Constraint

Optimization Problems”. Submitted to International Conference on Principles

and Practice of Multi-Agent Systems (PRIMA), 2022.

Hoang proposed the idea of the DC-DCOP model, proposed algorithms to solve DC-

DCOPs, developed the algorithms, ran experiments, and collected experimental results.

Hoang and Yeoh collaboratively wrote the paper.

6

Chapter 2

Background and Motivation

In this section, we provide an overview of DCOPs, Dynamic DCOPs, Continuous DCOPs,

relevant DCOP algorithms, and Markov chains. We will introduce Distributed Radar

Coordination and Scheduling Problem (DRCSP), which is the motivating application for out

work.

2.1 Distributed Constraint Optimization Problems

A Distributed Constraint Optimization Problem (DCOP) [19, 55, 63, 87] is a tuple

〈A,X,D,F, α〉, where:

• A = {ai}pi=1 is a set of agents.

• X = {xi}ni=1 is a set of decision variables.

• D = {Dx}x∈X is a set of finite domains, where each variable x ∈ X takes values from the

set Dx ∈ D.

7

x3

a3

x4

a4

x1

a1

x2

a2
a4

a1

a3

x3

x4

x1

a2

x2

0 0 10
0 1 0
1 0 2
1 1 0

x1 xj util

0 0 0
0 1 6
1 0 0
1 1 10

xj x4

j = 1,2,3
util

j = 2,3

(a) Constraint Graph (b) Pseudo-tree (c) Utility Functions

Figure 2.1: Example of DCOP

• F = {fi}mi=1 is a set of utility functions, each defined over a set of decision variables:

fi :
∏

x∈xfi Dx → R+
0 ∪ {−∞}, where infeasible configurations have −∞ utilities and

xfi ⊆ X is the scope of fi.1

• α : X→ A is a function that associates each decision variable to one agent.

A solution σ is a value assignment to a set xσ ⊆ X of decision variables that is consistent

with their respective domains. The utility F(σ) =
∑

f∈F,xf⊆xσ f(σ) is the sum of the utilities

across all applicable utility functions in σ. A solution σ is complete if xσ=X. The goal of a

DCOP is to find an optimal complete solution x∗ = argmaxx F(x).

Given a DCOP P , G = (X, E) is the constraint graph of P , where {x, y} ∈ E iff ∃fi ∈ F

such that {x, y} = xfi .2 A pseudo-tree arrangement for G is a spanning tree T = 〈X, ET 〉 of

G such that if fi ∈ F and {x, y} ⊆ xfi , then x and y appear in the same branch of T . We

use N(ai) = {aj ∈ A | {xi, xj} ∈ E} to denote the neighbors of agent ai. Figure 2.1 depicts:

(a) the constraint graph of a DCOP with a set of agents {a1, a2, a3, a4}, each controlling

a variable with domain {0,1}, (b) a pseudo-tree (solid lines identify tree edges connecting

parent-children nodes, dotted lines refer to back-edges connecting pseudo-parents and its

pseudo-children), and (c) the DCOP utility functions in tabular form.
1The scope of a function is the set of variables that are associated with the function.
2We assume that the utility functions are binary between two decision variables.

8

2.2 DCOP Algorithms

We now introduce three relevant DCOP algorithms that are the main component of several

algorithms for PD-DCOPs, C-DCOPs, and DC-DCOPs.

2.2.1 Distributed Pseudo-tree Optimization Procedure

The Distributed Pseudo-tree Optimization Procedure (DPOP) [63] is a complete inference

algorithm composed of three phases:

• Pseudo-tree Generation: The agents build a pseudo-tree [30].

• UTIL Propagation: Each agent, starting from the leafs of the pseudo-tree, computes

the optimal sum of utilities in its subtree for each value combination of variables in its

separator.3 It does so by adding the utilities of its functions with the variables in its

separator and the utilities in the UTIL messages received from its children agents, and

projecting out its own variables by optimizing over them.

• VALUE Propagation: Each agent, starting from the pseudo-tree root, determines the

optimal value for its variables. The root agent does so by choosing the values of its

variables from its UTIL computations.

2.2.2 Super-stabilizing DPOP

Super-stabilizing DPOP (S-DPOP) [65] is a self-stabilizing extension of DPOP, where the

agents restart the DPOP phases when they detect changes in the problem. S-DPOP makes

use of information that is not affected by the changes in the problem.
3The separator of xi contains all ancestors of xi in the pseudo-tree that are connected to xi or one of its

descendants.

9

2.2.3 Maximum Gain Message

Maximum Gain Message (MGM) [52] is a local search algorithm that improves the initial

solution in an iterative manner. In MGM, each agent starts with a random assignment to the

variables it controls and then sends this initial assignment to its neighbors. After receiving

the assignments of all neighbors, the agent searches for all possible values in its domain that

can improve the current local constraint utilities and computes the highest improvement

in utilities. Then, the agent shares the highest improvement value as the gain information

with its neighbors and decides to change the assignment if it has the largest gain in the

neighborhood. After changing to the new value, the agent sends messages to the neighbors to

inform them of the new assignment. This process repeats until a stopping condition is met.

2.3 Dynamic DCOPs

A Dynamic DCOP (D-DCOP) [47, 64, 65, 86] is defined as a sequence of DCOPs with changes

between them. Changes between DCOPs occur over time due to addition or removal of

variables, addition or removal of values in the variable’s domain, addition or removal of utility

functions, and increase or decrease in the utility values. Solving a D-DCOP optimally means

finding a utility-maximal solution for each DCOP in the sequence. Therefore, this approach

is reactive since solving each DCOP in the sequence does not consider future changes. Its

advantage is that solving a D-DCOP is no harder than solving h DCOPs, where h is the

horizon of the problem. Researchers have used this approach to solve D-DCOPs, where

they introduce search- and inference-based approaches that are able to reuse information

from previous DCOPs to speed up the search for the solution for the current DCOP [65, 86].

Alternatively, a proactive approach predicts future changes in the D-DCOP and finds robust

10

solutions that require little or no changes in the sequence of DCOP solutions despite future

changes to the DCOP.

Researchers have also proposed other models for D-DCOPs including a model where agents

have deadlines to choose their values [64], a model where agents can have imperfect knowledge

about their environment [47], and a model where changes in the constraint graph depends on

the value assignments of agents [95].

2.4 Continuous DCOPs

The Continuous DCOP (C-DCOP) model [69] generalizes the regular discrete DCOP model

by modeling the variables as continuous variables. It is defined by a tuple 〈A,X,D,F, α〉,

where A, F, and α are exactly as defined in DCOPs. The key differences are:

• X = {xi}ni=1 is now a set of continuous variables.

• D = {Dx}x∈X is now a set of continuous domains. Each variable x∈X takes values from

the interval Dx = [LBx, UBx].

The objective of a C-DCOP is the same as that of DCOPs – to find an optimal complete

solution x∗ = argmaxx F(x).

2.5 Markov Chains

We now introduce Markov chains and the notion of stationary distribution, which are used in

one of the approaches to solve PD-DCOPs. A Markov chain [25] is a sequence of random

variables 〈x0, x1, . . . , xT 〉 that share the same state space, and the transition from xt−1 to xt

11

depends exclusively on the previous state. More formally,

Pr(xt = j | xt−1 = i, xt−2 = r, . . . , x0 = s) = Pr(xt = j | xt−1 = i) (2.1)

for all time steps t > 0, where i, j, r, and s are the values in the state space. We use Pr

to denote the probability measure. A Markov chain is said to be time-homogeneous if the

transition Pij = Pr(xt = j | xt−1 = i) is identical for all time steps t.

A time-homogeneous Markov chain converges to a stationary distribution p∗ when pt−1 · P =

pt = p∗. The probability distribution pt is the distribution over all states at time t in the

chain, and P is the transition matrix where each element Pij is the transition probability

from state i to state j.

A state j is said to be accessible from i, denoted by i→ j, if there exists a sequence of t-step

transitions (t ≥ 1) such that Pr(xt = j | x0 = i) = P t
ij > 0. Two states i and j communicate,

denoted by i↔ j, if both states are accessible from each other. A class C of communicating

states is a non-empty set of states where each state i ∈ C communicates with every other

state j ∈ C \ {i} but does not communicate with any state j /∈ C. The period of a state i,

d(i) = gcd{t : P t
ii > 0}, is the greatest common divisor (gcd) of the time steps t for which

P t
ii > 0. The state is said to be aperiodic if it has period d(i) = 1, and periodic if d(i) > 1.

All states in the same class have the same period. If all states of a Markov chain form a

single class, then the chain has the period of the class. A state i is said to be recurrent if it is

accessible from all states j that are accessible from i. In other words, i→ j implies j → i.

Otherwise, it is transient. All states in the same class are either recurrent or transient. A

class of states is said to be ergodic if it is both recurrent and aperiodic. A unichain is a chain

that contains a single recurrent class and may be some transient states. A unichain is ergodic

if the recurrent class is ergodic.

12

In this dissertation, we consider Markov chains that are guaranteed to converge to a unique

stationary distribution p∗ given any initial distribution. Specifically, the Markov chain follows

one of the following (from strict to loose) conditions: (i) Pij > 0 for all states i and j, (ii)

all states are in one single ergodic class and they are ergodic, (iii) the Markov chain is an

ergodic unichain.

2.6 Reactive and Proactive Approaches

Since one of our contributions is solving D-DCOPs in a proactive manner and later we will

compare our proactive approach with the reactive approach in Chapter 3, we now introduce

the difference between the two approaches in the context of optimization problems. Dynamic

Optimization Problems (DOPs) [24] are the problems that change dynamically over time,

and the goal of DOPs is to find the optimal set of decisions to maximize the overall solution

quality. Several approaches have been proposed to solve DOPs including reactive and proactive

approaches [1]. When the environment changes and the problem transitions to a new state,

a reactive approach performs certain optimization algorithm to search for a new solution

without taking into account future changes from the environment.4 In contrast, a proactive

approach anticipates those changes from the environment through probability distribution

and solves the problem in a proactive manner. Proactive approaches are mainly used to

improve the robustness of the solution or when the time for reoptimization for each problem

is short [40].

13

Figure 2.2: Distributed Radar Coordination and Scheduling Problem

2.7 Distributed Radar Coordination and Scheduling

Problems

In this section, we motivate our work using the Distributed Radar Coordination and Scheduling

Problems (DRCSPs), which are based on NetRad, a real-time weather radar sensor system [11,

44, 90]. The main component of the NetRad system is a set of meteorological command

and controls (MCCs), where each MCC controls a set of radars with limited sensing range.

Instead of operating in “sit and spin” mode, where each radar independently takes 360-degree

volume scans, the radars in NetRad are tasked by the MCCs to scan a specific area of interest

in a coordinated fashion. For example, in Figure 2.2, the system with five radars are scanning

the area with two weather phenomena, represented as a yellow star and a red star. The

MCCs gather moment data from the radars and then generate the best sensing strategy for

the radars by collectively solving a distributed coordination and scheduling problem, which

is a DRCSP. The goal of a DRCSP is to find a coordination strategy that maximizes the

aggregated utility by scanning the highest-utility phenomena in the area.
4This approach is referred as No-baseline in [1].

14

While NetRad was originally designed to sense and detect weather phenomena such as

tornados, thunderstorms, and hurricanes, it is hard to predict those phenomena in advance

so that the system can deliver better sensing strategies. In contrast, precipitation has been

widely modeled as stochastic processes [41, 66, 82], and it is known to be associated with

many phenomena at locations of interest [56, 76, 84]. Therefore, instead of directly sensing

the weather phenomena, the goal of the DRCSP is to generate strategies for the radars such

that they best sense the precipitation based on the prediction of the precipitation in the

area.

15

Chapter 3

Proactive Dynamic Distributed

Constraint Optimization Problems

In many applications, the information on how the problem might change over time is usually

available or predictable within some degree of uncertainty. In this chapter, we introduce a

novel formulation that explicitly models how DCOPs change dynamically over time with

uncertain events. We develop both exact and heuristic algorithms to solve the dynamic

problems in a proactive manner. Finally, we provide theoretical results on the complexity of

this new class of DCOPs, and empirically evaluate both proactive and reactive algorithms to

determine the trade-offs between the two classes.

3.1 Introduction

When DCOPs were introduced more than a decade ago, research efforts were initially focused

on the investigation of different algorithmic paradigms to solve the problem, including exact

search-based methods [26, 29, 55, 85], exact inference-based methods [63, 78], exact declarative

16

methods [32, 48], approximate search-based methods [6, 35, 50, 52, 88, 89, 91], approximate

inference-based methods [8, 9, 17, 38, 92, 94], and approximate sampling-based methods [60,

62].

Typically, these DCOP algorithms address and solve a single (static) problem as they assume

that the problem does not change over time. However, this assumption limits the capability

of DCOPs to solve and model the problems in dynamic environments. Thus, researchers

have proposed the Dynamic DCOP (D-DCOP) model [47, 64, 65, 86], where constraints can

change during the problem solving process. Existing D-DCOP algorithms share a common

assumption that information on how the problem might change is unavailable. As such, they

are all reactive algorithms, that is, they are online algorithms reacting to the changes of

the problem by solving the DCOP every time such changes occur [65, 71, 86]. However, in

several applications, the information on how the problem might change is indeed available

or predictable within some degree of uncertainty. For example, in DRCSPs, the trajectory

of the weather phenomena could be predicted to some degree and the data of the weather

phenomena in the past are usually available. Therefore, in this chapter, we are interested

in investigating proactive D-DCOP algorithms, which are offline algorithms that take into

account prior knowledge on the evolution of the problem when finding solutions.

Therefore, we (i) we introduce Proactive Dynamic DCOPs (PD-DCOPs), which explicitly

model how the DCOP might change over time; (ii) we develop exact and heuristic algorithms

to solve PD-DCOPs in a proactive manner; (iii) we provide theoretical results about the

complexity of this new class of DCOPs; and (iv) we empirically evaluate both proactive and

reactive algorithms to determine the trade-offs between the two classes. The final contribution

is important as our results are the first that identify the characteristics of the problems that

the two classes of algorithms excel in.

17

3.2 PD-DCOP Model

We now describe the Proactive Dynamic DCOP (PD-DCOP) model that takes into account

the information on how the problem might change dynamically. A PD-DCOP is a tuple

〈A,X,Y,D,Ω,F, p0Y,T, γ, h, c, α〉, where:

• A = {ai}pi=1 is a set of agents.

• X = {xi}ni=1 is a set of decision variables.

• Y = {yi}mi=1 is a set of random variables.

• D = {Dx}x∈X is a set of finite domains of the decision variables, where each variable x ∈ X

takes values from the set Dx ∈ D.

• Ω = {Ωy}y∈Y is a set of finite domains of the random variables, where each variable y ∈ Y

takes values from the set Ωy ∈ Ω.

• F = {fi}ki=1 is a set of utility functions, each defined over a mixed set of decision and random

variables: fi :
∏

x∈X∩xfi Dx ×
∏

y∈Y∩xfi Ωy → R+
0 ∪ {−∞}, where infeasible configurations

have −∞ utilities and xfi ⊆ X∪Y is the scope of fi. We divide the set of utility functions

into two sets: FX = {fx}, where xfx ∩ Y = ∅, and FY = {fy}, where xfy ∩ Y 6= ∅. Note

that FY ∪ FY = F and FX ∩ FY = ∅.

• p0Y = {p0y}y∈Y is a set of initial probability distributions.

• T = {Ty}y∈Y is a set of transition functions: Ty : Ωy × Ωy → [0, 1].

• γ ∈ [0, 1] is a discount factor.

• h ∈ N is a finite horizon.

• c ∈ R+
0 is a switching cost, which is the cost associated with the change in the value of

each decision variable from one time step to the next.5

• α : X→ A is a function that associates each decision variable to one agent.
5For simplicity, we assume that the switching cost is identical across all decision variables.

18

Throughout this chapter, we assume that: (i) each agent controls exactly one decision variable

and thus use the terms “agent” and “decision variable” interchangeably; and (ii) each utility

function is associated with at most one random variable. If multiple random variables are

associated with a utility function, w.l.o.g., they can be merged into a single variable.

The goal of a PD-DCOP is to find a sequence of h + 1 assignments x∗ for all the decision

variables in X:

x∗ = argmax
x=〈x0,...,xh〉∈Σh+1

Fh(x) (3.1)

Fh(x) =
h−1∑
t=0

γt
[
F t

x(xt) + F t
y(xt)

]
︸ ︷︷ ︸

P

−
h−1∑
t=0

γt
[
c ·∆(xt, xt+1)

]
︸ ︷︷ ︸

Q

+ F̃x(xh) + F̃y(xh)︸ ︷︷ ︸
R

(3.2)

, where Σ is the assignment space for the decision variables of the PD-DCOP. The first term

P refers to the optimization over the first h time steps, with:

F t
x(x) =

∑
fi∈FX

fi(xi) (3.3)

F t
y(x) =

∑
fi∈FY

∑
ω∈Ωyi

fi(xi|yi=ω) · ptyi(ω) (3.4)

where xi is an assignment for all decision variables in the scope xfi of utility function fi; we

write xi|yi=ω to indicate that the random variable yi ∈ xfi takes on the value ω ∈ Ωyi ; ptyi(ω)

is the probability of the random variable yi taking value ω at time t, and is defined as:

ptyi(ω) =
∑

ω′∈Ωyi

pt−1
yi

(ω′) · Tyi(ω
′, ω) (3.5)

The second term Q takes into account the penalty due to changes in decision variables’ values

during the optimization process, where ∆ : Σ×Σ→ R+
0 is a penalty function that takes into

19

account the difference in the decision variable assignments between two time steps. If one of

the assignments is null, the penalty function ∆ will return 0.

Lastly, R refers to the optimization from time step h onward where the solution to the

problem at time h remains unchanged for all subsequent problems. Since the nature of

discounting in PD-DCOPs is associated with the discount factor γ, it gives rise to two cases:

γ < 1 and γ = 1. While the sum of discounted utilities can be optimized using Bellman

equation in the former case, we take into account the Markov chain convergence property

in the latter case. Thus, we propose two algorithms to optimize R for two cases γ < 1 and

γ = 1:

• Cumulative Discounted Future Utilities (CDFU): In many problems, future utilities

are less important than the utility at the current time step (i.e., γ < 1). Thus, we propose

CDFU to optimize R as the sum of cumulative discounted future utilities. The CDFU

algorithm optimizes R using Equations (3.6), (3.7), and (3.8), which will be introduced in

Section 3.3.

• Markov Chain Convergence (MCC): In problems where future and current utilities

are equally weighted (i.e., γ = 1), we propose the MCC algorithm that takes into account

the convergence property of Markov chains [25]. In this approach, we model each random

variable as a Markov chain, and we assume that each Markov chain is guaranteed to

converge to a unique stationary distribution given any initial probability distribution.6

The MCC algorithm optimizes R with the stationary distribution of the Markov chains

using Equations (3.9), (3.10), (3.11), and (3.12), which will be introduced in Section 3.3.

In summary, the goal of a PD-DCOP is to find a value assignment to all the decision variables

such that it maximizes the sum of three terms P, Q, and R (Equation 3.2). The first term,
6The conditions for such convergence are discussed in Subsection 2.5.

20

P, maximizes the sum of cumulative discounted utilities for the functions that do not involve

random variables (Fx) and cumulative expected discounted random utilities (Fy) in the

first h time steps. The second term, Q, minimizes the cumulative discounted penalty costs

incurred by solutions changing over time. The last term, R, maximizes the future utilities

for all problems from the time step h onward.

While the PD-DCOP model can be used to capture the presence of exogenous factors in the

dynamic aspect of the problem, note that it can also model dynamic changes to the DCOP

constraint graph through the transition functions. In particular, the deletion of a constraint

will force the random variable associated with that constraint to transit to a 0 utility value

for all decision variables; the addition of a constraint can be handled by defining a 0 utility

constraint in the model from the start and updating its utility when the constraint is added.

3.3 PD-DCOP Algorithms

We are now ready to describe the two approaches introduced in the previous section to solve

PD-DCOPs: Cumulative Discounted Future Utilities (CDFU) and Markov Chain Convergence

(MCC). A comparison between the two methods is illustrated in Procedure SolvePD-

DCOP and Figure 3.1. Both CDFU and MCC approaches are similar in that they call

Procedure SolveMultiDCOPs to solve a number of consecutive DCOPs starting from time

step 0. Procedure SolveMultiDCOPs accepts two parameters: h̄ and xh̄+1. Parameter

h̄ indicates the time step of the last DCOP in SolveMultiDCOPs. In other words,

SolveMultiDCOPs solves the DCOPs from time step 0 to time step h̄. Parameter xh̄+1

indicates the solution to the problem at time step h̄+1 if it is not null.7 The two approaches
7We do not provide pseudocode for Procedure SolveMultiDCOPs since PD-DCOP algorithms have

different ways to implement this procedure.

21

Procedure SolvePD-DCOP()
1 if γ < 1 then
2 SolveMultiDCOPs(h̄ = h, xh̄+1 = null)
3 else
4 sh ← SolveHorizonDCOP()

5 SolveMultiDCOPs(h̄ = h− 1, xh̄+1 = sh)

SOLVEMULTIDCOPS()

SOLVEMULTIDCOPS() SOLVEHORIZONDCOP()

NULL

Figure 3.1: Illustration of the SolvePD-DCOP Procedure

are different in that one of them calls Procedure SolveHorizonDCOP to solve for the

problem at horizon t = h before running SolveMultiDCOPs. In more detail:

• Cumulative Discounted Future Utilities (CDFU): If γ < 1, the CDFU approach

transforms the problem at time step h and optimizes R in Equation (3.2) by computing

the cumulative discounted and cumulative discounted expected utilities from horizon h

onward:

F̃x(x) =
γh

1− γ
Fh

x (x) (3.6)

F̃y(x) =
∑
fi∈FY

∑
ω∈Ωyi

f̃i(xi|yi=ω) · phyi(ω) (3.7)

f̃i(xi|yi=ω) = γh · fi(xi|yi=ω) + γ
∑

ω′∈Ωyi

Tyi(ω, ω
′) · f̃i(xi|yi=ω′) (3.8)

After that, it takes into account the problems from time step 0 to time step h and solve

them together by running SolveMultiDCOPs with arguments h̄ = h and xh̄+1 = null

22

(lines 1-2). We set xh̄+1 = null since CDFU does not constrain the solution at time step

h̄+ 1.

• Markov Chain Convergence (MCC): If γ = 1, the MCC approach transforms the

problem at h and optimizes R in Equation (3.2) by using the stationary distribution of

Markov chains in the PD-DCOP:8

F̃x(x) = Fh
x (x) (3.9)

F̃y(x) =
∑
fi∈FY

∑
ω∈Ωyi

fi(xi|yi=ω) · p∗yi(ω) (3.10)

where p∗y(ω) is the probability of random variable y having state ω in the stationary

distribution, and p∗yi is the solution of the following system of linear equations:

∑
ω′∈Ωyi

p∗yi(ω
′) · Tyi(ω

′, ω) = p∗yi(ω) (3.11)

∑
ω∈Ωyi

p∗yi(ω) = 1 (3.12)

After that, the MCC approach solves for the solution sh to the problem at horizon h by

calling SolveHorizonDCOP (lines 3-4). It then solves the problems from time step 0 to

time step h− 1 by running SolveMultiDCOPs with h̄ = h− 1 and xh̄+1 = sh (line 5).

While solving the problems from time step 0 to time step h − 1, SolveMultiDCOPs

takes into account the switching cost between the solution at time step h − 1 and the

solution sh at time step h.

We now describe how the MCC approach solves the problem at time step h by calling

SolveHorizonDCOP in more detail. This function solves for the solution at time step

h by using the stationary distribution of Markov chains. Since the transition function
8When γ = 1, solving the problem at time step h with stationary distribution will maximize the expected

utility from that time step onward (see Theorem 2).

23

Ty ∈ T of each random variable y ∈ Y is independent of the transition functions of other

random variables, each random variable in the PD-DCOP forms an independent Markov

chain. Furthermore, these Markov chains are time-homogeneous–the transition functions

are identical for all time steps – and has finite state spaces–the domain of each random

variable y is a finite set Ωy ∈ Ω. In this dissertation, we assume that each Markov chain in

PD-DCOPs will converge to a unique stationary distribution given any initial distribution.

The computation of the unique distribution for each random variable y, computed using a

system of linear equations (Equations 3.11 and 3.12), can be done independently by each

agent a that controls the decision variable x that is constrained with random variable y.

In other words, the computation for random variable y is performed by the agent a such

that ∃x ∈ X, f ∈ FY : y ∈ xf ∧ x ∈ xf ∧ α(x) = a.

Once the stationary distribution of each random variable is found, the agents reformulate

the constraints between decision and random variables into constraints between decision

variables only. Specifically, for each constraint f ∈ FY between decision variables x and a

random variable y, the following new constraint is created:

F h(x) =
∑
ω∈Ωy

f(x|y=ω) · p∗y(ω) (3.13)

where p∗y(ω) is the probability of random variable y having state ω in the stationary

distribution. Note that the new scope of this new constraint is exclusively the decision

variables x. The effect of this post-processing step is that it removes all random variables

and reformulates the PD-DCOP into a regular DCOP with exclusively decision variables.

After this step, agents will run any off-the-shelf algorithm to solve the regular DCOP.

In summary, the CDFU and MCC approaches are similar in that they run SolveMultiD-

COPs(h̄, xh̄+1) to solve the problems from time step 0 to time step h̄. The key difference is

24

that CDFU runs the function to find solutions from time steps 0 to h while MCC runs the

function to find solutions from time steps 0 to h− 1. To find the solution for time step h,

MCC runs SolveHorizonDCOP instead.

To implement SolveMultiDCOPs, we propose two approaches: (1) An Exact approach

that transforms a PD-DCOP into an equivalent DCOP and solves it using any off-the-shelf

exact DCOP algorithm, and (2) a Heuristic approach that transforms a PD-DCOP into an

equivalent dynamic DCOP and solves it using any off-the-shelf dynamic DCOP algorithm.

We describe these approaches in Sections 3.3.1 and 3.3.2, respectively. Later, in Section 3.6,

we will introduce different PD-DCOP algorithms that are based on these approaches.

3.3.1 Exact Approach

We now describe an exact approach that transforms a PD-DCOP into an equivalent DCOP

and solves it using any off-the-shelf DCOP algorithm. Since the transition of each random

variable is independent of the assignment of values to decision variables, this problem can be

viewed as a Markov chain. Thus, it is possible to collapse an entire PD-DCOP into a single

DCOP, where (1) each utility function Fi in this new DCOP captures the sum of utilities of

the utility function fi ∈ F across all time steps, and (2) the domain of each decision variable

is the set of all possible combinations of values of that decision variable across all time steps.

However, this process needs to be done in a distributed manner.

As we mentioned in Section 3.2, the utility functions are divided into two types: (1) The

functions fi ∈ FX whose scope xfi ∩Y=∅ includes exclusively decision variables, and (2) the

functions fi ∈ FY whose scope xfi ∩Y 6= ∅ includes one random variable. In both cases, let

xi = 〈x0
i , . . . , xh̄

i 〉 denote the vector of value assignments to all decision variables in xfi for

each time step.

25

Each function fi ∈ FX whose scope includes only decision variables can be replaced by a

function Fi:

Fi(xi) =
h̄∑

t=0

F t
i (xt

i) (3.14)

where:

F t
i (xt

i) =


γh

1− γ
fi(xh

i) if t = h̄ and h̄ = h

γtfi(xt
i) otherwise

(3.15)

Each function fi ∈ FY whose scope includes a random variable can be replaced by a unary

function Fi.9 The first term is the utility for the first h̄ time steps and the second term is the

utility for the time step h̄:

Fi(xi) =
h̄∑

t=0

F t
i (xt

i) (3.16)

where:

F t
i (xt

i) =


γh
∑

ω∈Ωyi
f̃i(xh

i |yi=ω) · phyi(ω) if t = h̄ and h̄ = h

γt
∑

ω∈Ωyi
fi(xt

i|yi=ω) · ptyi(ω) otherwise
(3.17)

9With slight abuse of notation, we use the same notation Fi in Equations (3.14) and (3.16) to refer to two
different functions in two cases.

26

The function f̃i is recursively defined according to Equation (3.8). Additionally, each decision

variable xi will have a unary function Ci:

Ci(xi) = −
h−1∑
t=0

γt
[
c ·∆(xt

i, xt+1
i)
]

(3.18)

which captures the cost of switching values across time steps. This collapsed DCOP can then

be solved with any off-the-shelf exact DCOP algorithm.

3.3.2 Heuristic Approaches

Since solving PD-DCOPs optimally is PSPACE-hard (see Theorem 1), the exact approach

described earlier fails to scale to large problems as we show in our experimental results in

Section 3.6 later. Therefore, heuristic approaches are necessary to solve larger problems of

interest. Similar to the exact approach, heuristic approaches solve PD-DCOPs proactively and

take into account the discounted utilities and the discounted expected utilities by reformulating

constraints in the problem. While the exact approach reformulates the constraints into a

single DCOP with decision variables only, our heuristic approaches reformulate the constraints

into a dynamic DCOP (specifically, a sequence of h̄ DCOPs) with decision variables only.

For each constraint fi ∈ FX that does not involve a random variable, a new constraint F t
i

is created to capture the discounted utilities for time steps 0 ≤ t ≤ h̄. The constraint F t
i

is created by following Equation (3.15). Similarly, for each constraint fi ∈ FY between

decision variables x and a random variable y, we compute the constraint F t
i by following

Equation (3.17). After this pre-processing step, the constraints involve decision variables

exclusively, and the problem at each time step has been transformed to a regular DCOP. We

now introduce two heuristic approaches: Local Search and Sequential Greedy.

27

Algorithm 1: Local Search()
6 iter ← 1

7 〈v0∗i , v1∗i , . . . , vh̄∗i 〉 ← 〈null,null, . . . ,null〉
8 〈v0i , v1i , . . . , vh̄i 〉 ← InitialAssignment()
9 context← 〈(xj , t, null| xj ∈ N(ai), 0 ≤ t ≤ h̄)〉

10 Send VALUE(〈v0i , v1i , . . . , vh̄i 〉) to all neighbors

Local Search Approach

In this section, we propose a local search approach that is inspired by MGM [52], a graphical

game-based algorithm that has been shown to be robust in dynamically changing environments.

Algorithm 1 shows the pseudocode of the local search approach, where each agent ai maintains

the following data structures:

• iter is the current iteration number.

• context is a vector of tuples (xj, t, v
t
j) for all its neighboring variables xj ∈ N(ai). Each of

these tuples represents the agent’s assumption that variable xj is assigned value vtj at time

step t.

• 〈v0i , v1i , . . . , vh̄i 〉 is a vector of the agent’s current value assignment for its variable xi at each

time step t.

• 〈v0∗i , v1∗i , . . . , vh̄∗i 〉 is a vector of the agent’s best value assignment for its variable xi at each

time step t.

• 〈u0
i , u

1
i , . . . , u

h̄
i 〉 is a vector of the agent’s utility (utilities from utility functions minus costs

from switching costs) given its current value assignment at each time step t.

• 〈u0∗
i , u1∗

i , . . . , uh̄∗
i 〉 is a vector of the agent’s best utility given its best value assignment at

each time step t.

• 〈û0∗
i , û1∗

i , . . . , ûh̄∗
i 〉, which is a vector of the agent’s best gain in utility at each time step t.

28

Procedure CalcGain()
11 〈u0i , u1i , . . . , uh̄i 〉 ← CalcUtils(〈v0i , v1i , . . . , vh̄i 〉, x

h̄+1
i)

12 u∗ ← −∞
13 foreach 〈d0i , d1i , . . . , dh̄i 〉 in ×h̄

t=0Dxi do
14 u← CalcCumulativeUtil(〈d0i , d1i , . . . , dh̄i 〉, x

h̄+1
i)

15 if u > u∗ then
16 u∗ ← u

17 〈v0∗i , v1∗i , . . . , vh̄∗i 〉 ← 〈d0i , d1i , . . . , dh̄i 〉

18 if u∗ 6= −∞ then
19 〈u0∗i , u1∗i , . . . , uh̄∗i 〉 ← CalcUtils(〈v0∗i , v1∗i , . . . , vh̄∗i 〉, x

h̄+1
i)

20 〈û0i , û1i , . . . , ûh̄i 〉 ← 〈u0∗i , u1∗i , . . . , uh̄∗i 〉 − 〈u0i , u1i , . . . , uh̄i 〉
21 else
22 〈û0i , û1i , . . . , ûh̄i 〉 ← 〈null,null, . . . ,null〉

23 Send GAIN(〈û0i , û1i , . . . , ûh̄i 〉) to all neighbors

Procedure When Receive VALUE(〈v0∗s , v1∗s , . . . , vh̄∗s 〉)
24 foreach t from 0 to h̄ do
25 if vt∗s 6= null then
26 Update (xs, t, v

t
s) ∈ context with (xs, t, v

t∗
s)

27 if received VALUE messages from all neighbors in this iteration then
28 CalcGain()
29 iter ← iter + 1

The high-level ideas are as follows: (1) Each agent ai starts by finding an initial value

assignment to its variable xi for each time step 0 ≤ t ≤ h̄ and initializes its context variable

context. (2) Each agent uses VALUE messages to inform its neighbors of the agent’s current

assignment and to ensure that it has the current values of its neighboring agents’ variables.

(3) Each agent computes its current utilities given its current value assignments, its best

utilities over all possible value assignments, and its best gain in utilities, and sends this gain

in a GAIN message to all its neighbors. (4) Each agent changes the value of its variable for

time step t if its gain for that time step is the largest over all its neighbors’ gain for that

time step, and repeats steps 2 through 4 until a termination condition is met. In more detail:

29

Procedure When Receive GAIN(〈û0
s, û

1
s, . . . , û

h̄
s 〉)

30 if 〈û0s, û1s, . . . , ûh̄s 〉 6= 〈null,null, . . . ,null〉 then
31 foreach t from 0 to h̄ do
32 if ûti ≤ 0 ∨ ûts > ûti then
33 vt∗i ← null

34 if received GAIN messages from all neighbors in this iteration then
35 foreach t from 0 to h̄ do
36 if vt∗i 6= null then
37 vti ← vt∗i

38 Send VALUE(〈v1∗i , v2∗i , . . . , vh̄∗i 〉) to all neighbors

Function CalcUtils(〈v0i , v1i , . . . , vh̄i 〉, xh̄+1
i)

39 foreach t from 0 to h̄ do
40 if t = 0 then
41 cti ← γ0 · c ·∆(v0i , v

1
i)

42 else if t = h̄ then
43 cti ← γh̄−1 · c ·∆(vh̄−1

i , vh̄i) + γh̄ · c ·∆(vh̄i , x
h̄+1
i)

44 else
45 cti ← γt−1 · c ·∆(vt−1

i , vti) +γt · c ·∆(vti , v
t+1
i)

46 uti ←
∑

F t
j |xi∈xF

t
j
F t
j − cti

47 return 〈u0i , u1i , . . . , uh̄i 〉

Step 1: Each agent initializes its vector of best values to a vector of null values (line 7)

and calls InitialAssignment to initializes its current values (line 8). The values can be

initialized randomly or according to some heuristic function. We describe later one such

heuristic function. Finally, the agent initializes its context, where it assumes that the values

for its neighbors is null for all time steps (line 9).

Step 2: The agent sends its current value assignment in a VALUE message to all neighbors

(line 10). When it receives a VALUE message from a neighbor, it updates the context variable

with the value assignments in that message (lines 24-26). When it has received VALUE

30

Function CalcCumulativeUtil(〈v0i , v1i , . . . , vh̄i 〉, xh̄+1
i)

48 u←
∑h̄

t=0

∑
F t
j |xi∈xF

t
j
F t
j

49 ci ← 0
50 foreach t from 0 to h̄− 1 do
51 ci ← ci + γt · c ·∆(vti , v

t+1
i)

52 ci ← ci + γh̄ · c ·∆(vh̄i , x
h̄+1
i)

53 return u− ci

messages from all neighbors in the current iteration, it means that its context now correctly

reflects the neighbors’ actual values. It then calls CalcGain to start Step 3 (line 28).

Step 3: In the CalcGain procedure, the agent calls CalcUtils to calculate its utility for

each time step given its current value assignments and its neighbors’ current value assignments

recorded in its context (line 11). The utility for a time step t is made out of two components

(line 46). The first component is the sum of utilities over all utility functions that involve the

agent, under the assumption that the agent takes on its current value and its neighbors take

on their values according to its context. Specifically, if the scope of the utility function F t
j

involves only decision variables, then F t
j (v

t
i , v

t
j) is a function of both the agent’s current value

vti and its neighbor’s value vtj in its context and is defined according to Equation (3.15). If

the scope involves both decision and random variables, then F t
j (v

t
i) is a unary constraint that

is only a function of the agent’s current value vti and is defined according to Equation (3.17).

The second component is the cost of switching values from the previous time step t− 1 to the

current time step t and switching from the current time step to the next time step t+1. This

cost is c if the values in two subsequent time steps are different and 0 otherwise. The variable

cti captures this cost (lines 40-45). Note that if xh̄+1
i = null, then ∆(vh̄i , xh̄+1

i) = 0. The net

utility is thus the utility derived according to the utility functions minus the switching cost

(line 46).

31

The agent then searches over all possible combination of values for its variable across all

time steps to find the best value assignment that results in the largest cumulative cost across

all time steps (lines 13-17). It then computes the net gain in utility at each time step by

subtracting the utility of the best value assignment with the utility of the current value

assignment (lines 18-20).

Step 4: The agent sends its gains in a GAIN message to all neighbors (line 23). When it

receives a GAIN message from its neighbor, it updates its best value vt∗i for time step t to

null if its gain is non-positive (i.e., ût
i ≤ 0) or its neighbor has a larger gain (i.e., ût

s > ût
i)

for that time step (lines 32-33). When it has received GAIN messages from all neighbors

in the current iteration, it means that it has identified, for each time step, whether its gain

is the largest over all its neighbors’ gains. The time steps where it has the largest gain are

exactly those time steps t where vt∗i is not null. The agent thus assigns its best value for

these time steps as its current value and restarts Step 2 by sending a VALUE message that

contains its new values to all its neighbors (lines 34-38).

Heuristics for InitialAssignment: We now introduce a heuristic function to speed up

InitialAssignment. We simplify the PD-DCOP into h̄ independent DCOPs by assuming

that the switching costs are 0 and the constraints with random variables are collapsed into

unary constraints similar to the description for our exact approach. Then, one can use

any off-the-shelf DCOP algorithm to solve these h̄ DCOPs. We initially used DPOP to do

this, but our preliminary experimental results show that this approach is computationally

inefficient.

However, we observed that these h̄ DCOPs do not vary much across subsequent DCOPs as

changes are due only to the changes in distribution of values of random variables. Therefore,

the utilities in UTIL tables of an agent ai remain unchanged across subsequent DCOPs if

32

neither it nor any of its descendants in the pseudo-tree are constrained with a random variable.

We thus used S-DPOP to solve the h̄ DCOPs and the runtimes decreased marginally.

We further optimize this approach by designing a new pseudo-tree construction heuristic,

such that agents that are constrained with random variables are higher up in the pseudo-tree.

Intuitively, this will maximize the number of utility values that can be reused, as they

remain unchanged across subsequent time steps. This heuristic, within the Distributed DFS

algorithm [30], assigns a score to each agent a according to heuristic h1(a):

h1(a) = (1 + I(a)) · |Ny(a)| (3.19)

Ny(a) = {a′|a′ ∈ N(a) ∧ ∃f ∈ F,∃ y ∈ Y : {a′, y} ∈ xf} (3.20)

I(a) =

 0 if ∀f ∈ F,∀y ∈ Y : {a, y} 6∈ xf

1 otherwise
(3.21)

It then makes the agent with the largest score the pseudo-tree root and traverses the constraint

graph using DFS, greedily adding the neighboring agent with the largest score as the child

of the current agent. However, this resulting pseudo-tree can have a large depth, which is

undesirable. The popular max-degree heuristic h2(a) = |N(a)|, which chooses the agent with

the largest number of neighbors, typically results in pseudo-trees with small depths. We thus

also introduce a hybrid heuristic which combines both heuristics and weigh them according

to a heuristic weight w:

h3(a) = w h1(a) + (1− w)h2(a) (3.22)

33

Sequential Greedy Approach

In addition to the local search approach, we now introduce sequential greedy algorithms

to solve PD-DCOPs. We propose two algorithms: FORWARD and BACKWARD. Both

algorithms sequentially solve each DCOP one time step at a time in a greedy manner.

However, they differ in how they choose the next problem to solve, where they take into

account the switching cost between two problems differently.

FORWARD: In general, FORWARD greedily solves each sub-problem in PD-DCOPs one

time step at a time starting from the initial time step. In other words, it successively solves

the DCOP at each time step starting from t = 0 to time step h̄. When solving each DCOP,

it takes into account the switching cost of changing values from the solution in the previous

time step. If the optimal solution xh̄+1 6= null, at the last time step h̄, it will take into

account the switching cost incurred by changing the solution from h̄ to the optimal solution

xh̄+1. Specifically, to capture the cost of switching values across time steps, for each decision

variable x ∈ X, the following new unary constraint is created for each time step 0 < t < h̄:

Ct(x) = −c ·∆(xt−1, xt) (3.23)

At the last time step t = h̄, we add the following constraint:

C h̄(x) =


−c ·∆(xh̄−1, xh̄) if xh̄+1 = null

−c ·
(
∆(xh̄−1, xh̄) + ∆(xh̄, xh̄+1

x)
)

otherwise
(3.24)

where xh̄+1
x is the value of variable x in xh̄+1. After adding the switching cost constraints, the

agents successively solve each DCOP from time step t = 0 onwards using any off-the-shelf

DCOP algorithm.

34

BACKWARD: Instead of greedily solving the PD-DCOP one time step at a time forward

starting from t = 0 towards h̄, in the case where the solution at time step h̄+ 1 is available

(i.e., xh̄+1 6= null), one can also greedily solve the problem backwards from t = h̄+1 towards

the first time step. The BACKWARD algorithm implements this key difference.

At time step t, BACKWARD takes into account the switching cost to the solution in the

next time step t+ 1. Specifically, before solving each sub-problem, BACKWARD creates a

unary constraint for each time step 0 ≤ t < h̄:

Ct(x) = −c ·∆(xt, xt+1) (3.25)

Also, BACKWARD creates an additional unary constraint to capture the switching cost

between the solution at h̄ and the optimal solution xh̄+1:

C h̄(x) = −c ·∆(xh̄, xh̄+1
x) (3.26)

3.4 Theoretical Results

We now discuss theoretical results of the PD-DCOP model and its algorithms. In Theorem 1,

we discuss the complexity of PD-DCOPs in two cases: h is polynomial in |X| and h is

exponential in |X|. In Theorem 2, if the discount factor γ = 1, we prove that adopting the

optimal solution for the stationary distribution at time step h will maximize the sum of

future utilities from time step h onward. We then provide the error bounds in Theorem 3,

Theorem 4, and Theorem 5. Finally, we discuss the space and time complexities of the local

search approach in Theorem 6.

35

Theorem 1 Optimally solving a PD-DCOP with a horizon that is polynomial (exponential)

in |X| is PSPACE-complete (PSPACE-hard).

Proof: We first consider the case where h is polynomial in |X|. Membership in PSPACE

follows from the existence of a naive depth-first search to solve PD-DCOPs, where a non-

deterministic branch is created for each complete assignment of the PD-DCOP’s decision

variables and for each time step 0 ≤ t ≤ h. The algorithm requires linear space in the

number of variables and horizon length. We reduce the satisfiability of quantified Boolean

formula (QSAT) to a PD-DCOP with 0 horizon. Each existential Boolean variable in the

QSAT is mapped to a corresponding decision variable in the PD-DCOP, and each universal

Boolean variable in the QSAT is mapped to a PD-DCOP random variable. The domains

Dx of all variables x ∈ X are the sets of values {0, 1}, corresponding respectively to the

evaluations, false and true, of the QSAT variables. The initial probability distribution p0y of

each PD-DCOP random variable y ∈ Y is set to as the uniform distribution. Each QSAT

clause c is mapped to a PD-DCOP utility function fc, whose scope involves all and only the

PD-DCOP-corresponding boolean variables appearing in c, and such that:

fc(xc) =

 1, if c(xc) = true

⊥, otherwise.
(3.27)

where c(xc) denotes the instantiation of the values of the variables in xc to the truth values of

the corresponding literals of c. In other words, a clause is satisfied iff the equivalent utility

function preserves its semantics. The choices for, the switching cost, the discount factor

γ, and the transition function Ty, for each y ∈ Y, of the PD-DCOP, are immaterial. The

reduction is linear in the size of the original quantified Boolean formula. The quantified

Boolean formula is satisfiable iff the equivalent PD-DCOP has at least one solution x whose

cost F(x) 6= ⊥.

36

Next, we consider the case where h is exponential in X. In this case, since storing a solution

requires space exponential in |X|, solving PD-DCOPs is PSPACE-hard, which concludes the

proof. �

Theorem 2 When γ = 1, from time step h onwards, adopting the optimal solution for the

stationary distribution, instead of any other solution, will maximize the expected utility from

that time step onward.

Proof: As p∗y is the stationary distribution of random variable y and it is also the converged

distribution of pty when t→∞:

lim
t→∞

pty = p∗y (3.28)

p∗y · T = p∗y (3.29)

After convergence, as p∗y does not change for every y ∈ Y, the optimal solution for the

successive DCOPs remain the same. Let h∗ be the horizon when the stationary distribution

converges, x∗ be the optimal solution, x′ be any sub-optimal solution, and F∗(x) be the quality

of solution x for the DCOP with stationary distribution. As the stationary distribution at

h∗ is the actual distribution at h∗, the solution x∗ is optimal for the DCOP at h∗ and also

optimal for all DCOPs after h∗:

F∗(x∗) > F∗(x′) ∀t ≥ h∗ (3.30)

The difference in quality between two solutions for DCOPs after h∗ is:

∆∞
h∗ =

∞∑
t=h∗

[F∗(x∗)−F∗(x′)] (3.31)

37

As the difference in solution quality from h to h∗ is finite, it is dominated by ∆∞
h∗ = ∞.

In other words, if we keep the sub-optimal x′ from time step h onward, the accumulated

expected utility of x′ is smaller than that of the optimal solution x∗ with the stationary

distribution. �

Error Bounds: We denote U∞ as the optimal solution quality of a PD-DCOP with an

infinite horizon and Uh as the optimal solution quality when the horizon h is finite. Let Fy(x)

be the utility of a regular DCOP where the decision variables are assigned x given values

y of the random variables. We define F∆
y = maxx∈Σ Fy(x)−minx∈Σ Fy(x) as the maximum

loss in solution quality of a regular DCOP for a given random variable assignment y and

F∆ = maxy∈ΣY F
∆
y where ΣY =

∏
y∈Y Ωy is the assignment space for all random variables.

Theorem 3 When γ < 1, the error U∞−Uh of the optimal solution from solving PD-DCOPs

with a finite horizon h instead of an infinite horizon is bounded from above by γh

1−γ
F∆.

Proof: Let x̂∗ = 〈x̂∗
0, . . . , x̂∗

h, x̂∗
h+1, . . .〉 be the optimal solution of PD-DCOPs with infinite

horizon ∞:

U∞ =
∞∑
t=0

γt
[
F t

x(x̂∗
t) + F t

y(x̂∗
t)− c ·∆(x̂∗

t , x̂∗
t+1)
]

(3.32)

Ignoring switching costs after time step h, an upper bound U∞
+ of U∞ is defined as:

U∞
+ =

h−1∑
t=0

γt
[
F t

x(x̂∗
t) + F t

y(x̂∗
t)− c ·∆(x̂∗

t , x̂∗
t+1)

]
+

∞∑
t=h

γt
[
F t

x(x̂∗
t) + F t

y(x̂∗
t)
]

(3.33)

Let x∗ = 〈x∗
0, . . . , x∗

h〉 be the optimal solution of the PD-DCOP with a finite horizon h:

Uh =
h−1∑
t=0

γt
[
F t

x(x∗
t) + F t

y(x∗
t)− c ·∆(x∗

t , x∗
t+1)
]
+

∞∑
t=h

γt
[
F t

x(x∗
h) + F t

y(x∗
h)
]

(3.34)

38

For x̂∗, if we change the solution for every DCOP after time step h to x̂∗
h, as 〈x̂∗

0, . . . , x̂∗
h, x̂∗

h, . . .〉,

we get an lower bound U∞
− of Uh:

U∞
− =

h−1∑
t=0

γt
[
F t

x(x̂∗
t) + F t

y(x̂∗
t)− c ·∆(x̂∗

t , x̂∗
t+1)
]
+

∞∑
t=h

γt
[
F t

x(x̂∗
h) + F t

y(x̂∗
h)
]

(3.35)

Therefore, we get U∞
− ≤ Uh ≤ U∞ ≤ U∞

+ .

Next, we compute the difference between the two bounds:

U∞ − Uh ≤ U∞
+ − U∞

− (3.36)

=
∞∑
t=h

γt
[
(F t

x(x̂∗
t) + F t

y(x̂∗
t))− (F t

x(x̂∗
h) + F t

y(x̂∗
h))
]

(3.37)

Notice that the quantity (F t
x(x̂∗

t)+F t
y(x̂∗

t))−(F t
x(x̂∗

h)+F t
y(x̂∗

h)) is the utility difference between

the value assignment x̂∗
t and x̂∗

h for a sub-problem in time step t, and thus is bounded by the

maximum loss of a regular DCOP:

(F t
x(x̂∗

t) + F t
y(x̂∗

t))− (F t
x(x̂∗

h) + F t
y(x̂∗

h)) ≤ F∆ (3.38)

Thus,

U∞ − Uh ≤ U∞
+ − U∞

− (3.39)

≤
∞∑
t=h

γt
[
F t

x(x̂∗
t) + F t

y(x̂∗
t)−F t

x(x̂∗
h)−F t

y(x̂∗
h)
]

(3.40)

≤
∞∑
t=h

γtF∆ (3.41)

≤ γh

1− γ
F∆ (3.42)

39

which concludes the proof. �

Corollary 1 Given a maximum acceptable error ε, the minimum horizon h is logγ
(1−γ)·ε
F∆ .

Proof: Following Theorem 3, the error of the optimal solution is bounded above by γh

1−γ
F∆:

ε ≤ γh

1− γ
F∆ (3.43)

(1− γ) · ε
F∆

≤ γh (3.44)

logγ
(1− γ) · ε

F∆
≤ h (3.45)

Thus, the minimum horizon h is logγ
(1−γ)·ε
F∆ . �

Let x∗ denote the optimal solution for the DCOP with a stationary distribution. We define

θy = minω,ω′ Ty(ω, ω
′) as the smallest transition probability between two states ω and ω′ of

the random variable y, and β =
∏

y∈Y θy as the smallest transition probability between two

joint states y and y′ of all random variables in Y.

Theorem 4 With β > 0, when γ = 1, the error U∞ − Uh from solving PD-DCOPs with a

finite horizon h using MCC approach is bounded from above by c · |X|+
∑

y∈ΣY

(1−2β)h

2β
F∆

y .

Proof: First, given a random variable y, the following inequality holds if the Markov chain

converges to the stationary distribution p∗y [25]. For a given ω ∈ Ωy:

|p∗y(ω)− T t
y(ω

′, ω)| ≤ (1− 2θy)
t ∀ω′ ∈ Ωy (3.46)

40

where T t
y and T ∗

y are the stationary transition matrix after t time steps and the stationary

transition matrix, respectively:

p0y · T t
y = pty (3.47)

p0y · T ∗
y = p∗y (3.48)

For ω ∈ Ωy:

p∗y(ω) =
∑
ω′∈Ωy

p0y(ω
′) · T ∗

y (ω
′, ω) (3.49)

pty(ω) =
∑
ω′∈Ωy

p0y(ω
′) · T t

y(ω
′, ω) (3.50)

|p∗y(ω)− pty(ω)| = |
∑
ω′∈Ωy

p0y(ω
′) · (T ∗

y (ω
′, ω)− T t

y(ω
′, ω))| (3.51)

= |
∑
ω′∈Ωy

p0y(ω
′) · (p∗y(ω)− T t

y(ω
′, ω))| (3.52)

≤
∑
ω′∈Ωy

p0y(ω
′) · |(p∗y(ω)− T t

y(ω
′, ω))| (3.53)

≤
∑
ω′∈Ωy

p0y(ω
′) · (1− 2θy)

t (3.54)

≤ (1− 2θy)
t (3.55)

where T ∗
y (ω

′, ω) = p∗y(ω) for all ω′ ∈ Ωy. Similarly, for y ∈ ΣY, we have:

δtY(y) = |p∗Y(y)− ptY(y)| ≤ (1− 2β)t (3.56)

41

Then, the solution quality loss for assigning x∗ at time step t is:

F t
∆ ≤

∑
y∈ΣY

δtY(y) ·
(
max
x∈Σ

Fy(x)− Fy(x∗)

)
(3.57)

≤
∑
y∈ΣY

(1− 2β)t · F∆
y (3.58)

Next, let x̄ = 〈x̄0, . . . , x̄h〉 denote the optimal solution of the PD-DCOP using MCC approach

with x̄h = x∗; x̂ = 〈x̂0, . . . , x̂h〉 denote the optimal solution for the DCOPs from time steps 0

to h without considering the stationary distribution; and x̌ = 〈x̌0 = x̂0, x̌1 = x̂1, . . . , x̌h−1 =

x̂h−1, x̌h = x̄h = x∗〉. We then have the following solution qualities:

U+ =
h∑

t=0

F t(x̂t)−
h−1∑
t=0

[c ·∆(x̂t, x̂t+1)] (3.59)

U =
h∑

t=0

F t(x̄t)−
h−1∑
t=0

[c ·∆(x̄t, x̄t+1)] (3.60)

U− =
h∑

t=0

F t(x̌t)−
h−1∑
t=0

[c ·∆(x̌t, x̌t+1)] (3.61)

Since x∗ is the optimal solution for the PD-DCOP and x̌h = x̄h = x∗, we have U− ≤ U .

Moreover, as x̌t = x̂t for time steps between 0 and h− 1, the error bound for time step 0 to

time step h is:

U+ − U ≤ U+ − U− (3.62)

≤
[
Fh(x̂h)−Fh(x∗)

]
− [c ·∆(x̂h−1, x̂h)− c ·∆(xh−1, x∗)] (3.63)

≤ Fh
∆ + c · |X| (3.64)

42

In addition, from t = h+ 1 to ∞, the cumulative error bound is
∑∞

t=h+1F t
∆. Summing up

the two error bounds for 0→ h and h+ 1→∞, we get:

Fh
∆ + c · |X|+

∞∑
t=h+1

F t
∆ = c · |X|+

∞∑
t=h

F t
∆ (3.65)

= c · |X|+
∞∑
t=h

(∑
y∈ΣY

δtY(y) · F∆
y

)
(3.66)

≤ c · |X|+
∑
y∈ΣY

∞∑
t=h

(1− 2β)t · F∆
y (3.67)

≤ c · |X|+
∑
y∈ΣY

(1− 2β)h

2β
F∆

y (3.68)

which concludes the proof. �

Upper Bound on Optimal Quality: We now describe an upper bound on the optimal

solution quality Fh(x∗). Let x̂∗ = 〈x̂∗
0, . . . , x̂∗

h〉 be the vector of assignments, where:

x̂∗
t =


argmax

x∈Σ
γt
[
F t

x(x) + F t
y(x)

]
if 0 ≤ t < h

argmax
x∈Σ

[
F̃x(x) + F̃y(x)

]
otherwise

(3.69)

and

F̂h(x) =
h−1∑
t=0

γt
[
F t

x(x) + F t
y(x)

]
+ F̃x(x) + F̃y(x). (3.70)

Theorem 5 The lower and upper bounds of the optimal solution of PD-DCOPs are Fh(x) ≤

Fh(x∗) ≤ F̂h(x̂∗) for all x ∈ Σh+1.

Proof: For any given assignment x ∈ Σh+1, Fh(x) is a clear lower bound for Fh(x∗).

43

For the upper bound, let Fh
t (·) be the tth component of the Fh(·), defined as:

Fh
t (xt) =


γt
[
F t

x(xt) + F t
y(xt)− [c ·∆(xt, xt+1)

]
if 0 ≤ t < h

F̃x(xt) + F̃y(xt) otherwise
(3.71)

with xt, defined as the tth value assignment in the PD-DCOP solution x. Similarly, let us

denote F̂h
t (·) as the tth component of the F̂h(·), defined as:

F̂h
t (xt) =


γt
[
F t

x(xt) + F t
y(xt)

]
if 0 ≤ t < h

F̃x(xt) + F̃y(xt) otherwise
(3.72)

It follows that for all 0 ≤ t < h:

Fh
t (x∗

t) = γt
[
F t

x(x∗
t) + F t

y(x∗
t)− [c ·∆(xt, xt+1)

]
(3.73)

≤ γt
[
F t

x(x∗
t) + F t

y(x∗
t)
]

(3.74)

≤ max
x∈Σ

γt
[
F t

x(x) + F t
y(x)

]
(3.75)

≤ γt
[
F t

x(x̂∗
t) + F t

y(x̂∗
t)
]
= F̂h

t (x̂∗
t) (3.76)

where x∗
t (resp. x̂∗

t) is the tth component of the PD-DCOP solution vector x∗ (resp. x̂∗).

For t = h, it follows:

Fh
h (x∗

h) = F̃x(x∗
h) + F̃y(x∗

h) (3.77)

≤ max
x∈Σ

[
F̃x(x) + F̃y(x)

]
= F̂h

h (x̂∗
h) (3.78)

44

Thus, from the two inequalities above, it follows that:

Fh(x∗) ≤
h∑

t=0

F̂h
t (x∗

t) = F̂h(x̂∗) (3.79)

which concludes the proof. �

Theorem 6 An agent’s space requirement for the PD-DCOP local search approach is O(L+

(h+1)|A|), where O(L) is the agent’s space requirement for the InitialAssignment function.

The time complexity of the local search approach is O(Dh), where D = argmaxx |Dx|.

Proof: In our local search algorithms, each agent first calls the InitialAssignment

function to find an initial value assignment to its variable for each time step 0 ≤ t ≤ h

(line 8). Thus, the memory requirement of this step is O((h+ 1) + L) at each agent. Next,

each agent performs a local search step (lines 9-10), which is analogous to that of MGM.

However, different from MGM, our agents search for tuples of h+ 1 values, one for each time

step in the horizon. Thus, at each iteration, and for each time step t, each agent stores a

vector of values for its current and best variable assignments for its variable; a vector of

the agent’s utilities and best utilities given its current value assignments; and a vector of

the agent’s best gain in utility. In addition, each agent stores the context of its neighbors’

values for each time step t, which requires O((h+ 1) · |N(ai)|) space. Thus, the overall space

requirement for our local search algorithm is O(L+ (h+ 1)|A|) per agent.

In the local search algorithms, to find the best response in each local search step, in the worst

case, each agent enumerates all possible combinations of decision variable domain across

all time step h. Thus, the time complexity of the local search approach is O(Dh), where

D = argmaxx |Dx| is the largest domain size among all agents.

�

45

Lemma 1 The solution quality of Local Search approaches is monotonically increasing with

respect to the iteration round.

Proof: In MGM, a variable is allowed to change its value in an iteration only when its gain

is higher than its neighbors’ gains, and two neighbors are not allowed to change their value in

the same iteration. The solution quality of MGM has been proved to monotonically increase

with respect to the iteration round [52]. Our Local Search approaches such as LS-SDPOP,

LS-MGM, and LS-RAND use the same mechanism for variables to change their values at

every time step. For a given time step in an iteration, a variable is allowed to change it values

only when its gain is the largest among their neighbors’ gains for that time step (Procedure

When Receive Gain lines 31-33 and 35-37). Therefore, the solution quality of the Local

Search approaches is monotonically increasing with respect to the iteration round. �

3.5 Related Work

Aside from the D-DCOPs described in the introduction and background, several approaches

have been proposed to proactively solve centralized Dynamic CSPs, where value assignments

of variables or utilities of constraints may change according to some probabilistic model [39,

80]. The goal is typically to find a solution that is robust to possible changes. Other

related models include Mixed CSPs [16], which model decision problems under uncertainty by

introducing state variables, which are not under control of the solver, and seek assignments

that are consistent to any state of the world; and Stochastic CSPs [73, 81], which introduce

probability distributions that are associated to outcomes of state variables, and seek solutions

that maximize the probability of constraint consistencies. While these proactive approaches

have been used to solve CSP variants, they have not been used to solve Dynamic DCOPs to

the best of our knowledge.

46

Researchers have also introduced Markovian D-DCOPs (MD-DCOPs), which models D-

DCOPs with state variables that are beyond the control of agents [59]. However, they assume

that the state is observable to the agents, while PD-DCOPs do not assume the observability of

the state and are able to solve the problem even when the state is not observable. Additionally,

MD-DCOP agents do not incur a cost for changing values in MD-DCOPs and only a reactive

online approach to solving the problem has been proposed thus far.

Another related body of work is Decentralized Markov Decision Processes (Dec-MDPs) [4].

In a Dec-MDP, agents can also observe its local state (the global state is the combination of

all local states), and the goal of a Dec-MDP is to find a policy that maps each local state to

the action for each agent. Thus, like PD-DCOPs, it also solves a sequential decision making

problem. However, Dec-MDPs are typically solved in a centralized manner [2, 4, 14, 15] due

to its high complexity – solving Dec-MDPs optimally is NEXP-complete even for the case

with only two agents [4]. In contrast, PD-DCOPs are solved in a decentralized manner and

its complexity is only PSPACE-hard (see Theorem 1). The reason for the lower complexity is

because the solution of PD-DCOPs are open-loop policies, which are policies that are not

dependent on state observations.

Decentralized Partially Observable MDPs (Dec-POMDPs) [4] is a generalization of Dec-MDPs,

where an agent may not accurately observe its local state. Instead, it maintains a belief of its

local state. A Dec-POMDP policy thus maps each belief to an action for each agent. Solving

Dec-POMDPs is also NEXP-complete [4] and they are also typically solved in a centralized

manner [15, 31, 61, 68, 72, 83] with some exceptions [57]. Researchers have also developed

a hybrid model, called ND-POMDP [58], which is a Dec-POMDP that exploits locality of

agent interactions like a DCOP.

47

In summary, one can view DCOPs and Dec-(PO)MDPs as two ends of a spectrum of offline

distributed planning models. In terms of expressivity, DCOPs can only model problems with

single time step while Dec-(PO)MDPs can model multiple-time-step problems. However,

DCOPs are only NP-hard while Dec-(PO)MDPs are NEXP-complete. PD-DCOPs attempt

to balance the trade off between expressivity and complexity by searching for open-loop

policies instead of closed-loop policies of Dec-(PO)MDPs. They are thus more expressive

than DCOPs at the cost of a higher complexity, yet not as expressive as Dec-(PO)MDPs but

also without its prohibitive complexity.

3.6 Experimental Results

In this section, we empirically evaluate our PD-DCOP algorithms. Aside from evaluating

the PD-DCOP algorithms in an offline manner, we also evaluate them in an online setting

which simulates the environment of many real-life applications. In the online setting, we

consider both how long it takes for the algorithms to solve the problem at a given time step

and the time they have to adapt the solution that they have just found. As PD-DCOPs

can be solved in an offline or an online manner, we report the experimental results for both

settings. Our experiments are performed on a 2.1GHz machine with 16GB of RAM using

JADE framework [3], and the results report the average of 30 independent runs, each with a

timeout of 30 minutes.10

3.6.1 Offline Algorithms

We first evaluate and report the experimental results of our PD-DCOP algorithms in the

offline setting. The experiment in the offline setting will shed light on the performance of
10https://github.com/YODA-Lab/PD-DCOP.

48

https://github.com/YODA-Lab/PD-DCOP

the PD-DCOP algorithms in the scenario where time and computing resources are generally

available. We use the following default configuration: Number of agents and decision variables

|A| = |X| = 10; number of random variables |Y| = 0.2 · |X| = 0.2 · 10 = 2; domain size

|Dx| = |Ωy| = 3; horizon h = 4; and switching cost c = 50.11 The utility values are sampled

from the uniform distribution on [0, 10]. The initial probability distributions and the transition

functions of random variables are randomly generated and normalized. We report solution

quality and simulated runtime [70]. Specifically, we evaluate the following offline PD-DCOP

algorithms:

• Collapsed DPOP (C-DPOP), which uses the exact approach introduced in Subsection 3.3.1.

The C-DPOP algorithm collapses the PD-DCOP into a single DCOP and solves it with

DPOP.

• Local Search S-DPOP (LS-SDPOP), which uses the local search approach introduced in

Subsection 3.3.2. This algorithm solves for the initial solution for the DCOP at each time

step by running S-DPOP and then searches for better solutions.

• Local Search MGM (LS-MGM), which uses the local search approach like LS-SDPOP.

However, LS-MGM solves for the initial the solution for the DCOP at each time step by

running MGM.

• Local Search Random (LS-RAND), which uses the local search approach like LS-SDPOP

and LS-MGM. However, LS-RAND randomly initializes solution for the DCOP at each

time step.

• Forward DPOP (F-DPOP), which uses the greedy approach FORWARD introduced in

Subsection 53. F-DPOP sequentially solves the DCOP at each time step with DPOP.

• Forward MGM (F-MGM), which uses the greedy approach FORWARD like F-DPOP.

However, F-MGM sequentially solves the DCOP at each time step with MGM.
11The random variables are randomly associated with the utility functions such that each utility function

has at most one random variable.

49

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Heuristic Weights

250

300

350

400

450

500

Ru
nt

im
e

(m
s)

(a) γ = 0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Heuristic Weights

250

300

350

400

450

500

Ru
nt

im
e

(m
s)

(b) γ = 1

Figure 3.2: Experimental Results Varying Heuristic Weight

• Backward DPOP (B-DPOP), which uses the greedy approach BACKWARD introduced in

Subsection 53. B-DPOP sequentially solves the DCOP at each time step with DPOP.

• Backward MGM (B-MGM), which uses the greedy approach BACKWARD like B-DPOP.

However, B-MGM sequentially solves the DCOP at each time step with MGM.

Random Networks

In this experiment, we use random networks with constraint density p1 = 0.5 to evaluate

the PD-DCOP algorithms on random instances that do not have a too dense or too sparse

topology. As LS-SDPOP reuses information by applying the hybrid heuristic function h3, we

vary the heuristic weight w and measure the runtime to evaluate its impact on LS-SDPOP.

Figure 3.2 shows the runtime of LS-SDPOP run on PD-DCOPs with γ = 0.9 and γ = 1. At

w = 0, the heuristic h3 corresponds the max-degree heuristic h2, and at w = 1, the heuristic

is analogous to our h1 heuristic (see Equation 3.19). The runtime is high at both extremes

for the following reasons: When w = 0, LS-SDPOP exploits weakly the reuse of information,

and when w = 1, the resulting pseudo-trees have larger depth, which in turn result in larger

runtime. In both cases, the best weight is found at w = 0.6, where LS-SDPOP is able to

50

LS-SDPOP LS-MGM LS-RAND

0 10 20 30 40 50 60 70 80 90 100
Switching Cost

200

400

600

800

1000

1200
Ru

nt
im

e
(m

s)

0 10 20 30 40 50 60 70 80 90 100
Switching Cost

200

400

600

800

1000

1200

Ru
nt

im
e

(m
s)

0 10 20 30 40 50 60 70 80 90 100
Switching Cost

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f I
te

ra
tio

ns

(a) γ = 0.9

0 10 20 30 40 50 60 70 80 90 100
Switching Cost

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f I
te

ra
tio

ns

(b) γ = 1

Figure 3.3: Experimental Results Varying Switching Cost

reuse information in the most efficient way and has the smallest runtime. Thus, we set the

heuristic weight w = 0.6 for LS-SDPOP in the remaining experiments.

Next, we vary the switching cost c from 0 to 100 to evaluate its impact on the following

PD-DCOP local search algorithms: LS-SDPOP, LS-MGM and LS-RAND. Figure 3.3 shows

the runtime and the number of iterations that the algorithms take to converge to the final

solution. When c = 0, the initial solution found by LS-SDPOP is the optimal solution of the

PD-DCOP since LS-SDPOP solves the DCOP at each time step optimally by the ignoring the

switching cost between them. Thus, it takes 0 iteration for LS-SDPOP to converge since the

51

LS-SDPOP F-DPOP B-DPOP

0 10 20 30 40 50 60 70 80 90 100
Switching Cost

1690

1695

1700

1705

1710

So
lu

tio
n

Qu
al

ity

(a) γ = 0.9

0 10 20 30 40 50 60 70 80 90 100
Switching Cost

500

550

600

650

700

So
lu

tio
n

Qu
al

ity

(b) γ = 1

Figure 3.4: Comparison between Sequential Greedy and Local Search for DPOP

LS-MGM F-MGM B-MGM

0 10 20 30 40 50 60 70 80 90 100
Switching Cost

1300

1350

1400

1450

1500

1550

1600

1650

So
lu

tio
n

Qu
al

ity

(a) γ = 0.9

0 10 20 30 40 50 60 70 80 90 100
Switching Cost

300

400

500

600

700

So
lu

tio
n

Qu
al

ity

(b) γ = 1

Figure 3.5: Comparison between Sequential Greedy and Local Search for MGM

initial solution is also the final solution. When c increases, LS-SDPOP takes more iterations

to converge since it spends more time on searching for a solution that incurs less switching

cost. The trend is similar for LS-MGM and LS-RAND in that the number of iterations and

the runtime increase with the switching cost. Among three algorithms, LS-SDPOP requires

fewer iterations to converge than LS-RAND and LS-MGM. While LS-SDPOP solves each

DCOP optimally, LS-MGM solves each DCOP sub-optimally with MGM and LS-RAND

52

C-DPOP
F-DPOP

F-MGM
B-DPOP

B-MGM
LS-RAND

LS-SDPOP
LS-MGM

2 3 4 5 6 7 8 9 10
Horizon

2

4

6

8

10

12

14

Ru
nt

im
e

(m
s)

 in
 lo

g
sc

al
e

(a) γ = 0.9

2 3 4 5 6 7 8 9 10
Horizon

2

4

6

8

10

12

14

Ru
nt

im
e

(m
s)

 in
 lo

g
sc

al
e

(b) γ = 1

Figure 3.6: Experimental Results Varying Horizon

randomly chooses the initial solution for each DCOP. For that reason, LS-SDPOP has the best

initial solution and requires the fewest iterations. While LS-MGM is faster than LS-SDPOP

in solving for the initial solution and takes fewer iterations to converge than LS-RAND,

LS-MGM is slowest among three algorithms. This experiment illustrates the impact of the

quality of the initial solution on the number of iterations and the trade-off between the time

spent on solving for the initial solution and the time spent on searching for better solutions.

In order to evaluate the impact of switching cost on the solution quality of two different

heuristics: Local Search and Sequential Greedy, we vary the switching cost and report

the solution quality of the heuristic algorithms. Figure 3.4 shows the solution quality of

LS-SDPOP, F-DPOP and B-DPOP with DPOP as the algorithm solving the DCOP at

each time step optimally. The LS-SDPOP algorithm starts by solving the DCOP at each

time step without considering the switching cost, and then it locally searches for better

solution in an iterative manner. When the switching cost becomes larger, the quality of initial

solution found by LS-SDPOP decreases due to the higher cost from the difference in the

53

solutions between two time steps. After solving for the initial solution, LS-SDPOP executes

the local search process, which is based on the hill climbing heuristic used in MGM, and the

solution will potentially get stuck at local maxima. For that reason, large switching cost

has a high impact on the final solution of LS-SDPOP. On the other hand, when sequentially

solving for the DCOP at each time step, Sequential Greedy algorithms such as F-DPOP and

B-DPOP already take into account the solution of the previously solved DCOP by creating a

unary constraint (see Equations 3.23 - 3.26). Therefore, while the solution qualities of three

algorithms decrease when the switching cost increases, the solution quality of LS-SDPOP

decreases more significantly than the solution quality of F-DPOP and B-DPOP. We observe

a similar trend in Figure 3.5 between LS-MGM, F-MGM, and B-MGM. However, the trend

tends to fluctuate due to the instability in the quality of solution of each DCOP found by

MGM.

We then vary the horizon h from 2 to 10 and compare the runtime of all PD-DCOP algorithms.

In this experiment, we set the number of decision variables |X| = 5 and report the runtime in

log scale in Figure 3.6. First, we observe that the exact algorithm C-DPOP has the largest

runtime at h = 2 and h = 3, and it cannot scale to solve problems with horizon h > 3.

The reason is that C-DPOP collapses all DCOPs into a single DCOP that has the domain

size growing exponentially in h. The exponential growth in domain size severely affects the

runtime of DPOP that is used to solve the collapsed DCOP. When the horizon increases,

we observe that local search algorithms (LS-RAND, LS-MGM, and LS-SDPOP) generally

run slower than sequential algorithms (F-MGM, B-MGM, F-DPOP, B-DPOP). Among the

local search algorithms, LS-SDPOP is faster than both LS-MGM and LS-RAND, and all

the sequential algorithms have similar runtimes. This trend is similar for both cases γ = 0.9

and γ = 1. The only difference between the two cases is the runtimes of C-DPOP and local

search algorithms. When γ = 1, C-DPOP collapses the DCOPs from time step t = 0 to time

54

|A| C-DPOP LS-SDPOP LS-MGM LS-RAND F-DPOP F-MGM B-DPOP B-MGM
q t q t q t q t q t q t q t q t

5 — — 416 41 359 75 401 102 437 35 417 32 439 35 423 31
10 — — 1699 236 1535 255 1620 238 1710 316 1677 118 1711 304 1677 106
15 — — — — 3176 444 3414 386 — — 3575 234 — — 3589 224
20 — — — — 5614 616 6066 536 — — 6205 392 — — 6222 376
25 — — — — 8737 818 9357 650 — — 9493 553 — — 9524 565
30 — — — — 12651 1185 13166 821 — — 13620 812 — — 13578 841
35 — — — — 16969 1452 17876 1039 — — 18325 1013 — — 18303 1053
40 — — — — 22237 1732 23038 1121 — — 23602 1224 — — 23595 1268
45 — — — — 28251 1944 29159 1358 — — 29611 1481 — — 29655 1523
50 — — — — 33929 1987 35900 1726 — — 36500 1736 — — 36454 1803

Table 3.1: Varying the Number of Agents on Random Graphs with γ = 0.9

|A| C-DPOP LS-SDPOP LS-MGM LS-RAND F-DPOP F-MGM B-DPOP B-MGM
q t q t q t q t q t q t q t q t

5 185 346012 163 32 133 76 -17 70 156 39 121 31 185 42 176 33
10 — — 600 238 503 209 393 177 703 322 554 110 711 312 697 113
15 — — — — 1270 387 931 296 — — 1235 216 — — 1481 218
20 — — — — 2116 522 1913 417 — — 2221 365 — — 2569 395
25 — — — — 3397 661 3049 482 — — 3513 546 — — 3923 565
30 — — — — 5022 840 4392 552 — — 5106 784 — — 5596 832
35 — — — — 6738 985 5957 577 — — 7021 932 — — 7544 1047
40 — — — — 8548 1079 7853 636 — — 8962 1188 — — 9720 1284
45 — — — — 10938 1146 10302 752 — — 11250 1356 — — 12183 1540
50 — — — — 13290 1267 12865 803 — — 14240 1614 — — 15000 1789

Table 3.2: Varying the Number of Agents on Random Graphs with γ = 1

step t = h − 1, which is one DCOP fewer compared to when γ = 0.9. The smaller size of

the collapsed DCOP has resulted in significantly smaller runtime for C-DPOP. Similarly, the

search space of the local search algorithm is also smaller when γ = 1.

Finally, we vary the number of agents |A| from 5 to 50 to evaluate the performance of the

algorithms with different number of agents. Table 3.1 reports solution quality (labeled q)

and runtime (labeled t) of all PD-DCOP algorithms for γ = 0.9. We observe that C-DPOP

times out on all instances due to the large horizon of h = 4. On small problems that have

|A| = 5 or |A| = 10, DPOP-based algorithms provide solutions with higher quality than those

solved by MGM-based algorithms and LS-RAND. However, due to solving the DCOP at each

time step optimally, DPOP-based algorithms cannot scale and time out when the number

55

of agents is larger. On the other hand, MGM-based algorithms, which solve each DCOP

sub-optimally with MGM, and LS-RAND can scale to solve large problems. In addition,

Sequential Greedy algorithms such as F-DPOP and B-DPOP have better solution quality

than the Local Search algorithm such as LS-SDPOP due to the large switching cost, which

is set at c = 50. The similar trend also happens when we compare the solution quality of

MGM-based algorithms such as F-MGM, B-MGM, and LS-MGM. We observe the similar

result in Table 3.2 for PD-DCOPs with γ = 1. The key difference is that C-DPOP can solve

problems with |A| = 5 because C-DPOP collapses one fewer DCOP in PD-DCOPs with

γ = 1 compared to PD-DCOPs with γ = 0.9. Thus, the resulting collapsed DCOP is smaller

and it takes less time for C-DPOP to solve.

Dynamic Distributed Meeting Scheduling Problems

Next, we evaluate our PD-DCOP algorithms on dynamic distributed meeting scheduling

problems, which are a real world application with a specific network topology. We generate

the underlying topology randomly with p1 = 0.5 and use the PEAV formulation [53]. In this

formulation, we enforce the inequality constraints to ensure that no two meetings can be held

at the same time. We vary the number of meetings and allow each meeting to be scheduled

in 5 different starting times. If an algorithm fails to find a feasible solution for some instance,

we do not report the runtime of that instance.

Tables 3.3 and 3.4 report the runtime (labeled t) and the percentage of feasible solutions

(labeled %SAT) on PD-DCOPs with γ = 0.9 and γ = 1, respectively. As we observed from

Tables 3.1 and 3.2, DPOP-based algorithms return solutions with higher quality than those

by LS-RAND and MGM-based algorithms. Similarly, in distributed meeting scheduling

problems, DPOP-based algorithms are able to find feasible solutions for many instances, but

LS-RAND and MGM-based algorithms fail on most instances. However, it comes at the cost

56

|A| LS-SDPOP LS-MGM LS-RAND F-DPOP F-MGM B-DPOP B-MGM
%SAT t %SAT t %SAT t %SAT t %SAT t %SAT t %SAT t

4 100 94 80 229 70 226 100 39 10 33 100 39 10 36
6 100 150 20 318 26 338 100 112 0 — 100 104 0 —
8 100 405 3 380 20 480 100 372 0 — 100 360 0 —

10 100 27062 0 — 3 490 100 16855 0 — 100 16864 0 —

Table 3.3: Results for Distributed Meeting Schedling Problems with γ = 0.9

|A| LS-SDPOP LS-MGM LS-RAND F-DPOP F-MGM B-DPOP B-MGM
%SAT t %SAT t %SAT t %SAT t %SAT t %SAT t %SAT t

4 73 40 23 108 20 135 93 43 6 35 100 42 10 30
6 76 105 10 210 0 — 100 105 0 — 100 105 0 —
8 90 345 0 — 0 — 100 362 0 — 100 361 0 —

10 96 27060 0 — 0 — 100 17175 0 — 100 16986 0 —

Table 3.4: Results for Distributed Meeting Scheduling Problems with γ = 1

of larger runtime for DPOP-based algorithms since solving each DCOP optimally usually

takes longer. Among MGM-based algorithms, LS-MGM find more feasible solutions than

F-MGM and B-MGM. Since MGM is not an exact algorithm, the solution for the problem at

each time step is usually infeasible. Once MGM cannot find a feasible solution for a problem

at some time step, sequential greedy algorithms such as F-MGM and B-MGM do not have

a mechanism to improve those infeasible solutions to make them feasible. On the other

hand, despite having initial infeasible solutions, LS-MGM can gradually modify the initial

solution with local search, and thus it is able to change the initial infeasible solution to a

feasible solution. However, LS-MGM is slightly slower than F-DPOP and B-DPOP due to

the additional local search step.

Distributed Radar Coordination and Scheduling Problems

In this experiment, we evaluate our PD-DCOP algorithms on the Distributed Radar Coordi-

nation and Scheduling Problem (DRCSP), our motivating application described in Section 2.7.

We use grid networks to represent the DRCSP where sensors are arranged in a rectangular

57

|A| LS-SDPOP LS-MGM LS-RAND F-DPOP F-MGM B-DPOP B-MGM
q t q t q t q t q t q t q t

4 315 323 283 1504 120 1683 327 14 306 19 327 15 305 21
6 513 499 474 2097 213 2296 553 19 523 21 555 20 525 23
8 843 847 783 3592 369 3242 895 62 848 34 897 64 851 34

10 1030 1360 1010 3560 444 3368 1117 65 1054 41 1120 64 1049 41
12 1474 2686 1400 4099 618 4321 1519 21036 1429 76 1522 21332 1423 72
14 1513 55739 1525 4412 707 4219 1686 69511 1583 52 1690 69153 1599 54
16 — — 1767 4854 860 4478 — — 1848 81 — — 1841 80
18 — — 2004 5076 891 4856 — — 2110 88 — — 2112 80
20 — — 2332 5543 1028 5269 — — 2436 96 — — 2442 95

Table 3.5: Results for Distributed Radar Coordination and Scheduling Problems with γ = 0.9

grid. Each sensor has 8 sensing directions and is connected to its four neighboring sensors in

the cardinal direction. Those sensors on the edges are connected to three neighboring sensors,

and corner sensors are connected to two neighbors. The random variables, which represent

the precipitation of the weather phenomena, are randomly placed on the network.

Tables 3.5 and 3.6 report the runtime (labeled t) and the solution quality (labeled q) of

PD-DCOP algorithms on DRCSP with γ = 0.9 and γ = 1, respectively. Similar to the result

of the experiments on random networks and distributed meeting scheduling problems, DPOP-

based algorithms achieve higher quality solutions with than those found by LS-RAND and its

counterpart MGM-based algorithms. However, the better solution of DPOP-based algorithms

comes with a cost of higher runtimes where DPOP-based algorithms run longer than MGM-

based algorithms. In addition, due to larger runtime of the DPOP-based algorithms, they

time out when solving larger instances with 16, 18, 20 agents. In contrast, MGM-based

algorithms successfully finish within the time limit on those larger instances.

58

|A| LS-SDPOP LS-MGM LS-RAND F-DPOP F-MGM B-DPOP B-MGM
q t q t q t q t q t q t q t

4 136 22 56 226 18 265 134 12 63 18 139 12 130 17
6 213 103 78 297 31 313 205 20 89 27 238 18 224 20
8 315 120 153 374 91 392 297 59 122 37 382 58 361 33
10 401 861 172 456 114 422 405 58 153 43 479 64 451 41
12 508 1646 260 511 188 526 525 20910 232 66 648 20619 610 70
14 544 57709 305 459 210 482 589 69315 265 53 723 69086 679 49
16 — — 349 573 243 548 — — 332 73 — — 792 70
18 — — 393 534 255 532 — — 392 79 — — 902 84
20 — — 480 587 375 567 — — 408 84 — — 1046 85

Table 3.6: Results for Distributed Radar Coordination and Scheduling Problem with γ = 1

3.6.2 Online Algorithms

In this section, we compare our proactive approach and the reactive approach in an online

setting in order to identify the characteristics of the problems in that they excel in. In

addition, we propose hybrid approach, which is a combination of proactive and reactive

approaches, and we compare our hybrid approach against the reactive approach. For a fair

comparison, we empirically evaluate all approaches in the same online setting. As PD-DCOPs

can be solved in an online manner, we compare the following online approaches: FORWARD,

HYBRID, and REACT.

FORWARD: Since FORWARD solves the problem at each time step beforehand, it can

be used as an offline approach or an online approach. Similar to the offline approach, online

FORWARD reformulates the constraints based on the probability distribution of random

variables, solves each problem sequentially, and takes into account the switching cost between

the problem at the current time step and the problem at the previous time step. In this

experiment, we will evaluate FORWARD as a proactive online approach.

59

FORWARD
w02 w12 w22

 HYBRID
w02 w12 w22

REACT

w02w01 w11 w12 w21 w22

0 1 2 3 time step

0 ms 500 ms 1000 ms 1500 ms time

Figure 3.7: Search Time vs. Solution Adoption Time

REACT: REACT waits for each problem to change, observes the realization of random

variables, and solves the problem in a reactive manner. Similar to FORWARD, REACT

takes into account the switching cost between the problem at the current time step and the

problem at the previous time step. As REACT observes the problem to change before solving

it, REACT is a reactive online approach and cannot be used as an offline approach.

HYBRID: While FORWARD solves each problem beforehand and REACT waits for the

problem to change before solving it, HYBRID is a combination of the two approaches. Similar

to FORWARD, HYBRID greedily solves the problem from the first time step t = 0 onwards.

The difference is that it will observe the values of the random variables at each time step

t ≥ 0 and using them to retrieve the probability distribution of the random variables in the

next time step from the transition function. It then solves the problem for the next time

step with the updated probability distributions thereby finding better solutions than the

FORWARD algorithm. HYBRID is an online hybrid approach and cannot be used as an

offline approach.

Figure 3.7 illustrates the time the three approaches spend searching for solutions (denoted by

gray rectangles) as well as the time they adopt their solutions (denoted by white rectangles),

60

where the time duration between iterations is 500ms. FORWARD starts searching for optimal

solutions before the problem starts, and adopts the solution later. HYBRID solves the first

sub-problem at t = 0 based on the initial distribution of random variables, which is known a

priori. When the problem starts, HYBRID adopts the solution while observing the values of

random variables, using the observation to find its solution for the next time step. Finally,

REACT solves the problem each time the problem changes.

The effective utility Ueff of REACT in each time step t is defined as the normalized weighted

sum:

Ueff =
wt

1 · qtt−1 + wt
2 · qtt − (wt

1 + wt
2) · ct−1,t

wt
1 + wt

2

(3.80)

where wt
1 is the duration it spent searching for a solution at time step t;12 wt

2 is the duration

it adopted the solution found; qtt−1 is the quality of solution found in the previous time step

t− 1; qtt is the quality of solution found in the current time step t; and ct−1,t is the switching

cost incurred between the two time steps. The effective utility takes into account: (i) the

quality qtt−1 of the solution found in the previous time step while the algorithm is searching for

a solution in the current time step; (ii) the quality qtt of the solution found in the current time

step; and (iii) the switching cost ct−1,t incurred by the solutions found in the current time

step and the previous time step. For FORWARD and HYBRID, since they find a solution for

each time step before the start of that time step, wt
1 = 0 for all time steps, and the effective

utility takes into account the solution quality of the current time step and the switching cost:

Ueff = qtt − ct−1,t. However, the solution found for each time step by the three approaches

are likely to differ and we aim to experimentally evaluate the conditions in which one class of

algorithms is preferred over the other.
12We discretize time into 50ms intervals.

61

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
2

4
6

8
10

Sw
itc

hi
ng

 C
os

t

500

600

700

800

900

1000

1100

1200

(a) Small Switching Cost Range

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
10

20
30

40
50

60
70

80
90

10
0

Sw
itc

hi
ng

 C
os

t

500

750

1000

1250

1500

1750

2000

2250

(b) Large Switching Cost Range

Figure 3.8: Comparison between F-DPOP and R-DPOP on Random Networks

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
2

4
6

8
10

Sw
itc

hi
ng

 C
os

t

500

600

700

800

900

1000

1100

1200

(a) Small Switching Cost Range

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
10

20
30

40
50

60
70

80
90

10
0

Sw
itc

hi
ng

 C
os

t

500

750

1000

1250

1500

1750

2000

2250

(b) Large Switching Cost Range

Figure 3.9: Comparison between Hy-DPOP and R-DPOP on Random Networks

Choosing DPOP and MGM as two algorithms to solve the DCOP at each time step, we

evaluate the following algorithms: Forward DPOP (F-DPOP), Forward MGM (F-MGM),

Hybrid DPOP (Hy-DPOP),13 Hybrid MGM (H-MGM), Reactive DPOP (R-DPOP)14, and

Reactive MGM (R-MGM) by varying two parameters – the time duration between subsequent

time steps of the dynamic DCOP (i.e., the time before the DCOP changes) and the switching

cost c of the dynamic DCOP. We use the following default configuration: Number of agents
13We avoid using the acronym H-DPOP as that refers to a different algorithm [46]
14R-DPOP is the online S-DPOP

62

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
2

4
6

8
10

Sw
itc

hi
ng

 C
os

t

140

130

120

110

100

90

(a) Small Switching Cost Range

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
10

20
30

40
50

60
70

80
90

10
0

Sw
itc

hi
ng

 C
os

t

125

100

75

50

25

0

25

50

(b) Large Switching Cost Range

Figure 3.10: Comparison between F-MGM and R-MGM on Random Networks

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
2

4
6

8
10

Sw
itc

hi
ng

 C
os

t

130

125

120

115

110

105

100

95

90

(a) Small Switching Cost Range

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
10

20
30

40
50

60
70

80
90

10
0

Sw
itc

hi
ng

 C
os

t

125

100

75

50

25

0

25

50

75

(b) Large Switching Cost Range

Figure 3.11: Comparison between H-MGM and R-MGM on Random Networks

and decision variables |A| = |X| = |Y| = 10; domain size |Dx| = |Ωy| = 5; and horizon

h = 10. We conduct our experiments on random networks with p1 = 0.5 and distributed

meeting scheduling problems. We report the average difference in effective utilities (see

Equation 3.80) between a proactive or hybrid algorithm and its reactive counterpart. The

difference in effective utilities is the effective utility of the proactive or hybrid algorithm

minus the effective utility of the reactive algorithm and divided by the horizon h.

63

Figures 3.8(a) and 3.8(b) compare F-DPOP and R-DPOP with a small switching cost range

of [0, 10] and a large switching cost range of [0, 100], respectively. The heatmap shows the

average difference in the effective utilities between F-DPOP and R-DPOP. The difference

is calculated by subtracting the effective utilities of F-DPOP from those of R-DPOP and

divided by the horizon h. When the switching cost is 0, R-DPOP is able to find an optimal

solution at each time step. However, when the cost increases, it may myopically choose a

solution that is good for the current time step but bad for future time steps. Thus, R-DPOP

is best when the switching cost is small and deteriorates with larger switching costs. When

the time duration between subsequent time steps is small, R-DPOP spends most of the time

on searching for the solution and little time on adopting it; vice versa when the time duration

is large. Thus, in Figure 3.8(a) and Figure 3.8(b), R-DPOP is worst when the time duration

is small and improves with longer duration.

We observe a similar trend in Figures 3.9(a) and 3.9(b), which show the result comparing

Hy-DPOP and R-DPOP, except that the difference is marginally larger. The reason is that

Hy-DPOP uses its observation of the random variables in the current time step to compute

a more accurate probability distribution of random variables for the next time step. By

observing and getting better prediction on the values of random variables, Hy-DPOP can

find better solutions. Moreover, unlike R-DPOP, Hy-DPOP is able to adopt the solution

immediately when the problem changes. Therefore, it combines the strengths of both proactive

and reactive algorithms.

We observe similar trends in Figures 3.10 and 3.11, where we use MGM instead of DPOP to

solve the DCOP at each time step on random networks. Similar to the results in Figures 3.8

and 3.9, the reactive approach, which is R-MGM in this case, is best when the switching

cost is 0 and deteriorates with larger switching costs. R-MGM is also worst when the time

duration is small and improves with longer duration when the switching cost value is small

64

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
2

4
6

8
10

Sw
itc

hi
ng

 C
os

t

80

60

40

20

0

20

40

(a) Small switching cost range

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
10

20
30

40
50

60
70

80
90

10
0

Sw
itc

hi
ng

 C
os

t

0

200

400

600

800

(b) Large switching cost range

Figure 3.12: Difference in Effective Utilities of F-DPOP minus R-DPOP on Distributed
Meeting Scheduling Problems

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
2

4
6

8
10

Sw
itc

hi
ng

 C
os

t

100

80

60

40

20

0

20

40

(a) Small switching cost range

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
10

20
30

40
50

60
70

80
90

10
0

Sw
itc

hi
ng

 C
os

t

0

200

400

600

800

(b) Large switching cost range

Figure 3.13: Comparison between Hy-DPOP and R-DPOP on Distributed Meeting Scheduling
Problems

and vice versa. However, the trend tends to fluctuate due to the instability in the quality of

the solutions found by MGM.

We also report our online experimental results comparing F-DPOP and Hy-DPOP against

R-DPOP on distributed meeting scheduling problems in Figures 3.12 and 3.13. We observe a

similar trend as in random networks. The reactive algorithm is best if the switching cost

is 0 and its solution quality decreases when the switching cost increases. Also, R-DPOP

65

is worst when the time duration is small and the solution quality increases with longer

duration. However, in the distributed meeting scheduling problem, when the switching cost is

increasing and becomes much larger, the difference in switching cost dominates the difference

in utility. Since R-DPOP switches values between solutions more frequently than F-DPOP

and Hy-DPOP, R-DPOP performs worse when the time duration increases and switching

cost value is large, which is showed in Figure 3.12(b) and Figure 3.13(b). We do not evaluate

the online approach that use MGM on distributed meeting scheduling problems since the

effective utilities cannot be computed with infeasible solutions found by MGM.

Therefore, for the first time to the best of our knowledge, these experimental results shed light

on the identification of characteristics that are well suited for each class of dynamic DCOP

algorithms. Reactive algorithms are well suited for problems with small switching costs and

that change slowly. In contrast, proactive algorithms are well suited for problems with large

switching costs and that change quickly. Our hybrid algorithms combine the strengths of

both approaches – it works well in the same type of problems that proactive algorithms work

well in and it exploits observations to improve its solutions like reactive algorithms.

3.6.3 Comparisons with MD-DCOP Algorithms

In the online setting, the states of the random variables are observable by agents and, thus,

PD-DCOPs can be modeled as Markovian Dynamic DCOPs (MD-DCOPs) [59] and solved

by MD-DCOP algorithms. One of the key differences between the two models is that agents

in PD-DCOPs incur some switching cost by changing solutions between two subsequent

time steps while MD-DCOPs do not. In order to integrate switching cost in MD-DCOPs

for fair comparisons, we first augment the states of the random variables with the solution

of the decision variables in the previous time step and then add the switching cost to the

utility function accordingly. Specifically, given a utility function fi of a PD-DCOP, where

66

its scope contains a random variable yi with state ωt
i in the current time step, and xt−1

i as

the assignment of the decision variables in the previous time step, the state of the random

variable yi in the corresponding MD-DCOP is augmented as 〈ωt
i , xt−1

i 〉. The utility function

f ′
i of the MD-DCOP now takes into account the switching cost from the previous solution:

f ′
i(〈ωt

i , xt−1
i 〉, xt

i) = fi(ω
t
i , xt

i)− c ·∆(xt−1
i , xt

i) (3.81)

The transition function T ′ of the random variable yi is defined as:

T ′
yi
(〈ωt

i , xt−1
i 〉, 〈ωt+1

i , xt
i〉) =


Tyi(ω

t
i , ω

t+1
i) if xt−1

i = xt
i

0 otherwise
(3.82)

After this step, the PD-DCOP is now mapped to the MD-DCOP and it can be solved by

MD-DCOP algorithms.

In this experiment, we choose F-DPOP and R-DPOP as our representative online algorithms

and compare them against Decomposed Distributed R-learning [59], the best performing

MD-DCOP algorithm. We run the experiment on random networks and use the following

configuration: Number of agents and variables |A| = |X| = |Y| = 10; p1 = 0.5, domain size

|Dx| = |Ωy| = 5. We consider the horizon when the distribution of all random variable has

converged and let the algorithms solve the problem for 50 time steps. We report the average

difference in effective utility between F-DPOP or R-DPOP and Decomposed Distributed

R-learning.

Figures 3.14(a) and 3.14(b) compare F-DPOP and Decomposed Distributed R-learning

with small switching cost and large switching cost, respectively. The heatmap shows the

difference in average effective utility which is computed by subtracting the effective utilities

of F-DPOP from those of Decomposed Distributed R-learning. When the switching cost is

67

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
2

4
6

8
10

Sw
itc

hi
ng

 C
os

t

60

40

20

0

20

(a) Small switching cost range

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
10

20
30

40
50

60
70

80
90

10
0

Sw
itc

hi
ng

 C
os

t

60

40

20

0

20

40

(b) Large switching cost range

Figure 3.14: Difference in Effective Utilities of F-DPOP minus Decomposed Distributed
R-learning

small, Decomposed Distributed R-learning is able to find better solution where it maps the

actual state of the random variables to the final solution. In contrast, since the distribution

of random variables have converged, the solution of F-DPOP is identical for these 50 time

steps and it ignores the actual states of the random variables. Thus, Decomposed Distributed

R-learning is able to take into account the state of the random variables and thus find better

solution. However, when the switching cost is higher, the solution found by Decomposed

Distributed R-learning is worse than F-DPOP. Since the solutions of F-DPOP between

two time steps are identical, F-DPOP incurs no switching cost. In contrast, Decomposed

Distributed R-learning still incurs some switching cost due to different states between two

time steps and the mapping from the actual state of the random variables. Thus, it returns

solutions with worse qualities than solutions of F-DPOP.

Figures 3.15(a) and 3.15(b) compare R-DPOP and Decomposed Distributed R-learning with

small switching cost and large switching cost, respectively. When the switching cost is 0,

R-DPOP is able find the optimal solution at each time step without incurring any switching

cost caused by the previous solution. Thus, it is able to find the optimal solution overall and

the difference in the average effective utility between R-DPOP and Decomposed Distributed

68

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
2

4
6

8
10

Sw
itc

hi
ng

 C
os

t

350

300

250

200

150

100

50

0

(a) Small switching cost range

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

Time Duration

0
10

20
30

40
50

60
70

80
90

10
0

Sw
itc

hi
ng

 C
os

t

4000

3000

2000

1000

0

(b) Large switching cost range

Figure 3.15: Difference in Effective Utilities of R-DPOP minus Decomposed Distributed
R-learning

R-learning is marginally positive. However, when the switching cost increases, the solution

quality of R-DPOP decreases since the switching cost is now larger and dominates the solution

quality found in reactive manner. On the other hand, by integrating the previous solution into

its augmented state, Decomposed Distributed R-learning is able to take the solution of the

previous time step into account, and thus the difference between R-DPOP and Decomposed

Distributed R-learning is smaller and becomes negative.

In summary, our experimental results have identified when a proactive or a reactive approach

should be used to solve the problems that are beyond the horizon when the probability

distributions of random variables have converged. On one hand, when the switching cost is

large or when the computation resource is limited, it is desirable to have the same solution

across different time steps that incurs less or even zero switching cost. Thus, FORWARD

is a more suitable approach than REACTIVE and R-learning. On the other hand, when

the switching cost is small, reactive algorithms such as R-DPOP and R-learning are able to

gain higher solution quality by having different solutions at different time steps. When the

switching cost increases, a less reactive approach like R-learning is able to avoid aggressively

changing solutions such as those provided by R-DPOP, and it is able to gain higher solution

69

quality. However, the downside of R-learning is that it requires a significant number of

iterations for training before being able to achieve satisfactory solution qualities.

3.7 Discussions and Conclusions

In many real-world applications, agents often act in dynamic environments. Thus, the

Dynamic DCOP formulation is attractive to model such problems. Existing research has

focused at solving such problems reactively, thus discarding the information on possible

future changes, which is often available in many applications. To cope with this limitation,

in this chapter, we proposed Proactive Dynamic DCOPs (PD-DCOPs), which model the

dynamism information in Dynamic DCOPs. In addition, we developed an exact algorithm to

solve PD-DCOPs and several heuristic algorithms that can scale to larger and more complex

problems. Our theoretical results presented the complexity of PD-DCOPs and the error bound

of our approaches. We also empirically evaluated both proactive and reactive algorithms

to determine the trade-offs between the two classes. When solving PD-DCOPs online, our

new distributed online greedy algorithms FORWARD and HYBRID outperformed reactive

algorithms in problems with large switching costs and in problems that change quickly. Our

empirical findings on the trade-offs between proactive and reactive algorithms are the first,

to the best of our knowledge, that shed light on this important issue.

The PD-DCOP formulation makes it possible to model and solve several real-life applications

where the prior information is available in dynamic environments. One such application is

our motivating DRCSP application. However, by taking into account the prior information,

the quality of the solution provided by PD-DCOPs depends significantly on the quality of

the information and on the quality of the prediction on how the environment might change

70

over time. Thus, for PD-DCOPs to be deployed successfully in the real world, the prior

information should be guaranteed to be reliable to some degree.

71

Chapter 4

Continuous Distributed Constraint

Optimization Problems

In many applications, agents often interact in a complex environment that requires a wide

range of possible actions. The DCOP formulation assumes that the domains of the variables

are discrete, and it limits the capability of the agents to coordinate efficiently in such

environment. To overcome this limitation, researchers have proposed the Continuous DCOP

(C-DCOP) formulation to model DCOPs with continuous variables and proposed several

heuristic algorithms to solve C-DCOPs. However, existing algorithms usually come with

some restrictions on the form of constraint utilities and without guarantee on the solution

quality. Therefore, in this chapter, we (i) propose an exact algorithm to solve a specific

subclass of C-DCOPs; (ii) propose heuristics algorithms with quality guarantee to solve

general C-DCOPs; (iii) propose additional C-DCOP algorithms that are more scalable;

and (iv) empirically show that our algorithms outperform existing state-of-the-art C-DCOP

algorithms when given the same communication limitations.

72

4.1 Introduction

The DCOP formulation has been widely used to model and solve many multi-agent coordina-

tion problems where agents choose their actions from a set of possibilities. Typically, DCOPs

assume that the variables are discrete and the constraint utilities are represented in tabular

form (i.e., a utility is defined for every combination of discrete values of variables). While

these assumptions are reasonable in some applications where values of variables correspond

to a set of discrete possibilities (e.g., the set of tasks that robots can perform in multi-robot

coordination problems or the set of coalitions that agents can join in coalition structure gener-

ation problems), they make less sense in applications where values of variables correspond to

a continuous range of possibilities (e.g., the range of orientations a sensor can take in sensor

networks or the range of frequencies an agent can choose in wireless networks). For example,

in DRCSPs, the weather phenomena could be at any location in the network, and to better

sense the phenomena in this case, the sensors should have a wider range of sensing directions.

These limiting assumptions have prompted Stranders et al. [69] to propose Continuous

DCOPs (C-DCOPs), which extend DCOPs to allow for continuous variables. As variables can

now take values from a continuous range, constraint utilities are also extended from tabular

forms to functional forms. To solve such problems, Stranders et al. [69] extended the discrete

Max-Sum (MS) algorithm [18] to Continuous MS (CMS), where constraint utility functions

are approximated by piecewise linear functions. Voice et al. [79] later proposed Hybrid CMS

(HCMS), which combines the discrete MS algorithm with continuous non-linear optimization

methods. Specifically, agents in HCMS approximate the utility functions with a number of

samples that they iteratively improve over time. A key limitation of CMS and HCMS is that

they both do not provide quality guarantees on the solutions found. The reason is that they

73

rely on discrete MS as the underlying algorithmic framework, which does not provide quality

guarantees on general graphs.

To overcome this limitation, we extend the inference-based Distributed Pseudo-tree Opti-

mization Procedure (DPOP) [63] algorithm to three extensions – Exact Continuous DPOP

(EC-DPOP); Approximate Continuous DPOP (AC-DPOP); and Clustered AC-DPOP (CAC-

DPOP). We also extend the search-based Distributed Stochastic Algorithm (DSA) [89] to

Continuous DSA (C-DSA). While EC-DPOP provides an exact approach to solve C-DCOPs

with linear or quadratic utility functions and are defined over tree-structured graphs, AC-

DPOP, CAC-DPOP, and C-DSA solve C-DCOPs approximately with any smooth and

differentiable utility functions and without restriction on graph structure. We also provide

theoretical properties on the error bounds of AC-DPOP and communication complexities

of AC-DPOP, CAC-DPOP, and C-DSA. Finally, we show that these algorithms outperform

HCMS in randomly generated instances when given the same communication limitations.

4.2 C-DCOP Algorithms

We now introduce four C-DCOP algorithms: Exact Continuous DPOP (EC-DPOP), Approx-

imate Continuous DPOP (AC-DPOP), and Clustered AC-DPOP (CAC-DPOP), which are

based on DPOP; and Continuous DSA (C-DSA), which is based on DSA. These algorithms

extend the capability of their original algorithms such that they can solve C-DCOPs with

continuous variables and utility functions.

4.2.1 Exact Continuous DPOP

In this section, we propose Exact Continuous DPOP (EC-DPOP), which is an exact algorithm.

EC-DPOP solves C-DCOPs that are defined over tree-structured graphs with linear or

74

Function ADD-Functions(fpw, gpw)
54 Initialize a piecewise function hpw
55 〈x,d〉 ← GetCommonVariablesAndRanges(fpw, gpw)
56 foreach domain d ∈ d do
57 foreach f ∈ fpw with domain df do
58 foreach g ∈ gpw with domain dg do
59 if d is a sub-domain of f and g then
60 h← f + g
61 dh = d ∪ df ∪ dg
62 Add h with domain dh to hpw

63 return hpw

quadratic utility functions. The algorithm extends the two primary operations of DPOP in

the UTIL propagation phase – Add and Project. Those modification are modified such

that they can be applied to C-DCOPs in the context of continuous variables and real-valued

functions.

In the UTIL propagation phase of DPOP, each agent adds the utilities in UTIL messages

received from its children together with the utilities of constraints that the agent shares with

the agents in its separator. Then, it projects out its own variable and sends the projected

utilities as a UTIL message to its parent. Both of these processes are straightforward as utility

functions are represented in tabular form, thereby allowing the agents to enumerate through

all possible value combinations, aggregate their corresponding utilities, and optimize over

them. However, this process is more complicated in C-DCOPs, where utility functions are

represented in functional form. We now describe Add-Functions and Project-Function,

which are two EC-DPOP operations extended from the Add and Project operations of

DPOP respectively.

ADD-Functions: In EC-DPOP, each UTIL message contains a piecewise function that is

derived from the Project-Function operation (described below). The addition of two

75

Function PROJECT-Function(fpw, xi)
64 Initialize a piecewise function hpw
65 foreach f ∈ fpw do

66 Solve ∂f

∂xi
= 0 for closed-form solutions x̄i = g∗(x)

67 Compute ḡ(x) = f(xi = x̄, x)
68 Compute ˇg(x) = f(xi = LBx, x)
69 Compute ˆg(x) = f(xi = UBx, x)
70 Solve ḡ, ǧ, and ĝ pairwise for intersection range set r
71 foreach r ∈ r do
72 Detemine either ḡ, ǧ, or ĝ is the largest on range r
73 Add the function with range r to hpw

74 return hpw

piecewise functions is done by adding their sub-functions, which may have different domains.

We will use the following two functions for illustration:

f12(x1, x2) =



fa
12 if x1 ∈ [0, 4], x2 ∈ [0, 6]

f b
12 if x1 ∈ [0, 4], x2 ∈ [6, 10]

f c
12 if x1 ∈ [4, 10], x2 ∈ [0, 6]

fd
12 if x1 ∈ [4, 10], x2 ∈ [6, 10]

(4.1)

f23(x2, x3) =



fa
23 if x2 ∈ [0, 3], x3 ∈ [0, 7]

f b
23 if x2 ∈ [0, 3], x3 ∈ [7, 10]

f c
23 if x2 ∈ [3, 10], x3 ∈ [0, 7]

fd
23 if x2 ∈ [3, 10], x3 ∈ [7, 10]

(4.2)

When adding two piecewise functions, we first identify the common variables between the

two functions and create a new set of atomic ranges for the variables (line 55). For example,

when adding the functions f12 and f23 above, the only common variable is x2, and the atomic

76

ranges for x2 are [0, 3], [3, 6], and [6, 10]. The ranges of the other variables remain unchanged

from their original functions. We then take the Cartesian product of the range sets of all

common variables and associate the appropriate function to that range. For example, adding

f12 and f23 will result in f123 (line 56-62):

f123(x1, x2, x3) =



fa
12 + fa

23 if x1 ∈ [0, 4], x2 ∈ [0, 3], x3 ∈ [0, 7]

fa
12 + f b

23 if x1 ∈ [0, 4], x2 ∈ [0, 3], x3 ∈ [7, 10]

f c
12 + fa

23 if x1 ∈ [4, 10], x2 ∈ [0, 3], x3 ∈ [0, 7]

f c
12 + f b

23 if x1 ∈ [4, 10], x2 ∈ [0, 3], x3 ∈ [7, 10]

. . .

(4.3)

PROJECT-Function: Projecting out a variable xi from a piecewise function means pro-

jecting out xi from every sub-function f(xi, xi1 , . . . , xik):

g(xi1 , . . . , xik) = max
xi

f(xi, xi1 , . . . , xik) (4.4)

First, we solve the following for closed-form solutions (line 66):

∂f(xi, xi1 , . . . , xik)

∂xi

= 0 (4.5)

Let x̄i = g∗(xi1 , . . . , xik) be the solution to the above equation, one candidate function for g

is (line 67):

ḡ(xi1 , . . . , xik) = f(xi = x̄i, xi1 , . . . , xik) (4.6)

77

We then compute other two candidate functions (line 68-69):

ǧ = f(xi = LBxi
, xi1 , . . . , xik) (4.7)

ĝ = f(xi = UBxi
, xi1 , . . . , xik) (4.8)

Next, we need to find the intervals where each of the functions ḡ, ǧ, and ĝ is the

largest (line 70-73). Those intervals are the intersections between the three functions and,

thus, we solve each of the equations below to find them:

ǧ(xi1 , . . . , xik) = ĝ(xi1 , . . . , xik) (4.9)

ǧ(xi1 , . . . , xik) = ḡ(xi1 , . . . , xik) (4.10)

ĝ(xi1 , . . . , xik) = ḡ(xi1 , . . . , xik) (4.11)

The result of this process is the set of intervals where either ḡ, ǧ, or ĝ is the largest. The

projected function g is the piecewise function that consists of ḡ, ǧ, and ĝ with the intervals

that they are the largest in.

Unfortunately, it is not always possible to find closed-form solutions to the partial derivative

in Equation (4.5). We discuss below two types of functions – binary linear and quadratic

functions – where it is possible to find closed-form solutions. We assume that all coefficients

are non-zero.

• Binary linear functions of the form f(xi, xi1) = axi+bxi1+c. By following the monotonicity

property of linear functions, we can find g(xi1) = maxxi
f(xi, xi1) at the two extremes:

g(xi1) =


f(xi = LBxi

, xi1) if a > 0

f(xi = UBxi
, xi1) otherwise

(4.12)

78

• Binary quadratic functions of the form f(xi, xi1) = ax2
i + bxi + cx2

i1
+ dxi1 + exixi1 + f .

We first take the partial derivative and setting it to 0 to find the critical point:

∂f(xi, xi1)

∂xi

= 0 (4.13)

x̄i =
−b− exi1

2a
(4.14)

As x̄i has to belong to the interval [LBxi
, UBxi

], we solve the inequalities below to find the

range xi1 as the domain of ḡ(xi1):

LBxi
≤ −b− exi1

2a
≤ UBxi (4.15)

Example 1: Consider that agent a1 projects out its variable x1 from the sub-function

f(x1, x2):

f(x1, x2) = −2x2
1 + 4x1 + 2x2

2 + x2 + 7x1x2 − 10 (4.16)

where x1 ∈ [−5, 5] and x2 ∈ [−10, 10]. The agent needs to find the piecewise function

g(x2) = maxx1 f(x1, x2). The two functions at the bounds of x1’s range are:

ǧ(x2) = f(x1 = −5, x2) = 2x2
2 − 34x2 − 80 x2 ∈ [−10, 10] (4.17)

ĝ(x2) = f(x1 = 5, x2) = 2x2
2 + 36x2 − 40 x2 ∈ [−10, 10] (4.18)

79

First, we find the critical point of f by taking the partial derivative:

∂f(x1, x2)

∂x1

= 0 (4.19)

−4x1 + 4 + 7x2 = 0 (4.20)

x1 =
7x2 + 4

4
(4.21)

Since x1 ∈ [−5, 5], we need to find the appropriate range of x2:

−5 ≤ x1 ≤ 5 (4.22)

−5 ≤ 7x2 + 4

4
≤ 5 (4.23)

−24
7
≤ x2 ≤

16

7
(4.24)

Now, we get the function ḡ(x2) at the critical point x1 =
7x2+4

4
:

ḡ(x2) = f(x1 =
7x2 + 4

4
, x2) (4.25)

=
65

8
x2
2 + 8x2 − 8 (4.26)

where x2 ∈ [−24
7
, 16

7
].

Next, we will find all intersection points of ǧ, ĝ, and ḡ by solving them pairwise. By solving

ǧ = ĝ, we have:

ǧ(x2) = ĝ(x2) (4.27)

2x2
2 − 34x2 − 80 = 2x2

2 + 36x2 − 40 (4.28)

x2 = −
4

7
(4.29)

80

Solving ǧ = ḡ:

ǧ(x2) = ḡ(x2) (4.30)

2x2
2 − 34x2 − 80 =

65

8
x2
2 + 8x2 − 8 (4.31)

x2 = −
24

7
(4.32)

Solving ĝ = ḡ:

ĝ(x2) = ḡ(x2) (4.33)

2x2
2 + 36x2 − 40 =

65

8
x2
2 + 8x2 − 8 (4.34)

x2 =
16

7
(4.35)

After finding all intersection points of the three functions, we combine them with the bounds

of x2’s range. This will result in a set of ranges: [−10,−24
7
], [−24

7
,−4

7
], [−4

7
, 16

7
], [16

7
, 10]. In

each range, by choosing an arbitrary point and evaluating the functions ǧ, ḡ, and ĝ, we can

determine which one is the largest on that range. Finally, the projection of the utility function

f(x1, x2) is:

g(x2) = max
x1

f(x1, x2) (4.36)

= max
x1

(
−2x2

1 + 4x1 + 2x2
2 + x2 + 7x1x2 − 10

)
(4.37)

=



2x2
2 − 34x2 − 80, x2 ∈ [−10,−24

7
]

65
8
x2
2 + 8x2 − 8, x2 ∈ [−24

7
,−4

7
]

65
8
x2
2 + 8x2 − 8, x2 ∈ [−4

7
, 16

7
]

2x2
2 + 36x2 − 40, x2 ∈ [16

7
, 10]

(4.38)

81

4.2.2 Approximate Continuous DPOP

In general C-DCOPs, it is not always possible to find a closed-form solution to Equation (4.5)

(e.g., it is a multivariate equation). Therefore, an approximation approach is desired for

C-DCOPs.

In this section, we introduce Approximate Continuous DPOP (AC-DPOP), which is an

approximation algorithm that can solve C-DCOPs without any restriction on the functional

form of the constraint utilities. AC-DPOP is similar to DPOP in that the algorithm has

the same three phases: pseudo-tree generation, UTIL propagation, and VALUE propagation.

The pseudo-tree generation phase is identical to that of DPOP, and the UTIL and VALUE

propagation phases share some similarities.

We now describe how these two propagation phases work at a high level. In the UTIL

propagation phase, like DPOP, agents in AC-DPOP first discretizes the domains of variables

and sends up UTIL tables that contain utilities for each value combination of values of

separator agents. However, unlike DPOP, agents in AC-DPOP perform local optimization of

these values by “moving” them along the gradients of relevant utility functions in order to

improve the overall solution quality. As such, the addition and projection operators have to

be updated as well. In the VALUE propagation phase, like DPOP, agents in AC-DPOP sends

down their best value down to their children in the pseudo-tree. However, unlike DPOP,

agents in AC-DPOP may receive values of ancestors that do not map to computed utilities.

As such, the agents must perform local interpolation of the utilities value in this phase.

We now describe the algorithm in more detail, where we focus on the UTIL and VALUE

propagation phases of the algorithm.

82

Procedure AC-UTIL(Ti)
75 if isLeaf() then
76 V ← DiscretizePPDomain()
77 V ′ ← LeafMoveValues(V)
78 Tpi ← CreateUtilTable(V ′)
79 else
80 receive Utilc(Tc) from each ac ∈ Childreni

81 Add additional tuples and interpolate utilities for all Tc

82 UTILi ← Add

(
fs
i

as∈Separatori
, Tc
ac∈Childreni

)
83 V ′ ← NonLeafMovePPValues(UTILi)
84 Tpi ← Interpolate(V ′, UTILi)
85 send Utili(Tpi) to Parenti

UTIL Propagation: In this phase, each leaf agent first discretizes the domains of agents in

its separator (i.e., its parent and pseudo-parents) and then stores the Cartesian product of

these discrete values in set V (line 76). Therefore, each element v ∈ V is a tuple 〈vi1 , . . . , vik〉,

where vij is the value of separator agent aij .

Then, for each tuple v ∈ V , the agent “moves” each value vij in the tuple along the gradient

of each function that is relevant to agent aij (line 77). Specifically, the agent updates value

vij for each separator agent xij of the leaf agent xi:

vij = vij + α
∂fij(xi, xij)

∂xij

∣∣∣∣vij
argmaxxi

fij (xi,xij
=vij)

(4.39)

, where fij(xi, xij) is the utility function between the leaf agent xi and the separator agent

xij , and α is the learning rate of the algorithm. The agent “moves” the values until they have

either converged or a maximum number of iterations is reached. Then, the updated values in

V ′ and their corresponding utilities define the UTIL table that is sent to the parent agent in

a UTIL message (line 78).

83

As in DPOP, each non-leaf agent will first wait for the UTIL messages from each of its

children. When all the UTIL messages are received, the agent processes the UTIL tables in

the UTIL message from each child. Note that in regular DPOP, the Cartesian product of the

values of agents are consistent across the UTIL tables of all children (i.e., if the values of

an agent a exists in the Cartesian products of two children, then those values are identical).

The reason is because all agents agree on the discretization of the domain of agent a and

do not update the value of that agent (such as through Equation (4.39)). Therefore, each

agent can easily add up the utilities in the UTIL tables received together with the utilities of

constraints between the agent and its separator.

In contrast, since the values of agents are updated according to Equation (4.39) in AC-DPOP,

these values may no longer be consistent across different UTIL tables received. To remedy

this issue, each agent first adds additional tuples to each UTIL table received such that

the Cartesian product of the values of agents are consistent across all the UTIL tables.

Then, it approximates the utilities of the newly added tuples by interpolating between the

utilities of the existing tuples. Finally, since the UTIL tables are now all consistent, the agent

adds up the utilities in the UTIL tables of children together with the utilities of constraints

between the agent and its separator in the same way as DPOP. However, if some variables

in the separator are missing, the agent will discretize and add their domains to the UTIL

table (line 81-82).

After the utilities are added up, similar to leaf agents, the agent xi will proceed to repeatedly

update the values vij of the separator aij in the updated Cartesian product V using:

vij = vij + α
∂fij(xi, xij)

∂xij

∣∣∣∣vij
argmaxxi

UTILi(xi,vi1 ,...,vik)

(4.40)

84

where UTILi is the utility table that is constructed from the summation of the children’s

utilities and the utilities of constraints between the agent xi with its separator set (line 83).

The key difference between this Equation (4.40) and the Equation (4.39) used by leaf agents

is that the substitution of fij(xij = vij) with UTILi(vi1 , . . . , vik). The reason for this

substitution is that the utilities in the UTIL tables of leaf agents are only a function of

constraints with their separator agents and the functional form of those constraints are known.

Therefore, leaf agents can optimize exactly those functions to get accurate gradients. In

contrast, utilities in the UTIL tables of non-leaf agents are also a function of the constraints

between its descendant agents and its separator agent, and the functional form of those

constraints are not known. They are only represented by samples within the UTIL tables

received and are now integrated into the UTIL table of the non-leaf agent. Therefore, in

Equation (4.40), the agent approximates its maximum value xi by choosing the best value of

under the assumption that the values of the other separator agents are exactly the same as

in the tuple 〈vi1 , . . . , vik〉 that is being updated.

After these values are all updated, the agent approximates their corresponding utilities by

interpolating between known utilities and sends these utilities up to its parent in a UTIL

message (line 84). These UTIL messages propagate up to the root agent, which then starts

the VALUE phase.

VALUE Propagation: The root agent starts this phase after processing all the UTIL

messages received from its children in the UTIL phase. It chooses its best value based on

its computed UTIL table and sends this value down to its children. Like in DPOP, each

agent will repeat the same process after receiving the values of its parent and pseudo-parents.

However, unlike DPOP, an agent may receive the information that its parent or pseudo-parent

is taking on a value that doesn’t correspond to an existing value in the agent’s UTIL table

due to the values being moved during the UTIL propagation phase. As a result, the agent

85

will need to approximate the utility for this new value received and it does so by interpolating

between known utilities in its UTIL table.

Once all the leaf agents receive VALUE messages from their parents and choose their best

values, the algorithm terminates.

Example 2: Given the following constraint functions of the pseudo-tree where x1 is the parent

of the only child x4; both leaves x2 and x3 are the children of x4 and are the pseudo-children

of x1:

f13(x1, x3) = 16x2
1 + 13x1 + 12x2

3 + 18x3 + 9x1x3 − 13 (4.41)

f34(x3, x4) = −3x2
3 + 18x3 − 8x2

4 + 8x4 + 2x3x4 + 12 (4.42)

Agent x3 discretizes its domain [−100, 100] into the set of values V =

{−100,−50, 0, 50, 100}, and computes the Cartesian product of x1 and x4’s values

V × V = {〈−100,−100〉, 〈−100,−50〉, . . . 〈0, 0〉, . . . }. To move the values of x1 and x4 in

the tuple 〈0, 0〉, the agent follows the Equation (4.39):

vx1 = vx1 + α
∂f(x1, x3)

∂x1

∣∣∣∣vx1
argmaxx3

f13(x1=vx1 ,x3)

(4.43)

= 0 + 0.001 (32x1 + 9x3 + 13)|x1=0
x3=100 (4.44)

= 0.913 (4.45)

86

Similarly, x3 moves value of its parent x4:

vx4 = vx4 + α
∂f(x3, x4)

∂x4

∣∣∣∣vx4
argmaxx3

f34(x3,x4=vx4)

(4.46)

= 0 + 0.001 (−16x4 + 2x3 + 8)|x4=0
x3=3 (4.47)

= 0.014 (4.48)

Example 3: With the same pseudo-tree from Example 2, let’s consider the constraint

function f14(x1, x4) = x2
1 + 19x1 + 3x2

4 − 4x4 + 16x1x4 − 8, where x4 receives the following

UTIL messages from x3 and x2:

(a) UTILx4
x3

(b) UTILx4
x2

x1 x4 Utility x1 x4 Utility

-1.3 -1.4 22.79 -2.3 2.7 19.57

2.1 1.8 23.49 -1.4 -0.3 26.38

2.2 0.4 19.09 1.5 0.5 27.20

As one UTIL message doesn’t have some or all value tuples from the other UTIL message

(e.g., UTILx4
x3

doesn’t have the tuple 〈−2.3, 2.7〉 from UTILx4
x2
), agent x4 needs to add these

missing tuples and approximate their utilities using local interpolation. Then, x4 adds up

the two UTIL messages, which now have identical value tuples, with the constraint function

f14(x1, x4). This process results in the table UTILx4 :

87

(a) UTILx4
x3

(b) UTILx4
x2

(c) UTILx4

x1 x4 Utility x1 x4 Utility x1 x4 Utility

-1.3 -1.4 22.79 -2.3 2.7 19.57 -2.3 2.7 -93.22

2.1 1.8 23.49 -1.4 -0.3 26.38 -1.3 -1.4 57.80

2.2 0.4 19.09 1.5 0.5 27.20 -1.4 -0.3 24.13

-2.3 2.7 21.91 -1.3 -1.4 25.42 1.5 0.5 81.52

-1.4 -0.3 22.20 2.1 1.8 25.57 2.1 1.8 148.37

1.5 0.5 20.82 2.2 0.4 26.28 2.2 0.4 96.97

Now, the agent x4 moves its parent x1’s values:

vx1 = vx1 + α
∂f(x1, x4)

∂x1

∣∣∣∣vx1
argmaxx4

UTILx4 (x1=vx1 ,x4)

(4.49)

= 2.2 + 0.001 (2x1 + 16x4 + 19)|x1=2.2
x4=1.75 (4.50)

= 2.25 (4.51)

To find the argmax value, the agent x4 first creates the value set {−99.75,−99.5, . . . , 99.75}

by discretizing its domain [−100, 100]. The agent then combines every value with x1 = 2.2 to

create the set of tuples {〈2.2,−99.75〉, 〈2.2,−99.5〉 . . . , 〈2.2, 99.75〉}. By approximating the

utilities with local interpolation from UTILx4 , x4 chooses the tuple 〈2.2, 1.75〉 with the largest

utility and thus pick the argmax value as 1.75. This example also illustrates the argmax

operation used in VALUE phase.

88

4.2.3 Clustered Approximate Continuous DPOP

A possible limitation of AC-DPOP is that the number of tuples in the Cartesian product

that is propagated in the UTIL messages can be quite large, especially if additional tuples

are added to maintain consistency between the UTIL tables of children. In communication-

constrained applications, it is preferred that the number and size of messages transmitted

between agents to be as small as possible.

With this motivation in mind, we extend AC-DPOP to Clustered AC-DPOP (CAC-DPOP),

which bounds the number of tuples sent in UTIL messages to limit the message size. CAC-

DPOP is identical to AC-DPOP in every way except that agents choose k representative

tuples and their corresponding utilities to be sent up to their parents in UTIL messages. To

choose these k representative tuples, we use the k-means clustering algorithm [51] to cluster

the tuples and then approximate the utilities of those tuples through interpolation. This

approach assumes that tuples that are close to each other will have similar values.

Note that while only k tuples are sent between agents in UTIL messages, each agent

still maintains the original unclustered set of tuples in their memory. Thus, when they

perform interpolation during the VALUE propagation phase, they will use the utilities of the

unclustered set of tuples since they are more accurate than the utilities of the clustered set of

tuples.

4.2.4 Continuous DSA

Continuous DSA (C-DSA) is an approximation C-DCOP algorithm that is based on DSA.

Similar to DSA, each agent in C-DSA initially chooses a random value and loops over a

sequence of steps that improves the solution quality. Agents also stochastically decide to

89

keep their current values or change them to new values. The difference between C-DSA and

DSA lies in the way agents choose their values. Instead of choosing from a discrete domain,

each C-DSA agent now chooses from a continuous range by computing the maximum of

the aggregate utility functions given the current values of neighboring agents. Specifically,

after receiving messages containing the current values of neighbors, each agent evaluates the

corresponding multivariate utility functions, resulting in a unary function for each constraint.

Then, by adding all the unary functions together and computing its maximum, agents choose

the value that has the largest gain.

4.3 Theoretical Results

For each reward function f(xi, xi1 , . . . , xik) of an agent xi and its separator agents xi1 , . . . , xik ,

assume that agent xi discretizes the domains of the reward function into hypercubes of size

m (i.e., the distance between two neighboring discrete points for the same agent xij is m).

Let ∇f(v) denote the gradient of the function f(xi, xi1 , . . . , xik) at v = (vi, vi1 , . . . , vik):

∇f(v) = (
∂f

∂xi

(vi),
∂f

∂xi1

(vi1), . . . ,
∂f

∂xik

(vik)) (4.52)

Furthermore, let |∇f(v)| denote the sum of magnitude:

|∇f(v)| = | ∂f
∂xi

(vi)|+ |
∂f

∂xi1

(vi1)|+ . . .+ | ∂f
∂xik

(vik)| (4.53)

, and assume that |∇f(v)| ≤ δ holds for all utility functions in the DCOP and for all v.

Theorem 7 The error bound of discrete DPOP is |F|mδ.

90

Proof: First, we prove that the magnitude of the projection of function f is also bounded

from above by δ. Let xi = vi be the point where:

g(xi1 , . . . , xik) = f(xi = vi, xi1 , . . . , xik) (4.54)

= max
xi

f(xi, xi1 , . . . , xik) (4.55)

Then, assume that |∇g(v)| > δ for all v. Let v′ = (vi, vi1 , . . . , vik) and v′−i = (vi1 , . . . , vik),

then:

|∇f(v′)| = | ∂f
∂xi

(vi)|+ |
∂f

∂xi1

(vi1)|+ . . .+ | ∂f
∂xik

(vik)| (4.56)

≥ | ∂f
∂xi1

(vi1)|+ . . .+ | ∂f
∂xik

(vik)| (4.57)

= |∇g(v′−i)| (4.58)

> δ (4.59)

This contradicts our assumption that |∇f(v)| ≤ δ for all v.

The error bound of each function is then mδ because each hypercube is of size m and

the magnitude of the gradient within each hypercube is at most δ. As the error may be

accumulated each time an agent sums up utility functions, the total error bound for a problem

is thus |F|mδ, where |F| is the number of utility functions in the problem. �

Theorem 8 The error bound of AC-DPOP is |F|(m+ |A|kαδ)δ, where k is the number of

times each agent “moves” values of its separator by calling Equation (4.39) or (4.40)

Proof: After each “move” by either Equation (4.39) or (4.40), the maximum size of the

hypercubes increases by αδ, where α is the learning rate. Since each agent performs this

update only k times, the largest increase in the size of the hypercube is kαδ. Finally, since

91

the value of an agent can be updated by any of its children or pseudo-children, the total

increase in the size of the hypercube is thus |A|kαδ, where |A| is the number of agents in the

problem. Therefore, this combined with the proof of the bound for discrete DPOP, the error

bound is thus |F|(m+ |A|kαδ)δ. �

Theorem 9 In a binary constraint graph G = (X, E), the number of messages of HCMS

and C-DSA with k iterations is 4k|E| and 2k|E|, respectively. The number of messages of

discrete DPOP, AC-DPOP, and CAC-DPOP is 2|X|.

Proof: HCMS has the same number of messages as that of the Max-Sum algorithm [18].

Every edge of the constraint graph has two variable nodes and one function node and, thus,

it takes 4 messages per edge in one iteration. The total number of messages in HCMS is thus

4k|E|. On the other hand, C-DSA requires 2 messages per edge in one iteration and, thus,

requiring 2k|E| messages in total.

The number of messages required by AC-DPOP and CAC-DPOP is identical to that of DPOP

– each agent sends one UTIL message to its parent and one VALUE message to each of its

children in the pseudo-tree. Since pseudo-trees are spanning trees, the number of messages is

thus 2|X|. �

Theorem 10 The message size complexity of discrete DPOP, AC-DPOP, and CAC-DPOP

is O(dw), O((d|X|)w), and max{|A|, k}, respectively, where d is the number of points used

by each agent to discretize the domain of its separator agents, w is the induced width of the

pseudo-tree, and k is the number of clusters used by CAC-DPOP.

Proof: For DPOP, the message size complexity is O(dw) [63]. For AC-DPOP, as the values

of an agent are “moved” by their children and pseudo-children, in the worst case, all the

92

values are unique and the maximum number of such values is O(d|X|). The message sizes are

then similar to discrete DPOP with O(d|X|) values per agent. Therefore, its message size

complexity is O((d|X|)w). For CAC-DPOP, the message size complexity of UTIL messages

is O(k) since only the utilities of the centroids of k clusters are sent. And the message

size complexity of VALUE messages is O(|A|), such as in a fully-connected graph where

an agent sends the values of every agent from the root of the pseudo-tree down to itself in

a VALUE message to its child. Therefore, the message complexity of the algorithm is the

O(max{|A, k}). �

4.4 Related Work

Researchers have proposed several algorithms to solve C-DCOPs. One of such algorithms

is Continuous Max-Sum (CMS) [69], which is based on Max-Sum [18], a belief propagation

algorithm. To represent the constraints, CMS uses multivariate continuous piecewise linear

functions (CPLFs) and later encodes the n-ary CPLFs as n-simplexes. To add two CPLFs,

CMS partitions the domains of the two functions and then finds the simplexes that make up

the resulting summation function. To project a CPLF, the function is projected onto the

corresponding plane and the result is the upper envelope of the simplexes. However, CMS is

not suitable for the problems where constraint functions are smooth, and it does not provide

quality guarantee for the solution.

Later, Voice et al. [79] proposed Hybrid Continuous Max-Sum (HCMS) to solve C-DCOPs

with differentiable functions. Instead of working directly on continuous domains, HCMS

first discretizes the domain into a number of initial discrete points and then uses continuous

non-linear optimization techniques such as gradient method and Newton method to optimize

93

the marginal function at each variable. However, similar to CMS, HCMS does not provide

solution quality guarantee.

Recently, Choudhury et al. [7] proposed Particle Swarm Optimization Based Functional

DCOP (PFD) which is based on Particle Swarm Optimization (PSO) technique. While

being an iterative and a heuristic algorithm, PFD shares the same limitation with CMS and

HCMS that they do not provide guarantee for their solutions. Besides, Fransman et al. [23]

proposed Bayesian DPOP (B-DPOP), an Bayesian optimization based algorithm, to solve

C-DCOPs. While B-DPOP guarantees that it will eventually converge to the global optimum

for Lipschitz-continuous objective functions, it does not provide guarantees on intermediate

solutions prior to convergence.

4.5 Experimental Results

We empirically evaluate EC-DPOP, AC-DPOP, CAC-DPOP, and C-DSA15 against (discrete)

DPOP and HCMS on random trees, random graphs, and the Distributed Radar Coordination

and Scheduling Problem (DRCSP), which was introduced in Section 2.7. We adapt the

(discrete) DPOP algorithm to solve C-DCOPs by discretizing the continuous domain into

discrete representative points.16

We measure the quality of solutions, simulated runtimes [70] as well as the number of messages

taken by the algorithm. Since HCMS and C-DSA are iterative algorithms that may take a

long time and a large number of messages before converging, in order for fair comparisons,

we initially planned to terminate the two algorithms after it sends as many messages as

the DPOP-variants. However, in a single iteration, HCMS requires more messages than the

DPOP-variants, and C-DSA requires the exact number of messages as the DPOP-variants.
15We use DSA-B and set p = 0.6.
16https://github.com/YODA-Lab/Continuous_DCOPs.

94

https://github.com/YODA-Lab/Continuous_DCOPs

|A| HCMS (time) C-DSA (time) DPOP (time) AC-DPOP (time) EC-DPOP (time)5 10 15 20
10 129 (129) 177 (34) 220 (170) 330 (710) 356 (735) 374 (753) 404 (774) 518 (406)
20 306 (190) 468 (49) 541 (270) 795 (1.3s) 870 (1.4s) 947 (1.4s) 1008 (1.4s) —
30 436 (290) 678 (74) 766 (404) 1128 (1.9s) 1230 (2.0s) 1331 (2.0s) 1414 (2.1s) —
40 636 (358) 1137 (191) 1104 (620) 1587 (3.0s) 1728 (3.0s) 1876 (3.0s) 1980 (3.1s) —
50 832 (393) 1294 (420) 1456 (741) 2109 (3.8s) 2316 (3.6s) 2533 (3.6s) 2687 (3.8s) —

Table 4.1: Varying the Number of Agents on Random Trees with Three Initial Discrete Points

|A| HCMS (time) C-DSA (time) DPOP (time) AC-DPOP (time) CAC-DPOP (time)
5 10 15 20 5 10 15 20

15 265 (206) 523 (38) 522 (321) 710 (822) 763 (925) 824 (949) 891 (1.0s) 639 (1.2s) 697 (1.3s) 715 (1.3s) 787 (1.5s)
20 345 (308) 842 (43) 865 (6.3s) 1171 (14.7s) 1285 (17.6s) 1334 (32.7s) 1407 (41.7s) 1006 (2.4s) 1017 (2.5s) 975 (2.7s) 973 (2.9s)
25 439 (500) 1108 (64) — — — — — 1040 (8.2s) 1101 (10.6s) 1024 (11.9s) 1027 (13.8s)
30 506 (605) 1400 (164) — — — — — 1513 (47.6s) 1682 (99.5s) 1597 (96.3s) 1656 (178.0s)

Table 4.2: Varying the Number of Agents on Random Graphs with p1 = 0.2 and Three Initial
Discrete Points

(a) Random Trees with |A| = 20 (b) Random Graphs with |A| = 20 and p1 = 0.2

Points HCMS (time) DPOP (time) AC-DPOP (time) HCMS (time) DPOP (time) AC-DPOP (time) CAC-DPOP (time)
1 0 (174) 0 (238) 254 (572) 0 (263) 15 (220) 428 (613) 431 (1.5s)
3 306 (190) 541 (270) 870 (1.4s) 345 (308) 865 (6.3s) 1285 (17.6s) 1017 (2.5s)
9 554 (291) 990 (369) 1133 (1.1s) 706 (552) — — 1272 (1185.9s)

Table 4.3: Varying the Number of Discretized Points

We thus let HCMS and C-DSA terminate after one iteration. We did not report the actual

number of messages since they could be trivially computed via Theorem 9.

Tables 4.1 and 4.2 show the reported solution qualities in a unit of 1,000 and simulated

runtimes in milliseconds and seconds (ending with s) on random trees and graphs, respectively,

where we vary the number of agents |A| and every algorithm discretizes the domains of

variables into three points. We also vary the number of times AC-DPOP and CAC-DPOP

agents “move” a point (by calling Equations (4.39) or (4.40)) from 5 to 20. Tables 4.3(a)

and 4.3(b) show the results on random trees and graphs, respectively, where we set the

number of agents |A| to 20 and vary the number of discrete points from 1 to 9. In all our

experiments, we set the domain of each agent to be in the range [−100, 100]. We generate

95

|A| HCMS (time) C-DSA (time) AC-DPOP (time) CAC-DPOP (time)
5 10 15 20 5 10 15 20

15 796 (33) 758 (22) 1022 (124) 982 (178) 975 (203) 1016 (268) 987 (144) 923 (182) 955 (203) 1014 (246)
20 888 (40) 1012 (24) 1311 (204) 1347 (355) 1364 (453) 1394 (573) 1237 (171) 1256 (251) 1219 (322) 1278 (396)
25 1186 (47) 1371 (26) 1842 (240) 1928 (423) 1849 (548) 1829 (724) 1676 (177) 1812 (286) 1777 (351) 1790 (454)
30 1567 (52) 1704 (25) 2282 (432) 2372 (899) 2353 (1.1s) 2354 (1.5s) 2036 (247) 2057 (444) 2145 (570) 2135 (766)

Table 4.4: Varying the Number of Agents on Distributed Radar Coordination and Scheduling
Problems with Three Initial Discrete Points

utility functions that are binary quadratic functions, where the signs and coefficients are

randomly chosen. Our experiments were performed on a 2.10GHz machine with 8GB of

RAM. Results are averaged over 20 runs, each with a timeout of 30 minutes.

Random Trees: We omit the results of CAC-DPOP from Table 4.1 since it finds identical

solutions to AC-DPOP on trees – there is no need to perform any clustering on trees since

an agent does not receive utilities for value combinations of its parent from its children since

there are no backedges in the pseudo-tree.

Not surprisingly, EC-DPOP finds the best solution since it is an exact algorithm. However, it

could only solve the smallest of instances – due to memory limitations, the agents could not

store the necessary number of piecewise functions to accurately represent the utility functions

after adding functions and projecting out variables. In general, AC-DPOP finds better

solutions than DPOP, C-DSA and HCMS but at the cost of higher runtimes. AC-DPOP finds

better solutions than DPOP because AC-DPOP spends more time on updating the value of

representative points before propagating up the pseudo-tree. In contrast, the values chosen by

DPOP is fixed from the start. HCMS performs poorly because a single iteration is insufficient

for it to converge to a good solution. Interestingly, a single iteration is sufficient for C-DSA

to find solutions that are comparable in quality to those found by DPOP. Additionally, as

expected, the quality of solutions found by AC-DPOP improves with increasing number of

times points are “moved” by the algorithm.

96

We omit the results of EC-DPOP from Table 4.3(a) as it failed to solve these instances and

we omit the results of CAC-DPOP because it finds identical solutions to AC-DPOP on trees.

We do not include C-DSA in the experiment because it does not discretize the domains. Not

surprisingly, the quality of solutions found by all the three algorithms and their runtimes

increase with increasing number of points. The reason is that the agents can more accurately

represent the utility function with more points.

Random Networks: The trends in Table 4.2 are similar to those in random trees, except

that CAC-DPOP finds solutions with qualities between that of AC-DPOP and DPOP.

The reason is that CAC-DPOP clusters the points into k clusters and only propagate a

representative point from each cluster. Therefore, the k points represent the utility functions

less accurately than the full number of unclustered points that AC-DPOP uses. However,

this reduced number of points propagated also improves the scalability of CAC-DPOP, where

it is able to solve problems larger problems than AC-DPOP and DPOP.

The trends in Table 4.3(b) are again similar to that in random trees, except that both

AC-DPOP and DPOP ran out of memory with 9 points. Interestingly, CAC-DPOP also finds

better solutions than AC-DPOP when they use only 1 point.

Distributed Radar Coordination and Scheduling Problems: Not surprisingly, the

trends in Table 4.4 for the Distributed Radar Coordination and Scheduling Problems (DRC-

SPs) are similar to those in random trees and random networks. By representing the

constraints more accurately, AC-DPOP finds better solutions than C-DSA and HCMS but it

comes with the cost of higher runtimes. By clustering the points into k clusters, CAC-DPOP

only propagates the representative points during the solving process, and it results in smaller

runtimes than AC-DPOP. However, the tradeoff is that the constraints are now less accurately

97

represented, and thus the solution quality from CAC-DPOP is slightly worse than those from

AC-DPOP.

4.6 Discussions and Conclusions

Motivated by applications where agents choose their values from continuous ranges, researchers

have proposed C-DCOPs to model continuous variables. However, existing methods suffer

from the limitation that they do not provide quality guarantees. In this chapter, we remedied

this limitation by introducing (i) EC-DPOP, which finds exact solutions for C-DCOPs with

linear or quadratic utility functions and with tree-structure graphs; (ii) AC-DPOP, which

finds error-bounded solutions for general C-DCOPs; (iii) CAC-DPOP, which limits the

message size of AC-DPOP to a user-defined parameter k; and (iv) C-DSA, which is a scalable

local search C-DCOP algorithm. Experimental results showed that our algorithms find

better solutions than HCMS, an existing state-of-the-art algorithm, when given the same

communication limitations. Moreover, these algorithms combined extend the applicability of

DCOPs to more applications that require quality guarantees on the solutions found as well

as those that require limited communication capabilities.

While our algorithms advance the state of the art of C-DCOPs, to apply the algorithms to

solve real-world applications, we should take into account the scenarios on which algorithm

should be used. For applications that have tree-structure topology and the constraints can

be modeled as binary linear or quadratic functions, EC-DPOP could be used to find the

optimal solution for small problems. When the guarantee on the solution quality is required,

AC-DPOP is an appropriate algorithm in this case since AC-DPOP provides an error bound

on the solution quality. For those applications that seek a quick solution, CAC-DPOP is a

98

more scalable algorithm than AC-DPOP with trade-off on quality guarantee, and C-DSA is

appropriate for anytime solution.

99

Chapter 5

Dynamic Continuous Distributed

Constraint Optimization Problems

In many coordination problems, agents often require a wide range of actions and the envi-

ronment usually keeps changing over time. Distributed Constraint Optimization Problems

(DCOPs) have been widely employed to solve many multi-agent problems, but they lack

the capability to model the problems in such dynamic and complex environment. While

Dynamic DCOPs (D-DCOPs) and Continuous DCOPs (C-DCOPs) have been proposed to

model DCOPs in dynamic environments and DCOPs with continuous variables, respectively,

the two models were proposed in isolation and could only address one limitation at a time.

Therefore, in this chapter, we propose Dynamic Continuous DCOPs (DC-DCOPs), a novel

formulation that models both dynamic nature of the environment and continuous nature of

the variables, which are inherent in many multi-agent problems. In addition, we introduce

several greedy algorithms to solve DC-DCOPs and discuss their theoretical properties. Finally,

we empirically evaluate the algorithms in random networks and in distributed weather sensor

network application.

100

5.1 Introduction

For many coordination problems, DCOPs are a suitable model where agents need to coordinate

their value assignments to maximize the aggregate constraint utilities. In these problems,

DCOPs assume that the domains of variables are discrete and the environment does not

change over time. However, in many distributed multi-agent problems, agents often interact

in a more dynamic and complex environment. For example, in distributed sensor networks,

targets usually move from one location to another location from time to time, and thus their

location keeps changing dynamically over time. To adapt to such dynamic environment,

sensors should be augmented with the capability to change their sensing direction accordingly.

To address this concern, researchers have proposed Dynamic DCOPs (D-DCOPs) [47, 64, 65]

that models how the problem evolves during the solving process. In addition, to better sense

the targets of interest, whose locations correspond to a wide range of possibilities (i.e., the

set of all possible locations in a two-dimensional plane or a three-dimensional space of the

sensor network), the sensors should be equipped with a continuous range of sensing directions.

Therefore, researchers have introduced Continuous DCOPs (C-DCOPs) [69] that model

continuous variables with a bounded domain and represent the constraints in functional form.

While D-DCOPs and C-DCOPs have been proposed to address the two limiting assumptions

of DCOPs, the two models only address these assumptions in isolation. Thus, it remains

a challenge to model and solve the problems that both have the dynamism nature in the

environment and continuous nature of the variables. For example, in DRCSPs, the weather

phenomena will keep moving over time and has a wide range of possible locations in the sensor

network. Therefore, in this chapter, we propose Dynamic Continuous DCOPs (DC-DCOPs), a

novel formulation that models both dynamic environment and continuous variables, which are

present in many multi-agent problems. In addition, we introduce several greedy algorithms to

101

solve DC-DCOPs and discuss their theoretical properties. Finally, we empirically evaluate the

algorithms in random networks and in distributed radar coordination and sensing problem.

5.2 DC-DCOP Model

A Dynamic Continuous DCOP (DC-DCOP) is a tuple 〈A,X,Y,D,Ω,F, p0Y,T, γ, h, c, α〉,

where:

• A = {ai}pi=1 is a set of agents.

• X = {xi}ni=1 is a set of decision variables.

• Y = {yi}mi=1 is a set of random variables.

• D = {Dx}x∈X is a set of continuous domains of the decision variables. Each variable x∈X

takes values from the interval Dx = [LBx, UBx].

• Ω = {Ωy}y∈Y is a set of continuous domains of the random variables. Each variable y ∈ Y

takes values from the interval Ωy = [LBy, UBy].

• F = {fi}ki=1 is a set of utility functions, each defined over a mixed set of decision and random

variables: fi :
∏

x∈X∩xfi Dx ×
∏

y∈Y∩xfi Ωy → R+
0 ∪ {−∞}, where infeasible configurations

have −∞ rewards and xfi ⊆ X∪Y is the scope of fi. We divide the set of utility functions

into two sets: FX = {fx}, where xfx ∩ Y = ∅, and FY = {fy}, where xfy ∩ Y 6= ∅. Note

that FX ∪ FY = F and FX ∩ FY = ∅.

• p0Y = {p0y}y∈Y is a set of initial probability density functions of random variable y.

• T = {Ty}y∈Y is a set of transition functions, where each transition function is a conditional

density function Ty : Ωy ×P(Ωy)→ [0, 1] specifying the transition from a value dy ∈ Ωy to

a subset of Ωy.

• γ ∈ [0, 1] is a discount factor.

• h ∈ N is a finite horizon.

102

• C = {cx}x∈X is a set of switching cost functions, each defined over a set of decision variables:

cx : Dx ×Dx → R+
0 . Each switching cost function cx models the cost associated with the

change in the value of the decision variable x from one time step to the next.

• α : X→ A is a function that associates each decision variable to one agent.

Throughout this chapter, we assume that each agent controls exactly one decision variable

and that each utility function is associated with at most one random variable.17 The goal of

a DC-DCOP is to find a sequence of h+ 1 assignments x∗ for all the decision variables in X:

x∗ = argmax
x=〈x0,...,xh〉∈Σh+1

Fh(x) (5.1)

Fh(x) =
h∑

t=0

γt
[
F t

x(xt) + F t
y(xt)

]
︸ ︷︷ ︸

P

−
h−1∑
t=0

γt
[
Cx(xt, xt+1)

]
︸ ︷︷ ︸

Q

(5.2)

where Σ is the assignment space for the decision variables of the DC-DCOP. The first term

P refers to the optimization over h+ 1 time steps, with:

F t
x(x) =

∑
fi∈FX

fi(xi) (5.3)

F t
y(x) =

∑
fi∈FY

∫
Ωyi

fi(xi, yi) · ptyi(yi)dyi (5.4)

where xi is an assignment for all the variables in the scope xfi of the function fi; ptyi is the

probability density function of the random variable yi at time step t, and defined as:

ptyi(yi) =

∫
Ωyi

pt−1
yi

(yi) · T (yi,Ωyi)dyi (5.5)

17If multiple random variables are associated with a utility function, w.l.o.g., they can be merged
into a single variable.

103

The second term Q considers the penalty due to changes in decision variables’ values during

the optimization process:

Cx(xt, xt+1) =
∑
x∈X

cx(x
t, xt+1) (5.6)

is a penalty function that takes into account the difference in the decision variable assignments

between two time steps.

5.3 DC-DCOP Algorithms

We now introduce our DC-DCOP algorithms, which are built upon two sequential greedy

Dynamic DCOP algorithms: Forward and Backward [36]. The two algorithms have been

applied to solve the Dynamic DCOPs where each sub-problem is a discrete DCOP. However,

in DC-DCOPs, the sub-problem at every time step is a Continuous DCOP. Thus the original

version of Forward and Backward cannot be applied to solve DC-DCOPs. In this section,

we propose a new version of the two algorithms that can address and solve the C-DCOP at

every time step.

5.3.1 Forward

In general, Forward greedily solves each sub-problem in DC-DCOPs one time step at a

time starting from the first time step. In other words, it successively solves the C-DCOP

at each time step starting from t = 0 to t = h. When solving each C-DCOP, it takes into

account the switching cost incurred by changing the solution from time step t − 1 to the

optimal solution at time step t. Specifically, before solving the C-DCOP at each time step,

the agents run a pre-processing step, where they (1) reformulate the constraint between

decision and random variables, and (2) capture the cost of switching values between time

104

steps in new unary constraints of decision variables. For each constraint fi ∈ FY between

decision variables xi and a random variable yi, the following new constraint is created for

each time step 0 ≤ t ≤ h:

F t
i (xi) =

∫
Ωyi

fi(xi, yi) · ptyi(yi)dyi (5.7)

where ptyi(·) is the probability density function of random variable yi at time step t.

After reformulating the constraints between decision variables and random variable, the

agents create a new constraint to capture the cost of switching values across time steps.

Specifically, for each decision variable x ∈ X, the following new unary constraint is created

for each time step 0 < t ≤ h:

Ct
x(x

t) = −cx(xt−1, xt) (5.8)

After adding the switching cost constraints, the agents successively solve each C-DCOP from

time step t = 0 onwards using any off-the-shelf C-DCOP algorithm.

We use the following off-the-shelf C-DCOP algorithms to solve the problem at each time

step: AC-DPOP, CAC-DPOP, HCMS, and C-DSA [38]. AC-DPOP, CAC-DPOP, and HCMS

are inference-based algorithms, while C-DSA is a local search algorithm. AC-DPOP solves

C-DCOPs by first discretizing the domains of the variables into initial discrete values and

then using gradient methods to move the values of the parent and psedo-parent variables in

order to better approximate the constraint utilities. CAC-DPOP is a variant of AC-DPOP

that reduces the memory and time consumption of AC-DPOP by clustering the values of

the agents before sending them up the pseudo-tree. Instead of using pseudo-tree, HCMS

uses a factor graph to represent C-DCOPs and gradually adjusts agents’ values over a

number of iterations. Finally, C-DSA is a continuous stochastic algorithm, where each agent

105

communicates their assignment with neighboring agents and stochastically determines to

keep the current assignment or change to a better one.

5.3.2 Backward

Instead of solving the DC-DCOP one time step at a time forward starting from t = 0 towards

h, one can also greedily solve the problem backwards from t = h towards the first time step.

Similar to Forward, before solving the C-DCOP at each time step, agents in Backward

run a pre-processing step to reformulate the constraint between decision and random variables,

and to capture the switching cost between two time steps. To reformulate the constraints

between decision variables and a random variable, the agents calls Equation (5.7) and create

a new constraints for each time steps 0 ≤ t ≤ h. However, the key difference between

Backward and Forward is how the agents compute the new switching cost constraint at

each time step t. Specifically, when solving the C-DCOP at time step t, instead of taking into

account the switching cost between time step t and time step t− 1, agents in Backward

takes into account the switching cost between time step t and time step t+ 1.

Specifically, before solving each sub-problem, Backward creates a unary constraint for each

time step 0 ≤ t < h:

Ct
x(x

t) = −cx(xt, xt+1) (5.9)

After adding the switching cost constraints and the reformulated constraints between decision

variables and a random variable, the agents successively solve each C-DCOP from time step

t = h backward using any off-the-shelf C-DCOP algorithm. Similar to Forward, we use

AC-DPOP, CAC-DPOP, HCMS, and C-DSA to solve the C-DCOP at each time step. We will

106

empirically evaluate both greedy versions of these C-DCOP algorithms in the experimental

result section and will also discuss their theoretical properties in Section 5.4.

5.4 Theoretical Results

Error Bounds: We denote U∞ as the optimal solution quality of a DC-DCOP with an

infinite horizon and Uh as the optimal solution quality when the horizon h is finite. Let Fy(x)

be the utility of a regular C-DCOP where the decision variables are assigned x given values

y of the random variables. We define F∆
y = maxx∈Σ Fy(x)−minx∈Σ Fy(x) as the maximum

loss in solution quality of a regular DCOP for a given random variable assignment y and

F∆ = maxy∈ΣY F
∆
y where ΣY =

∏
y∈Y Ωy is the assignment space for all random variables.

Theorem 11 When γ < 1, the error U∞ − Uh of the optimal solution from solving DC-

DCOPs with a finite horizon h instead of an infinite horizon is bounded from above by γh

1−γ
F∆.

Proof: Let x̂∗ = 〈x̂∗
0, . . . , x̂∗

h, x̂∗
h+1, . . .〉 be the optimal solution of DC-DCOPs with infinite

horizon ∞:

U∞ =
∞∑
t=0

γt
[
F t

x(x̂∗
t) + F t

y(x̂∗
t)− Cx(x̂∗

t , x̂∗
t+1)
]

(5.10)

Ignoring switching costs after time step h, an upper bound U∞
+ of U∞ is defined as:

U∞
+ =

h−1∑
t=0

γt
[
F t

x(x̂∗
t) + F t

y(x̂∗
t)− Cx(x̂∗

t , x̂∗
t+1)
]

(5.11)

+
∞∑
t=h

γt
[
F t

x(x̂∗
t) + F t

y(x̂∗
t)
]

(5.12)

107

Let x∗ = 〈x∗
0, . . . , x∗

h〉 be the optimal solution of the DC-DCOPs with a finite horizon h:

Uh =
h−1∑
t=0

γt
[
F t

x(x∗
t) + F t

y(x∗
t)− Cx(x∗

t , x∗
t+1)
]

(5.13)

+
∞∑
t=h

γt
[
F t

x(x∗
h) + F t

y(x∗
h)
]

(5.14)

For x̂∗, if we change the solution for every C-DCOP after time step h to x̂∗
h, as

〈x̂∗
0, . . . , x̂∗

h, x̂∗
h, . . .〉, we get a lower bound U∞

− of Uh:

U∞
− =

h−1∑
t=0

γt
[
F t

x(x̂∗
t) + F t

y(x̂∗
t)− Cx(x̂∗

t , x̂∗
t+1)
]

(5.15)

+
∞∑
t=h

γt
[
F t

x(x̂∗
h) + F t

y(x̂∗
h)
]

(5.16)

Therefore, we get U∞
− ≤ Uh ≤ U∞ ≤ U∞

+ .

Next, we compute the difference between the two bounds:

U∞−Uh ≤ U∞
+ − U∞

− (5.17)

=
∞∑
t=h

γt
[
(F t

x(x̂∗
t) + F t

y(x̂∗
t))− (F t

x(x̂∗
h) + F t

y(x̂∗
h))
]

(5.18)

Notice that the quantity (F t
x(x̂∗

t)+F t
y(x̂∗

t))−(F t
x(x̂∗

h)+F t
y(x̂∗

h)) is the utility difference between

the value assignment x̂∗
t and x̂∗

h for a sub-problem in time step t, and thus is bounded by the

maximum loss of a regular C-DCOP:

(F t
x(x̂∗

t) + F t
y(x̂∗

t))− (F t
x(x̂∗

h) + F t
y(x̂∗

h)) ≤ F∆ (5.19)

108

Thus,

U∞ − Uh ≤ U∞
+ − U∞

− (5.20)

≤
∞∑
t=h

γt
[
F t

x(x̂∗
t) + F t

y(x̂∗
t)−F t

x(x̂∗
h)−F t

y(x̂∗
h)
]

(5.21)

≤
∞∑
t=h

γtF∆ (5.22)

≤ γh

1− γ
F∆ (5.23)

which concludes the proof. �

Error Bounds from C-DCOP Algorithms: For each reward function f(xi, xi1 , . . . , xik)

of an agent xi and its separator agents xi1 , . . . , xik , assume that agent xi discretizes the

domains of the reward function into hypercubes of size m (i.e., the distance between two

neighboring discrete points for the same agent xij is m). Let ∇f(v) denote the gradient of

the function f(xi, xi1 , . . . , xik) at v = (vi, vi1 , . . . , vik):

∇f(v) = (
∂f

∂xi

(vi),
∂f

∂xi1

(vi1), . . . ,
∂f

∂xik

(vik)) (5.24)

Furthermore, let |∇f(v)| denote the sum of magnitude:

|∇f(v)| = | ∂f
∂xi

(vi)|+ |
∂f

∂xi1

(vi1)|+ . . .+ | ∂f
∂xik

(vik)| (5.25)

Assume that |∇f(v)| ≤ δ holds for all utility functions in the DCOP and for all v.

Theorem 12 The error of AC-DPOP-based algorithms is bounded above by h · |F|(m +

|A|kαδ)δ + (h− 1) ·Θ|A|, where k is the number of times each agent “moves” values of its

separator, and Θ = maxx∈X cx(v, v
′) is the maximum of the bounded switching cost functions.

109

Proof: From Theorem 8, the error bound of solving a C-DCOP using AC-DPOP algorithm is

|F|(m+ |A|kαδ)δ. In DC-DCOPs, there are h C-DCOPs, each is a sub-problem at every time

step. Without taking into account the switching cost, the error bound of AC-DPOP-based

algorithms (e.g., Forward-AC-DPOP and Backward-AC-DPOP) is h · |F|(m+ |A|kαδ)δ. Given

Θ = maxx,x′ c(x, x′) as the maximum value of switching cost between two time steps, and

there are at most h − 1 switching times between h time steps from |A| agents, the upper

bound is then h · |F|(m+ |A|kαδ)δ + (h− 1) ·Θ|A|. �

Theorem 13 In a binary constraint graph G = (X, E), the number of messages of HCMS-

based algorithms and C-DSA-based algorithms with k iterations is h · 4k|E| and h · 2k|E|,

respectively. The number of messages of AC-DPOP-based algorithms and CAC-DPOP-based

algorithms is h · 2|X|.

Proof: From Theorem 9, the number of messages of HCMS-based algorithms and C-DSA-

based algorithms with k iterations is 4k|E| and 2k|E|, respectively. The number of messages

of AC-DPOP-based algorithms and CAC-DPOP-based algorithms is 2|X|. Since solving a

DC-DCOP is equivalent to solving h C-DCOPs, each at a time step, the number of messages

is as h times as the number of messages need to solve a single C-DCOP, which concludes the

proof. �

5.5 Related Work

As discussed in Section 3.5, several approaches and algorithms have been proposed to solve

related constraint models with discrete variables including centralized Dynamic CSPs [39,

80], Mixed CSPs [16], and Stochastic CSPs [73, 81]. Another Dynamic DCOP variant is

Markovian D-DCOPs (MD-DCOPs) [59]. MD-DCOPs assume that the state space is discrete

110

and observable to the agents, while DC-DCOPs do not assume the observability of the state.

While these approaches have been proposed to solve the models with discrete state space,

they have not been used to solve Dynamic DCOPs with continuous state space, to the best

of our knowledge.

In Section 4.4, we discussed several C-DCOP algorithms such as Continuous Max-Sum [69],

Hybrid Continuous Max-Sum [79], Particle Swarm Optimization Based Functional DCOP

(PFD) [7], and Bayesian DPOP (B-DPOP) [23]. While those algorithms were proposed to

solve C-DCOPs in a static setting, they have not been used to solve C-DCOPs in dynamic

environments.

111

F-AC-DPOP
F-CAC-DPOP

F-C-DSA
F-HCMS

B-AC-DPOP
B-CAC-DPOP

B-C-DSA
B-HCMS

2 4 6 8 10
Horizon

10000

15000

20000

25000

30000

35000

40000

So
lu

tio
n

Qu
al

ity

(a)

2 4 6 8 10
Horizon

150

200

250

300

350

400

450

Ru
nt

im
e

(m
s)

(b)

1 3 5 7 9
Switching Cost

0

5000

10000

15000

20000

25000

30000

So
lu

tio
n

Qu
al

ity

(c)

1 3 5 7 9
Switching Cost

250

300

350

Ru
nt

im
e

(m
s)

(d)

Figure 5.1: Experimental Results Varying Horizon and Switching Cost on Sparse Random
Networks

112

F-C-DSA F-HCMS B-C-DSA B-HCMS

2 4 6 8 10
Horizon

25000
35000
45000
55000
65000
75000
85000
95000

So
lu

tio
n

Qu
al

ity

(a)

2 4 6 8 10
Horizon

300
400
500
600
700
800
900

1000
1100
1200

Ru
nt

im
e

(m
s)

(b)

1 3 5 7 9
Switching Cost

25000

35000

45000

55000

65000

75000

85000

So
lu

tio
n

Qu
al

ity

(c)

1 3 5 7 9
Switching Cost

500
600
700
800
900

1000
1100

Ru
nt

im
e

(m
s)

(d)

Figure 5.2: Experimental Results Varying Horizon and Switching Cost on Dense Random
Networks

113

5.6 Experimental Results

We empirically evaluate the following DC-DCOP algorithms: Forward- and Backward-

versions of AC-DPOP, CAC-DPOP, C-DSA, and HCMS on random networks and distributed

sensor network problems. For those algorithms with Forward- version, we use the prefix F-,

and for those algorithms with Backward- version, we use the prefix B-. Our experiments

are performed on a 2.1GHz machine with 16GB of RAM using JADE framework [3]. We

report solution quality and simulated runtime [70] averaged over 30 independent runs, each

with a timeout of 30 minutes. We use the following default configuration: Number of agents

and random variables |A| = |X| = |Y| = 12; domains of decision and random variables

Dx = Dy = [−10, 10]; discount factor γ = 0.9; horizon h = 6; switching cost function

c(x, x′) = c · (x− x′)2 with the default cost c = 1. We set the number of discrete points to 3

for AC-DPOP-, CAC-DPOP-, and HCMS-based algorithms. For all algorithms, we set the

number of iterations as 20.18

We first vary the horizon h to evaluate the performance of the algorithms with different

horizon length. Figures 5.1(a) and 5.1(b) show the solution quality and runtime with horizon

varying from 2 to 10 on sparse networks with p1 = 0.2. When the horizon increases, both

F-C-DSA and B-C-DSA produce the highest solution quality and outperform all other

algorithms. The reason is that C-DSA-based algorithms do not depend on a number of initial

discrete points and thus they are free to explore the search space. Interestingly, when the

horizon becomes longer, their runtime is as small as other algorithms. This result shows

that while C-DSA-based algorithms have the best solution quality, they do not come with

the cost of higher runtime. Since AC-DPOP takes the longest time to solve each single
18For AC-DPOP- and CAC-DPOP-based algorithms, that is the number of iterations to move the values of

parent and pseudo-parent variables. For HCMS- and C-DSA-based algorithms, it is the number of iterations
to perform the local search.

114

|A| F-AC-DPOP B-AC-DPOP F-CAC-DPOP B-CAC-DPOP F-C-DSA B-C-DSA F-HCMS B-HCMS
q t q t q t q t q t q t q t q t

8 20789 285 20467 280 20778 284 20656 281 25824 280 26354 272 18668 285 18792 285
12 27269 420 27356 406 26378 341 27445 348 37653 371 38306 372 27423 357 27780 376
16 42473 111276 43327 119863 37708 874 39005 870 59390 542 59296 545 43511 611 44373 591
20 – – – – 65345 3697 65075 3690 100725 690 102904 709 73269 751 74140 760
24 – – – – 70058 49275 68965 43269 134213 774 134964 782 93427 958 94610 956
28 – – – – 88135 493444 88156 524903 176429 884 175571 887 120822 1247 120917 1259
32 – – – – – – – – 224743 1014 227258 1015 162918 1498 163627 1623

Table 5.1: Varying the Number of Agents on Sparse Random Networks with p1 = 0.2

|A| F-CAC-DPOP B-CAC-DPOP F-C-DSA B-C-DSA F-HCMS B-HCMS
q t q t q t q t q t q t

8 30359 6604 31158 6229 47747 436 47594 418 33166 684 32958 674
12 – – – – 95133 782 96722 791 62861 1289 62767 1273
16 – – – – 160255 1273 160713 1289 109128 2222 110232 2227
20 – – – – 217548 1603 215767 1601 148709 3243 149640 3284
24 – – – – 281505 1842 283987 1836 196808 4508 196467 4453
28 – – – – 375106 1972 374697 1986 255482 5565 252306 5643
32 – – – – 466945 2138 463594 2121 313125 6891 318854 6860

Table 5.2: Varying the Number of Agents on Dense Random Networks with p1 = 0.7

C-DCOP [38], F-AC-DPOP and B-AC-DPOP are the slowest algorithms across different

horizon length. Similarly, on dense networks with p1 = 0.7, Figures 5.2(a) and 5.2(b) show

that both versions of C-DSA again outperform the HCMS-based algorithms in terms of

solution quality with smaller runtime. We do not include AC-DPOP- and CAC-DPOP-based

algorithms in Figure 5.2 since they time out on the dense networks.

Figures 5.1(c) and 5.1(d) show the result of varying the switching cost c in the switching cost

function c · (x− x′)2. The result shows that the solution quality of all algorithms decreases

when the switching cost increases. If there is no switching cost (i.e., c = 0), the optimal

solution of DC-DCOP consists of the optimal solution of the C-DCOP at each time step.

However, with higher switching cost, the solution quality found by algorithms is likely to

decreases due to the higher penalty incurred by different solutions across time steps. We also

115

|A| F-AC-DPOP B-AC-DPOP F-CAC-DPOP B-CAC-DPOP F-C-DSA B-C-DSA F-HCMS B-HCMS
q t q t q t q t q t q t q t q t

4 4750 108 5053 104 4750 171 5052 168 7302 131 7432 136 4344 127 4406 125
8 19166 275 21155 263 19287 296 19208 298 24958 252 25045 253 17415 282 17969 282

12 31809 387 31916 387 31116 411 30773 418 40014 392 40912 404 28357 373 28892 358
16 37842 507 38427 493 36007 450 36615 469 50069 459 51274 458 36454 412 36265 411
20 58987 696 60088 695 51418 570 51265 567 70953 513 71888 514 52402 444 52201 465

Table 5.3: Varying the Number of Agents for Distributed Radar Coordination and Scheduling
Problems

observe that C-DSA-based algorithms have the best solution quality, which is consistent with

the result on dense graph reported in Figures 5.2(c) and 5.2(d).

Finally, we vary the number of agents |A| (and thus the number of decision |X| and random

variables |Y|) of the problems from 8 to 32 with horizon h = 10. Table 5.1 tabulates the

solution quality (denoted by q) and simulated runtime (denoted by t in ms) of the algorithms

on sparse networks with p1 = 0.2. Since AC-DPOP takes the longest time to solve the C-

DCOP at each time step, both F-AC-DPOP and B-AC-DPOP can only solve small instances

with 8, 12 and 16 agents and time out with larger instances. CAC-DPOP, which is the

clustering version of AC-DPOP, reduces the memory used in the UTIL phrase and is more

scalable to solve C-DCOPs with more number of agents [38]. Thus both F-CAC-DPOP

and B-CAC-DPOP are able to solve instances with more number of agents than AC-DPOP-

based algorithms and only time out with 32 agents. On the other hand, since C-DSA and

HCMS are more scalable, it takes less time for them to solve each individual C-DCOP, and

their DC-DCOP algorithms are able to solve all instances with much smaller runtime than

AC-DPOP and CAC-DPOP. Interestingly, HCMS-based algorithms report a slightly larger

runtime than C-DSA-based algorithms. Similar to the results from Figure 5.1, C-DSA-based

algorithms report the highest solution quality than those from AC-DPOP-, CAC-DPOP-,

and HCMS-based algorithms on different numbers of agents.

116

Table 5.2 shows the result varying agents on a dense random networks with p1 = 0.7.

Since both F-AC-DPOP and B-AC-DPOP time out with 8 agents, we do not include these

algorithms in the table. While CAC-DPOP-based algorithms are able to solve the instances

with 8 agents, they time out on larger instances. Both C-DSA- and HCMS- based algorithms

are able to scale to solve larger instances with incremental runtime. While C-DSA-based

algorithms outperform HCMS-based algorithms on all instances, it also takes them less time

than the counterpart algorithms.

Distributed Radar Coordination and Scheduling Problems: We evaluate our DC-

DCOP algorithms on Distributed Radar Coordination and Scheduling Problems (DRCSPs),

which are introduced in Section 2.7. Table 5.3 shows the quality solution and runtime (in

ms) of DC-DCOP algorithms on DRCSP with agents varying from 4 to 20. Both AC-DPOP-

and CAC-DPOP-based algorithms run from smaller (4 radars) to larger instances (20 radars)

without timeout and have slightly higher solution quality than HCMS-based algorithms.

However, both versions of C-DSA outperform all other algorithms by providing the best

solution quality from small to large instances. In addition, C-DSA-based algorithms have

smaller runtime than AC-DPOP- and CAC-DPOP-based since C-DSA is a local search

algorithm on C-DCOP. However, on grid network problems, HCMS-based algorithms execute

faster than C-DSA-based algorithms.

5.7 Discussions and Conclusions

In many real-world applications, agents often act in a complex and dynamic environment.

While DCOPs have been widely used to solve several multi-agent problems, the formulation

lacks the capability to model the dynamic and continuous nature in complex environments.

While researchers have proposed D-DCOPs to model how the environment changes over time

117

and C-DCOPs to model the continuous domain of decision variables, they can only address

these limitations of DCOPs in isolation. Thus, it remains a challenge to model more complex

problems with continuous variables in a dynamic environment. Therefore, in this chapter,

we introduced Dynamic Continuous DCOPs (DC-DCOPs), which both model the dynamic

environment and model decision variables with continuous domain. To solve DC-DCOPs,

we proposed several sequential greedy algorithms that can use any off-the-shelf C-DCOP

algorithms to solve DC-DCOPs and we discussed their theoretical properties. Finally, we

evaluated our algorithms on random networks and on distributed sensor network problems,

which are our motivating application for this line of work.

To apply DC-DCOPs to solve real-world applications, it remains a challenge to model the initial

probability distribution and the transition function of the random variables in the problem.

Unlike PD-DCOPs, where random variables have discrete domain, the random variables in

DC-DCOPs have continuous domain, and that could make the transition function complicated

in some cases. For example, in our motivating DRCSP application, how complicated the

transition function is depends on the type of weather phenomena and on the data about the

phenomena in the past. Since DC-DCOPs take into account the prior information on how

the problem might change, the reliability of the prior information will affect the solution

quality of the DC-DCOP model.

118

Chapter 6

Conclusions and Future Work

In many real-world applications, agents often act in a dynamic and complex environment.

While DCOPs have been a powerful tool to model many multi-agent systems, the formulation

lacks the capability to model and solve the problems in such environments. Over the years,

researchers have introduced several DCOP variants, but they were proposed in isolation and

haven’t fully solved the problems in environments that are both dynamic and complex. To

address the above concerns, this dissertation makes the following four contributions:

• In Chapter 3, we proposed PD-DCOPs, which explicitly model how DCOPs change

in dynamic environments with prior information. We developed an exact algorithm

to solve PD-DCOPs and several heuristic algorithms that can scale to larger and

more complex problems. We also empirically evaluated both proactive and reactive

algorithms to determine the trade-offs between the two classes. When solving PD-

DCOPs online, our new distributed online greedy algorithms FORWARD and HYBRID

outperformed reactive algorithms in problems with large switching costs and in problems

that change quickly. Our empirical findings on the trade-offs between proactive and

119

reactive algorithms are the first, to the best of our knowledge, that shed light on this

important issue.

By introducing the PD-DCOP model and algorithms, we made a significant contribution

to several DCOP applications in dynamic environment, especially for those where the

prior information on how the problem might change is available or predictable. Our

experimental results showed that for those applications that have high switching cost

or change quickly over time, proactive algorithms delivers better solution than the

reactive counterpart.

• In Chapter 4, we proposed several algorithms to solve C-DCOPs, which model DCOPs

in complex environments where agents take values from a continuous domain. Existing

C-DCOP methods suffer from the limitation that they do not provide quality guarantees.

We remedied this limitation by introducing (i) EC-DPOP, which finds exact solutions

for C-DCOPs with linear or quadratic utility functions and with tree-structure graphs;

(ii) AC-DPOP, which finds error-bounded solutions for general C-DCOPs; (iii) CAC-

DPOP, which limits the message size of AC-DPOP to a user-defined parameter k; and

(iv) C-DSA, which is a scalable local search C-DCOP algorithm. Experimental results

showed that our algorithms find better solutions than HCMS, an existing state-of-the-art

algorithm, when given the same communication limitations. Moreover, these algorithms

combined extend the applicability of DCOPs to more applications that require quality

guarantees on the solutions found as well as those that require limited communication

capabilities.

By introducing several C-DCOP algorithms, we advanced the state of the art and

contributed different options for solving many real-world C-DCOP applications. For

those problems that have constraint graph with tree structure, our EC-DPOP algorithm

guarantees an optimal solution for binary linear or quadratic constraint functions.

120

When a guarantee on solution quality is required, our AC-DPOP provides an error

bound for their approximate solution. For those applications that need a solution in a

timely manner, one can either use CAC-DPOP with tradeoff on the theoretical bound

or use C-DSA when a solution is needed at any time.

• In Chapter 5, we introduced DC-DCOP, a formulation that models the problems in

a dynamic and complex environment. DC-DCOPs model how the problem changes

dynamically over time by taking into account the prior information and model the

variables with continuous domain. To solve DC-DCOPs, we proposed several sequential

greedy algorithms that can use any off-the-shelf C-DCOP algorithms to solve DC-DCOPs

and we discussed their theoretical properties. Finally, we evaluated our algorithms

on random networks and on distributed radar coordination and scheduling network

problems, which are our motivating application for this line of work.

By introducing DC-DCOPs, we made the contribution to solve many applications which

are in dynamic environment and require continuous variables. However, it remains a

challenge to model the initial probability distribution and the transition function of

the continuous random variables, which depend significantly on the application and on

the data of the event in the past.

This dissertation demonstrates that one can model and solve multi-agent problems in a

dynamic and complex environment. There are several directions that can extend the current

work. First, D-DCOPs have been only solved by either reactive approach or proactive

approach. However, combining the two approaches together might result in higher solution

quality, especially in those problems that change quickly over time. If we can leverage the

solution provided by the proactive approach in an efficient way, we might be able to quickly

find better solutions without much trade-off and react better in such environment. Secondly,

while DC-DCOPs approach and model C-DCOPs in dynamic environments in a proactive

121

manner, a reactive approach might provide better solution in some cases. For example, in

the environment that changes quickly or the cost of changing solution is small, a reactive

approach might provide better solution than a proactive approach. For those problems where

the prior information is not available, solving the problem beforehand is not suitable and

thus, a reactive approach might be preferred. Finally, after reactive approaches have been

introduced to solve C-DCOPs in dynamic environment, we can combine both reactive and

proactive approaches by leveraging the initial solution provided by the proactive approach

and quickly searching for a solution in a reactive manner for those problems where continuous

domains are required.

122

References

[1] Manuel Blanco Abello, Zbignew Michalewicz, and Lam Thu Bui. “A Reactive-Proactive
Approach for Solving Dynamic Scheduling with Time-Varying Number of Tasks.” In:
2012 IEEE Congress on Evolutionary Computation. IEEE. 2012, pp. 1–10.

[2] Raphen Becker, Shlomo Zilberstein, Victor Lesser, and Claudia Goldman. “Solving
Transition Independent Decentralized Markov Decision Processes.” In: Journal of
Artificial Intelligence Research 22 (2004), pp. 423–455.

[3] Fabio Bellifemine, Federico Bergenti, Giovanni Caire, and Agostino Poggi. “JADE–A
Java Agent Development Framework.” In: Multi-Agent Programming. 2005, pp. 125–147.

[4] Daniel Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. “The Com-
plexity of Decentralized Control of Markov Decision Processes.” In: Mathematics of
Operations Research 27.4 (2002), pp. 819–840.

[5] Ziyu Chen, Yanchen Deng, and Tengfei Wu. “An Iterative Refined Max-Sum_AD
Algorithm via Single-Side Value Propagation and Local Search.” In: Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
2017, pp. 195–202.

[6] Ziyu Chen, Tengfei Wu, Yanchen Deng, and Cheng Zhang. “An Ant-Based Algorithm
to Solve Distributed Constraint Optimization Problems.” In: Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI). 2018, pp. 4654–4661.

[7] Moumita Choudhury, Saaduddin Mahmud, and Md. Mosaddek Khan. “A Particle Swarm
Based Algorithm for Functional Distributed Constraint Optimization Problems.” In:
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). 2020, pp. 7111–
7118.

[8] Liel Cohen, Rotem Galiki, and Roie Zivan. “Governing Convergence of Max-Sum
on DCOPs through Damping and Splitting.” In: Artificial Intelligence 279 (2020),
p. 103212.

[9] Liel Cohen and Roie Zivan. “Balancing Asymmetry in Max-Sum Using Split Constraint
Factor Graphs.” In: Proceedings of the International Conference on Principles and
Practice of Constraint Programming (CP). 2018, pp. 669–687.

123

[10] Francesco Delle Fave, Alex Rogers, Zhe Xu, Salah Sukkarieh, and Nicholas Jennings.
“Deploying the Max-Sum Algorithm for Decentralised Coordination and Task Allocation
of Unmanned Aerial Vehicles for Live Aerial Imagery Collection.” In: Proceedings of the
International Conference on Robotics and Automation (IEEE ICRA). 2012, pp. 469–476.

[11] Yanchen Deng and Bo An. “Speeding Up Incomplete GDL-Based Algorithms for Multi-
Agent Optimization with Dense Local Utilities.” In: Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI). 2020, pp. 31–38.

[12] Yanchen Deng, Ziyu Chen, Dingding Chen, Xingqiong Jiang, and Qiang Li. “PT-ISABB
A Hybrid Tree-Based Complete Algorithm to Solve Asymmetric Distributed Constraint
Optimization Problems.” In: Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). 2019, pp. 1506–1514.

[13] Yanchen Deng, Ziyu Chen, Dingding Chen, Wenxin Zhang, and Xingqiong Jiang.
“AsymDPOP Complete Inference for Asymmetric Distributed Constraint Optimization
Problems.” In: Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI). 2019, pp. 223–230.

[14] Jilles Steeve Dibangoye, Christopher Amato, and Arnaud Doniec. “Scaling up Decentral-
ized MDPs through Heuristic Search.” In: Proceedings of the Conference on Uncertainty
in Artificial Intelligence (UAI). 2012, pp. 217–226.

[15] Jilles Steeve Dibangoye, Christopher Amato, Arnaud Doniec, and François Charpillet.
“Producing Efficient Error-Bounded Solutions for Transition Independent Decentralized
MDPs.” In: Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS). 2013, pp. 539–546.

[16] Hélène Fargier, Jérôme Lang, and Thomas Schiex. “Mixed Constraint Satisfaction: A
Framework for Decision Problems under Incomplete Knowledge.” In: Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI). 1996, pp. 175–180.

[17] Alessandro Farinelli, Alex Rogers, and Nicholas Jennings. “Agent-Based Decentralised
Coordination for Sensor Networks Using the Max-Sum Algorithm.” In: Journal of
Autonomous Agents and Multi-Agent Systems 28.3 (2014), pp. 337–380.

[18] Alessandro Farinelli, Alex Rogers, Adrian Petcu, and Nicholas Jennings. “Decentralised
Coordination of Low-Power Embedded Devices Using the Max-Sum Algorithm.” In:
Proceedings of the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS). 2008, pp. 639–646.

[19] Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. “Distributed Constraint
Optimization Problems and Applications: A Survey.” In: Journal of Artificial Intelligence
Research 61 (2018), pp. 623–698.

[20] Ferdinando Fioretto, Enrico Pontelli, William Yeoh, and Rina Dechter. “Accelerating
Exact and Approximate Inference for (Distributed) Discrete Optimization with GPUs.”
In: Constraints 23.1 (2018), pp. 1–43.

124

[21] Ferdinando Fioretto, William Yeoh, and Enrico Pontelli. “A Multiagent System Ap-
proach to Scheduling Devices in Smart Homes.” In: Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS). 2017, pp. 981–
989.

[22] Ferdinando Fioretto, William Yeoh, Enrico Pontelli, Ye Ma, and Satishkumar Ranade.
“A DCOP Approach to the Economic Dispatch with Demand Response.” In: Proceed-
ings of the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS). 2017, pp. 999–1007.

[23] Jeroen Fransman, Joris Sijs, Henry Dol, Erik Theunissen, and Bart De Schutter.
“Bayesian-DPOP for Continuous Distributed Constraint Optimization Problems.” In:
Proceedings of the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS). 2019, pp. 1961–1963.

[24] Haobo Fu, Peter R Lewis, Bernhard Sendhoff, Ke Tang, and Xin Yao. “What Are
Dynamic Optimization Problems?” In: 2014 Congress on Evolutionary Computation.
IEEE. 2014, pp. 1550–1557.

[25] Robert Gallager. Stochastic Processes: Theory for Applications. Cambridge University
Press, 2013.

[26] Amir Gershman, Amnon Meisels, and Roie Zivan. “Asynchronous Forward-Bounding for
Distributed COPs.” In: Journal of Artificial Intelligence Research 34 (2009), pp. 61–88.

[27] Tal Grinshpoun and Tamir Tassa. “P-SyncBB: A Privacy Preserving Branch and Bound
DCOP Algorithm.” In: Journal of Artificial Intelligence Research 57 (2016), pp. 621–660.

[28] Tal Grinshpoun, Tamir Tassa, Vadim Levit, and Roie Zivan. “Privacy Preserving Region
Optimal Algorithms for Symmetric and Asymmetric DCOPs.” In: Artificial Intelligence
266 (2019), pp. 27–50.

[29] Patricia Gutierrez, Pedro Meseguer, and William Yeoh. “Generalizing ADOPT and
BnB-ADOPT.” In: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI). 2011, pp. 554–559.

[30] Youssef Hamadi, Christian Bessière, and Joël Quinqueton. “Distributed Intelligent
Backtracking.” In: Proceedings of the European Conference on Artificial Intelligence
(ECAI). 1998, pp. 219–223.

[31] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. “Dynamic Programming
for Partially Observable Stochastic Games.” In: Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI). 2004, pp. 709–715.

[32] Daisuke Hatano and Katsutoshi Hirayama. “DeQED: An Efficient Divide-and-
Coordinate Algorithm for DCOP.” In: Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI). 2013, pp. 566–572.

[33] Khoi D. Hoang, Ferdinando Fioretto, Ping Hou, William Yeoh, Makoto Yokoo, and
Roie Zivan. “Proactive Dynamic Distributed Constraint Optimization Problems.” In:
Journal of Artificial Intelligence Research 74 (2022), pp. 179–225.

125

[34] Khoi D. Hoang, Ferdinando Fioretto, Ping Hou, Makoto Yokoo, William Yeoh, and Roie
Zivan. “Proactive Dynamic Distributed Constraint Optimization.” In: Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
2016, pp. 597–605.

[35] Khoi D. Hoang, Ferdinando Fioretto, William Yeoh, Enrico Pontelli, and Roie Zivan.
“A Large Neighboring Search Schema for Multi-Agent Optimization.” In: Proceedings of
the International Conference on Principles and Practice of Constraint Programming
(CP). 2018, pp. 688–706.

[36] Khoi D. Hoang, Ping Hou, Ferdinando Fioretto, William Yeoh, Roie Zivan, and Makoto
Yokoo. “Infinite-Horizon Proactive Dynamic DCOPs.” In: Proceedings of the Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS). 2017,
pp. 212–220.

[37] Khoi D. Hoang, Christabel Wayllace, William Yeoh, Jacob Beal, Soura Dasgupta,
Yuanqiu Mo, Aaron Paulos, and Jon Schewe. “New Distributed Constraint Reasoning
Algorithms for Load Balancing in Edge Computing.” In: Proceedings of the Principles
and Practice of Multi-Agent Systems (PRIMA). 2019, pp. 69–86.

[38] Khoi D. Hoang, William Yeoh, Makoto Yokoo, and Zinovi Rabinovich. “New Algorithms
for Continuous Distributed Constraint Optimization Problems.” In: Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
2020, pp. 502–510.

[39] Alan Holland and Barry O’Sullivan. “Weighted Super Solutions for Constraint Pro-
grams.” In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). 2005,
pp. 378–383.

[40] Yaochu Jin and Jürgen Branke. “Evolutionary Optimization in Uncertain Environments
- A Survey.” In: IEEE Transactions on Evolutionary Computation 9.3 (2005), pp. 303–
317.

[41] Richard W Katz. “An Application of Chain-Dependent Processes to Meteorology.” In:
Journal of Applied Probability 14.3 (1977), pp. 598–603.

[42] Md. Mosaddek Khan, Long Tran-Thanh, and Nicholas R. Jennings. “A Generic Domain
Pruning Technique for GDL-Based DCOP Algorithms in Cooperative Multi-Agent
Systems.” In: Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS). 2018, pp. 1595–1603.

[43] Md. Mosaddek Khan, Long Tran-Thanh, William Yeoh, and Nicholas R. Jennings. “A
Near-Optimal Node-to-Agent Mapping Heuristic for GDL-Based DCOP Algorithms in
Multi-Agent Systems.” In: Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). 2018, pp. 1613–1621.

[44] Yoonheui Kim, Michael Krainin, and Victor Lesser. “Effective Variants of the Max-Sum
Algorithm for Radar Coordination and Scheduling.” In: Proceedings of the International
Joint Conferences on Web Intelligence and Intelligent Agent Technologies (WI-IAT).
Vol. 2. 2011, pp. 357–364.

126

[45] Akshat Kumar, Boi Faltings, and Adrian Petcu. “Distributed Constraint Optimization
with Structured Resource Constraints.” In: Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS). 2009, pp. 923–930.

[46] Akshat Kumar, Adrian Petcu, and Boi Faltings. “H-DPOP: Using Hard Constraints for
Search Space Pruning in DCOP.” In: Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI). 2008, pp. 325–330.

[47] Robert Lass, Evan Sultanik, and William Regli. “Dynamic Distributed Constraint
Reasoning.” In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
2008, pp. 1466–1469.

[48] Tiep Le, Tran Cao Son, Enrico Pontelli, and William Yeoh. “Solving Distributed
Constraint Optimization Problems with Logic Programming.” In: Theory and Practice
of Logic Programming 17.4 (2017), pp. 634–683.

[49] Thomas Léauté and Boi Faltings. “Coordinating Logistics Operations with Privacy
Guarantees.” In: Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI). 2011, pp. 2482–2487.

[50] Cornelis Jan van Leeuwen and Przemyslaw Pawelczak. “CoCoA: A Non-Iterative
Approach to a Local Search (A)DCOP Solver.” In: Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI). 2017, pp. 3944–3950.

[51] James MacQueen. “Some Methods for Classification and Analysis of Multivariate
Observations.” In: Proceedings of the Berkeley Symposium on Mathematical Statistics
and Probability. 1967, pp. 281–297.

[52] Rajiv Maheswaran, Jonathan Pearce, and Milind Tambe. “Distributed Algorithms for
DCOP: A Graphical Game-Based Approach.” In: Proceedings of the Conference on
Parallel and Distributed Computing Systems (PDCS). 2004, pp. 432–439.

[53] Rajiv Maheswaran, Milind Tambe, Emma Bowring, Jonathan Pearce, and Pradeep
Varakantham. “Taking DCOP to the Real World: Efficient Complete Solutions for
Distributed Event Scheduling.” In: Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS). 2004, pp. 310–317.

[54] Sam Miller, Sarvapali Ramchurn, and Alex Rogers. “Optimal Decentralised Dispatch
of Embedded Generation in the Smart Grid.” In: Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS). 2012, pp. 281–
288.

[55] Pragnesh Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. “ADOPT: Asyn-
chronous Distributed Constraint Optimization with Quality Guarantees.” In: Artificial
Intelligence 161.1–2 (2005), pp. 149–180.

[56] James T Moore, Fred H Glass, Charles E Graves, Scott M Rochette, and Marc J Singer.
“The Environment of Warm-Season Elevated Thunderstorms Associated with Heavy
Rainfall over the Central United States.” In: Weather and Forecasting 18.5 (2003),
pp. 861–878.

127

[57] Ranjit Nair, Milind Tambe, Makoto Yokoo, David Pynadath, and Stacy Marsella.
“Taming Decentralized POMDPs: Towards Efficient Policy Computation for Multiagent
Settings.” In: Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI). 2003, pp. 705–711.

[58] Ranjit Nair, Pradeep Varakantham, Milind Tambe, and Makoto Yokoo. “Networked Dis-
tributed POMDPs: A Synthesis of Distributed Constraint Optimization and POMDPs.”
In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). 2005, pp. 133–
139.

[59] Duc Thien Nguyen, William Yeoh, Hoong Chuin Lau, Shlomo Zilberstein, and Chongjie
Zhang. “Decentralized Multi-Agent Reinforcement Learning in Average-Reward Dy-
namic DCOPs.” In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI). 2014, pp. 1447–1455.

[60] Duc Thien Nguyen, William Yeoh, Hoong Chuin Lau, and Roie Zivan. “Distributed
Gibbs: A Linear-Space Sampling-Based DCOP Algorithm.” In: Journal of Artificial
Intelligence Research 64 (2019), pp. 705–748.

[61] Frans Oliehoek, Matthijs Spaan, Christopher Amato, and Shimon Whiteson. “Incre-
mental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs.” In:
Journal of Artificial Intelligence Research 46 (2013), pp. 449–509.

[62] Brammert Ottens, Christos Dimitrakakis, and Boi Faltings. “DUCT: An Upper Confi-
dence Bound Approach to Distributed Constraint Optimization Problems.” In: ACM
Transactions on Intelligent Systems and Technology 8.5 (2017), 69:1–69:27.

[63] Adrian Petcu and Boi Faltings. “A Scalable Method for Multiagent Constraint Opti-
mization.” In: Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI). 2005, pp. 1413–1420.

[64] Adrian Petcu and Boi Faltings. “Optimal Solution Stability in Dynamic, Distributed
Constraint Optimization.” In: Proceedings of the International Conference on Intelligent
Agent Technology (IAT). 2007, pp. 321–327.

[65] Adrian Petcu and Boi Faltings. “Superstabilizing, Fault-Containing Multiagent Combi-
natorial Optimization.” In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI). 2005, pp. 449–454.

[66] Clarence W Richardson. “Stochastic Simulation of Daily Precipitation, Temperature,
and Solar Radiation.” In: Water Resources Research 17.1 (1981), pp. 182–190.

[67] Pierre Rust, Gauthier Picard, and Fano Ramparany. “Using Message-Passing DCOP
Algorithms to Solve Energy-Efficient Smart Environment Configuration Problems.” In:
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).
2016, pp. 468–474.

[68] Sven Seuken and Shlomo Zilberstein. “Memory-Bounded Dynamic Programming for
DEC-POMDPs.” In: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI). 2007, pp. 2009–2015.

128

[69] Ruben Stranders, Alessandro Farinelli, Alex Rogers, and Nicholas Jennings. “Decen-
tralised Coordination of Continuously Valued Control Parameters Using the Max-Sum
Algorithm.” In: Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems (AAMAS). 2009, pp. 601–608.

[70] Evan Sultanik, Robert Lass, and William Regli. “DCOPolis: A Framework for Simulating
and Deploying Distributed Constraint Reasoning Algorithms.” In: Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
2008, pp. 1667–1668.

[71] Evan Sultanik, Robert Lass, and William Regli. “Dynamic Configuration of Agent
Organizations.” In: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI). 2009, pp. 305–311.

[72] Daniel Szer, François Charpillet, and Shlomo Zilberstein. “MAA*: A Heuristic Search
Algorithm for Solving Decentralized POMDPs.” In: Proceedings of the Conference on
Uncertainty in Artificial Intelligence (UAI). 2005, pp. 576–590.

[73] S Armagan Tarim, Suresh Manandhar, and Toby Walsh. “Stochastic Constraint Pro-
gramming: A Scenario-Based Approach.” In: Constraints 11.1 (2006), pp. 53–80.

[74] Tamir Tassa, Tal Grinshpoun, and Avishay Yanai. “A Privacy Preserving Collusion
Secure DCOP Algorithm.” In: Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI). 2019, pp. 4774–4780.

[75] Tamir Tassa, Tal Grinshpoun, and Roie Zivan. “Privacy Preserving Implementation
of the Max-Sum Algorithm and Its Variants.” In: Journal of Artificial Intelligence
Research 59 (2017), pp. 311–349.

[76] Kevin Trenberth. “Changes in Precipitation with Climate Change.” In: Climate Research
47.1-2 (2011), pp. 123–138.

[77] Suguru Ueda, Atsushi Iwasaki, and Makoto Yokoo. “Coalition Structure Generation
Based on Distributed Constraint Optimization.” In: Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI). 2010, pp. 197–203.

[78] Meritxell Vinyals, Juan Rodrı́guez-Aguilar, and Jesús Cerquides. “Constructing a
Unifying Theory of Dynamic Programming DCOP Algorithms via the Generalized
Distributive Law.” In: Journal of Autonomous Agents and Multi-Agent Systems 22.3
(2011), pp. 439–464.

[79] Thomas Voice, Ruben Stranders, Alex Rogers, and Nicholas Jennings. “A Hybrid
Continuous Max-Sum Algorithm for Decentralised Coordination.” In: Proceedings of
the European Conference on Artificial Intelligence (ECAI). 2010, pp. 61–66.

[80] Richard Wallace and Eugene Freuder. “Stable Solutions for Dynamic Constraint Satis-
faction Problems.” In: Proceedings of the International Conference on Principles and
Practice of Constraint Programming (CP). 1998, pp. 447–461.

[81] Toby Walsh. “Stochastic Constraint Programming.” In: Proceedings of the European
Conference on Artificial Intelligence (ECAI). 2002, pp. 111–115.

129

[82] Daniel S Wilks. “Adapting Stochastic Weather Generation Algorithms for Climate
Change Studies.” In: Climatic Change 22.1 (1992), pp. 67–84.

[83] Stefan Witwicki and Edmund Durfee. “Towards a Unifying Characterization for Quanti-
fying Weak Coupling in Dec-POMDPs.” In: Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS). 2011, pp. 29–36.

[84] Weixin Xu, Edward J Zipser, Yi-Leng Chen, Chuntao Liu, Yu-Chieng Liou, Wen-Chau
Lee, and Ben Jong-Dao Jou. “An Orography-Associated Extreme Rainfall Event During
TiMREX: Initiation, Storm Evolution, and Maintenance.” In: Monthly Weather Review
140.8 (2012), pp. 2555–2574.

[85] William Yeoh, Ariel Felner, and Sven Koenig. “BnB-ADOPT: An Asynchronous Branch-
and-Bound DCOP Algorithm.” In: Journal of Artificial Intelligence Research 38 (2010),
pp. 85–133.

[86] William Yeoh, Pradeep Varakantham, Xiaoxun Sun, and Sven Koenig. “Incremen-
tal DCOP Search Algorithms for Solving Dynamic DCOPs.” In: Proceedings of the
International Conference on Intelligent Agent Technology (IAT). 2015, pp. 257–264.

[87] William Yeoh and Makoto Yokoo. “Distributed Problem Solving.” In: AI Magazine 33.3
(2012), pp. 53–65.

[88] Zhepeng Yu, Ziyu Chen, Jingyuan He, and Yancheng Deng. “A Partial Decision Scheme
for Local Search Algorithms for Distributed Constraint Optimization Problems.” In:
Proceedings of the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS). 2017, pp. 187–194.

[89] Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenberg. “Distributed
Stochastic Search and Distributed Breakout: Properties, Comparison and Applications
to Constraint Optimization Problems in Sensor Networks.” In: Artificial Intelligence
161.1–2 (2005), pp. 55–87.

[90] Michael Zink, David Westbrook, Sherief Abdallah, Bryan Horling, Vijay Lakamraju,
Eric Lyons, Victoria Manfredi, Jim Kurose, and Kurt Hondl. “Meteorological Command
and Control: An End-to-End Architecture for a Hazardous Weather Detection Sensor
Network.” In: Workshop on End-to-End, Sense-and-Respond Systems, Applications, and
Services. USENIX Association, 2005.

[91] Roie Zivan, Steven Okamoto, and Hilla Peled. “Explorative Anytime Local Search for
Distributed Constraint Optimization.” In: Artificial Intelligence 212 (2014), pp. 1–26.

[92] Roie Zivan, Tomer Parash, Liel Cohen, Hilla Peled, and Steven Okamoto. “Balancing
Exploration and Exploitation in Incomplete Min/Max-Sum Inference for Distributed
Constraint Optimization.” In: Journal of Autonomous Agents and Multi-Agent Systems
31.5 (2017), pp. 1165–1207.

[93] Roie Zivan, Tomer Parash, Liel Cohen-Lavi, and Yarden Naveh. “Applying Max-Sum to
Asymmetric Distributed Constraint Optimization Problems.” In: Journal of Autonomous
Agents and Multi-Agent Systems 34.1 (2020), pp. 1–29.

130

[94] Roie Zivan and Hilla Peled. “Max/Min-Sum Distributed Constraint Optimization
through Value Propagation on an Alternating DAG.” In: Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS). 2012, pp. 265–
272.

[95] Roie Zivan, Harel Yedidsion, Steven Okamoto, Robin Glinton, and Katia Sycara.
“Distributed Constraint Optimization for Teams of Mobile Sensing Agents.” In: Journal
of Autonomous Agents and Multi-Agent Systems 29.3 (2015), pp. 495–536.

131

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Chapter 1: Introduction
	1.1 Overview of Contributions
	1.2 Research Output
	1.3 Dissertation Structure

	Chapter 2: Background and Motivation
	2.1 Distributed Constraint Optimization Problems
	2.2 DCOP Algorithms
	2.2.1 Distributed Pseudo-tree Optimization Procedure
	2.2.2 Super-stabilizing DPOP
	2.2.3 Maximum Gain Message

	2.3 Dynamic DCOPs
	2.4 Continuous DCOPs
	2.5 Markov Chains
	2.6 Reactive and Proactive Approaches
	2.7 Distributed Radar Coordination and Scheduling Problems

	Chapter 3: Proactive Dynamic Distributed Constraint Optimization Problems
	3.1 Introduction
	3.2 PD-DCOP Model
	3.3 PD-DCOP Algorithms
	3.3.1 Exact Approach
	3.3.2 Heuristic Approaches

	3.4 Theoretical Results
	3.5 Related Work
	3.6 Experimental Results
	3.6.1 Offline Algorithms
	3.6.2 Online Algorithms
	3.6.3 Comparisons with MD-DCOP Algorithms

	3.7 Discussions and Conclusions

	Chapter 4: Continuous Distributed Constraint Optimization Problems
	4.1 Introduction
	4.2 C-DCOP Algorithms
	4.2.1 Exact Continuous DPOP
	4.2.2 Approximate Continuous DPOP
	4.2.3 Clustered Approximate Continuous DPOP
	4.2.4 Continuous DSA

	4.3 Theoretical Results
	4.4 Related Work
	4.5 Experimental Results
	4.6 Discussions and Conclusions

	Chapter 5: Dynamic Continuous Distributed Constraint Optimization Problems
	5.1 Introduction
	5.2 DC-DCOP Model
	5.3 DC-DCOP Algorithms
	5.3.1 Forward
	5.3.2 Backward

	5.4 Theoretical Results
	5.5 Related Work
	5.6 Experimental Results
	5.7 Discussions and Conclusions

	Chapter 6: Conclusions and Future Work
	References

