
The Effect of Asynchronous Execution and1

Message Latency on Max-sum2

Roie Zivan !�3

Ben-Gurion University of the Negev4

Omer Perry !�5

Ben-Gurion University of the Negev6

Ben Rachmut !�7

Ben-Gurion University of the Negev8

William Yeoh !�9

Washington University in St. Louis10

Abstract11

Max-sum is a version of belief propagation that was adapted for solving distributed constraint optimization12

problems (DCOPs). It has been studied theoretically and empirically, extended to versions that improve solution13

quality and converge rapidly, and is applicable to multiple distributed applications. The algorithm was presented14

both as a synchronous and an asynchronous algorithm, however, neither the differences in the performance of15

these two execution versions nor the implications of message latency on the two versions have been investigated16

to the best of our knowledge.17

We contribute to the body of knowledge on Max-sum by: (1) Establishing the theoretical differences between18

the two execution versions of the algorithm, focusing on the construction of beliefs; (2) Empirically evaluating19

the differences between the solutions generated by the two versions of the algorithm, with and without message20

latency; and (3) Establishing both theoretically and empirically the positive effect of damping on reducing the21

differences between the two versions. Our results indicate that in contrast to recent published results indicating22

the drastic effect that message latency has on distributed local search, damped Max-sum is robust to message23

latency.24

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of computation25

→ Constraint and logic programming26

Keywords and phrases Distributed constraints; Distributed problem solving27

Digital Object Identifier 10.4230/LIPIcs.CP.2021.1528

Funding This research is partially supported by US-Israel Binational Science Foundation (BSF) grant #201808129

and US National Science Foundation (NSF) grant #1838364.30

1 Introduction31

Recent advances in computation and communication have resulted in realistic distributed applications,32

in which humans and technology interact and aim to optimize mutual goals (e.g., IoT applications).33

A promising multi-agent approach to solve these types of problems is to model them as distributed34

constraint optimization problems (DCOPs), where decision makers are modeled as agents that assign35

values to their variables. The goal in a DCOP is to optimize a global objective in a decentralized36

manner. Unfortunately, the communication assumptions of the DCOP model are overly simplistic and37

often unrealistic: (1) All messages arrive instantaneously or have very small and bounded delays; and38

(2) Messages sent arrive in the order that they were sent. These assumptions do not reflect real-world39

characteristics, where messages may be disproportionally delayed due to different bandwidths in40

different communication channels.41

Recently, a study that investigated the effect of message latency on standard distributed local42

search algorithms, e.g., MGM and DSA, has shown that message delays have a a dramatic positive43

© Roie Zivan, Omer Perry, Ben Rachmut and William Yeoh;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zivanr@bgu.ac.il
https://orcid.org/0000-0002-1410-8368
mailto:omerpe@post.bgu.ac.il
https://orcid.org/0000-0002-1994-7291
mailto:rachmut@post.bgu.ac.il
https://orcid.org/0000-0002-3862-9387
mailto:wyeoh@wustl.edu
https://orcid.org/0000-0002-2617-870X
https://doi.org/10.4230/LIPIcs.CP.2021.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 The Effect of Asynchronous Execution and Message Latency on Max-sum

effect on the performance of the asynchronous versions of these algorithms [18]. Apparently, message44

latency generates an exploration effect, which improves significantly the quality of the solutions they45

produce. Nevertheless, this study did not investigate the effect on distributed incomplete inference46

algorithms, e.g., the Max-sum algorithm, although, these algorithms have been shown recently to be47

most successful [3, 4]. Thus, we focus our attention to the effect of message latency on Max-sum and48

its variants in this paper.49

Max-sum is a version of the belief propagation algorithm [16, 25], which is used for solving50

DCOPs. It has been recently proposed for solving multi-agent optimization problems in applications,51

such as sensor systems [23, 22], task allocation for rescue teams in disaster areas [19], and smart52

homes [21]. As with most belief propagation algorithms, Max-sum is known to converge to an optimal53

solution when solving problems represented by acyclic graphs. On problems represented by cyclic54

graphs, the beliefs may fail to converge, and the resulting assignments that are considered optimal55

under those beliefs may be of low quality [6, 30]. This occurs because cyclic information propagation56

leads to computation of inaccurate and inconsistent information [16].57

To decrease the effect of cyclic information propagation in belief propagation, the damping58

method has been suggested. It balances the weight of the new calculation performed in each iteration59

and the weight of calculations performed in previous iterations, resulting in an increased probability60

for convergence [4]. Recently, splitting nodes in the factor graph on which belief propagation operates61

has been shown to be an effective method for accelerating the convergence of the algorithm when62

combined with damping [20, 4].63

Max-sum has been presented both as an asynchronous and as a synchronous algorithm (e.g., [6,64

30, 5]). In the synchronous version, agents perform in iterations. In each iteration, an agent sends65

messages to all its neighbors and waits for the messages sent to it from all its neighbors to arrive,66

before moving to the next iteration. In the asynchronous version, agents react to messages when they67

arrive. To best of our knowledge, the implications of this difference in the execution of the algorithm68

on its performance have not been studied to date. Moreover, while message latency does not affect the69

actions that agents perform (only delays them) in the synchronous version, intuitively, it is expected70

to have a major effect on the performance of the asynchronous version. The reason is that the beliefs71

included in messages are used by agents in the construction of beliefs that they propagate to others72

and in their assignment selection. In asynchronous execution, belief construction and assignment73

selection might be performed while considering imbalanced and inconsistent information.74

In this paper, we make the following contributions:75

1. We analyze the properties of the two execution versions of Max-sum, synchronous and asynchron-76

ous. More specifically, using backtrack cost trees [28], we investigate the possible differences77

between the propagated beliefs in synchronous and asynchronous executions of Max-sum.78

2. We investigate the effect of damping on asynchronous Max-sum. While there are clear indications79

(both empirical and theoretical) that damping improves the performance of the synchronous80

version of Max-sum [4, 28], to best of our knowledge, the effect of damping on the asynchronous81

version of Max-sum has not been studied. We analyze this effect both theoretically and empirically.82

Both indicate that damping reduces the differences between synchronous and asynchronous83

execution.84

3. We investigate the performance of the different versions of the algorithm in the presence of85

message latency. While the beliefs propagated and the computation that agents perform are86

not affected by message latency in the synchronous version (only delayed), this is not true for87

the asynchronous version. Once again, our empirical results reveal that damping reduces the88

differences. Moreover, the version of Max-sum proposed by [4] that includes both damping89

and splitting maintains its fast convergence properties and the quality of solutions, even in90

asynchronous execution with message delays.91

R. Zivan, O. Perry, B. Rachmut and W. Yeoh 15:3

2 Background92

In this section we provide background on graphical models, distributed constraint optimization93

problems (DCOPs), the DCOP versions of belief propagation – Max-sum and its variants – and94

backtrack cost tree (BCT) – the tool we use to analyze the algorithms’ behavior. While the Max-sum95

variants that we discuss are actually solving a min-sum problem [20], we will still refer to them as96

“Max-sum” since this name is commonly used [6, 7, 30].97

2.1 Graphical Models98

Graphical models such as Bayesian networks or constraint networks are a widely used represent-99

ation framework for reasoning and solving optimization problems. The graph structure is used to100

capture dependencies between variables [11]. Our work extends the theory established in [24], which101

considered the most a priori Maximum a posteriori (MAP) assignment, which is solved using the102

Max-product version of belief propagation. The relation between MAP and constraint optimization is103

well established [11, 6, 15], and thus, results that consider Max-product for MAP apply to Max/Min-104

sum for solving constraint optimization problems, as well as the other way round [20]. Without loss105

of generality, we will focus on constraint optimization, since it is more common in AI literature.106

Moreover, we will consider the distributed version of the problem, since it is a natural representation107

for message passing algorithms. Nevertheless, our results apply to any version of problem represented108

by a graphical model and solved by belief propagation, as do the results of [24].109

2.2 Distributed Constraint Optimization Problems110

Without loss of generality, in the rest of this paper, we will assume that all problems are minimization111

problems, as it is common in the DCOP literature (e.g., [13]). Thus, we assume that all constraints112

define costs and not utilities.113

A DCOP is defined by a tuple ⟨A, X , D, R⟩. A is a finite set of agents {A1, A2, . . . , An}. X is a114

finite set of variables {X1, X2, . . . , Xm}. Each variable is held by a single agent, and an agent may115

hold more than one variable. D is a set of domains {D1, D2, . . . , Dm}. Each domain Di contains the116

finite set of values that can be assigned to variable Xi. We denote an assignment of value x ∈ Di117

to Xi by an ordered pair ⟨Xi, x⟩. R is a set of relations (constraints). Each constraint Rj ∈ R118

defines a non-negative cost for every possible value combination of a set of variables, and is of119

the form Rj : Dj1 × Dj2 × . . . × Djk
→ R+ ∪ {0}. A binary constraint refers to exactly two120

variables and is of the form Rij : Di × Dj → R+ ∪ {0}.1 For each binary constraint Rij , there121

is a corresponding cost table Tij with dimensions |Di| × |Dj | in which the cost in every entry exy122

is the cost incurred when Xi is assigned to x and Xj is assigned to y. A binary DCOP is a DCOP123

in which all constraints are binary. A partial assignment is a set of value assignments to variables,124

in which each variable appears at most once. vars(PA) is the set of all variables that appear in125

partial assignment PA, i.e., vars(PA) = {Xi | ∃x ∈ Di ∧ ⟨Xi, x⟩ ∈ PA}. A constraint Rj ∈ R126

of the form Rj : Dj1 × Dj2 × . . . × Djk
→ R+ ∪ {0} is applicable to PA if each of the variables127

Xj1 , Xj2 , . . . , Xjk
is included in vars(PA). The cost of a partial assignment PA is the sum of128

all applicable constraints to PA over the value assignments in PA. A complete assignment (or a129

solution) is a partial assignment that includes all the DCOP’s variables (i.e., vars(PA) = X). An130

optimal solution is a complete assignment with minimal cost.131

1 We say that a variable is involved in a constraint if it is one of the variables the constraint refers to.

CP 2021

15:4 The Effect of Asynchronous Execution and Message Latency on Max-sum

For simplicity, we make the common assumption that each agent holds exactly one variable132

(i.e., n = m) and we concentrate on binary DCOPs. These assumptions are common in the DCOP133

literature (e.g., [17, 26]). In addition to the standard motivation for focusing on binary DCOPs, in134

the case of Max-sum it is essential, since the runtime complexity of each iteration of Max-sum is135

exponential in the arity of the constraints.136

2.3 The Max-Sum Algorithm137

Max-sum operates on a factor graph, which is a bipartite graph in which the nodes represent variables138

and constraints [10]. Each variable-node representing a variable of the original DCOP is connected139

to all function-nodes representing constraints that it is involved in. Similarly, a function-node is140

connected to all variable-nodes representing variables in the original DCOP that are involved in141

it. Variable-nodes and function-nodes are considered “agents” in Max-sum (i.e., they can send and142

receive messages, and can perform computation).143

A message sent to or from variable-node X (for simplicity, we use the same notation for a variable144

and the variable-node representing it) is a vector of size |DX | including a cost for each value in DX .145

These costs are also called beliefs. Before the first iteration, all nodes assume that all messages they146

previously received (in iteration 0) include vectors of zeros. A message sent from a variable-node X147

to a function-node F in iteration i ≥ 1 is formalized as follows:148

Qi
X→F =

∑
F ′∈FX ,F ′ ̸=F

Ri−1
F ′→X − α (1)149

150

where Qi
X→F is the message variable-node X intends to send to function-node F in iteration i,151

FX is the set of function-node neighbors of variable-node X , and Ri−1
F ′→X is the message sent to152

variable-node X by function-node F ′ in iteration i − 1. α is a constant that is reduced from all beliefs153

included in the message (i.e., for each x ∈ DX) in order to prevent the costs carried by messages154

throughout the run of the algorithm from growing arbitrarily large.155

A message Ri
F →X sent from a function-node F to a variable-node X in iteration i includes for156

each value x ∈ DX :157

minP A−X
cost(⟨X, x⟩, PA−X) (2)158

159

where PA−X is a possible combination of value assignments to variables involved in F not including160

X . The term cost(⟨X, x⟩, PA−X) represents the cost of a partial assignment a = {⟨X, x⟩, PA−X},161

which is:162

f(a) +
∑

X′∈XF ,X′ ̸=X,⟨X′,x′⟩∈a

(Qi−1
X′→F)x′ (3)163

164

where f(a) is the original cost in the constraint represented by F for the partial assignment a, XF is165

the set of variable-node neighbors of F , and (Qi−1
X′→F)x′ is the cost that was received in the message166

sent from variable-node X ′ in iteration i − 1, for the value x′ that is assigned to X ′ in a. X selects its167

value assignment x̂ ∈ DX following iteration k as follows:168

x̂ = arg min
x∈DX

∑
F ∈FX

(Rk
F →X)x (4)169

170

In the synchronous version (Syn_Max-sum), at each iteration t, an agent waits to receive all171

messages sent to it in iteration t − 1 before performing computation and generating the messages to172

be sent in that iteration [30]. In the asynchronous version (Asy_Max-sum), agents react to messages173

they receive. Whenever a node receives a message, it performs computation and sends out messages174

R. Zivan, O. Perry, B. Rachmut and W. Yeoh 15:5

Figure 1 An acyclic DCOP factor graph (on the left) and its equivalent SCFG (on the right).

to its neighbors, taking into consideration the last message received from each of its neighbors [6].175

In both versions, the logic for the actions of the agents are identical, only the trigger for performing176

those actions is different.177

2.3.1 Damped Max-sum (DMS)178

DMS has an additional feature, which is the damping of the propagated beliefs. In order to add179

damping to Max-sum, a parameter λ ∈ [0, 1) is used. Before sending a message in iteration k,180

an agent performs calculations as in standard Max-sum. We use m̂k
i→j to denote the result of the181

calculation made by agent Ai for the content of a message intended to be sent from Ai to agent Aj in182

iteration k and mk−1
i→j to denote the message sent by Ai to Aj at iteration k − 1. The message sent by183

Ai to Aj at iteration k is calculated as follows:184

mk
i→j = λmk−1

i→j + (1 − λ)m̂k
i→j (5)185

186

Thus, λ expresses the weight given to previously performed calculations with respect to the most187

recent calculation performed. Moreover, when λ = 0 the resulting algorithm is standard Max-sum.188

We use Syn_DMS and Asy_DMS to denote the synchronous and asynchronous versions of DMS,189

respectively, in this paper.190

2.3.2 Asynchronous Execution191

All the definitions used for describing Max-sum (and DMS) above use the iteration number k. It192

was used to describe how a message is generated, using the information received by the factor graph193

node in the previous iteration (k − 1). In asynchronous execution, their are no iterations, and agents194

perform computation steps whenever they receive messages. Thus, in asynchronous execution, the195

information that a node Ni uses, when it generates a message in some time t, is, for each neighbor Nj ,196

the information included in the last message received from Nj (prior to t), regardless of when it was197

sent by Nj . If no message has been received from Nj yet, Ni uses a vector of zeros in its computation.198

Notice, that in the presence of message delays, a node Ni may receive messages from its neighbor Nj ,199

not in the order they were sent. This is true for both the synchronous and the asynchronous versions200

of the algorithm. Nevertheless, the agents use the messages in the order in which they were received.201

In order to avoid this phenomenon, we implemented a time-stamp method that allowed the agents202

receiving messages to consider the information they include in the order that they were sent. However,203

the results were not significantly different from the results obtained when we did not use this method,204

thus, we do not report these results in our empirical study.205

CP 2021

15:6 The Effect of Asynchronous Execution and Message Latency on Max-sum

2.3.3 Max-sum with Split Constraint Factor Graphs206

When Max-sum is applied to an asymmetric problem, the representing factor graph has each (binary)207

constraint represented by two function-nodes, one for each part of the constraint held by one of the208

involved agents. Each function-node is connected to both variable-nodes representing the variables209

involved in the constraint [31]. Figure 1 presents two equivalent factor graphs that include two210

variable-nodes, each with two values in its domain, and a single binary constraint. On the left, the211

factor graph represents a (symmetric) DCOP including a single constraint between variables X1 and212

X2, hence, it includes a single function node representing this constraint. On the right, the equivalent213

factor graph representing the equivalent asymmetric DCOP is depicted. It includes two function-214

nodes, representing the parts of the constraint held by the two agents involved in the asymmetric215

constraint. Thus, the cost table in each function-node includes the asymmetric costs that the agent216

holding this function-node incurs. In this example function-node F ′
12 is held by agent A1, while217

F ′
21 is held by A2. The factor graphs are equivalent since the sum of the two cost tables held by the218

function-nodes representing the constraints in the factor graph on the right, is equal to the cost table219

of the single function-node representing this constraint in the factor graph on the left (see [32] for220

details). Researchers have used such Split Constraint Factor Graphs (SCFGs) as an enhancement221

method for Max-sum [20, 4]. This is achieved by splitting each constraint that was represented by a222

single function-node in the original factor graph into two function-nodes. The SCFG is equivalent to223

the original factor graph if the sum of the cost tables of the two function-nodes representing each224

constraint in the SCFG is equal to the cost table of the single function-node representing the same225

constraint in the original factor graph. By tuning the similarity between the two function-nodes226

representing the same constraint one can determine the level of asymmetry in the SCFG. The use of227

symmetric SCFGs was shown to trigger very fast convergence to high quality solutions. However,228

generating mild asymmetry, postpones convergence and generates some exploration, which results in229

improved solution quality [4].230

2.3.4 Non-Concurrent Logic Operations231

In order to evaluate the performance of distributed algorithms performing in a distributed environment,232

there is a need to establish which of the operations performed by agents could not have been performed233

concurrently and, thus, the run-time performance of the algorithm is the longest non-concurrent234

sequence of operations that the algorithm performed. In [29], DisCSP algorithms were evaluated,235

which their basic logic operations were constraint checks (CCs), thus, the performance was measured236

in terms of non-concurrent constraint checks (NCCCs). In [14], search based complete algorithms237

were compared with inference algorithms, thus, algorithms that perform different atomic logic238

operations (i.e., constraint checks and compatibility checks) were compared, and the results were239

reported in terms of non-concurrent logic operations (NCLOs). This approach is the one we adopt240

in this study, since we evaluate the quality of the solutions of the algorithms, as a function of the241

asynchronous advancement of the algorithm, when agents perform computation concurrently.242

Recently, these insights were generalized such that similar statements can be made when the243

algorithm is solving finite factor-graphs with multiple cycles [28]. Zivan et al. have proved that,244

as in the single cycle case, on every finite factor-graph, Max-sum at some point in time starts to245

repeatedly follow a path that minimizes its beliefs. When a large enough damping factor is used, this246

minimal path is indeed the minimal path in the factor-graph, and thus, if it is consistent, the algorithm247

converges to the optimal solution.248

R. Zivan, O. Perry, B. Rachmut and W. Yeoh 15:7

X1

F12

F13

X2

X3

F23

X4

F24F25

X5

F45

F13

X1=x

F12

X2

F23 F25 F24

X3 X4

F45F13 F45

X4

0

R(X1=a;X3=b)

0 0

X5

X1 X5

X3

R(X4=c;X5=d) R(X4=c;X5=d)

R(X1=a;X3=b) R(X4=c;X5=d) R(X4=c;X5=d)

R(X3=b;X2=e) +
R(X1=a;X3=b)

R(X5=d;X2=f) +
R(X4=c;X5=d)

R(X4=c;X2=e) +
R(X4=c;X5=d)

R(X3=b;X2=e) + R(X1=a;X3=b) +
R(X4=c;X2=e) + R(X4=c;X5=d) +
R(X5=d;X2=f) + R(X4=c;X5=d)

R(X1=x;X2=f) +
R(X3=b;X2=e) + R(X1=a;X3=b) +
R(X4=c;X2=e) + R(X4=c;X5=d) +
R(X5=d;X2=f) + R(X4=c;X5=d)

(a) (b)

Figure 2 (a) A lemniscate factor-graph. (b) An example of a BCT for a belief in the message sent from X1

to the function-node F13 at time t = 6 in the lemniscate depicted on the left hand side.

2.4 Backtrack Cost Trees249

For analyzing the behavior of Max-sum on factor graphs with an arbitrary (finite) number of cycles,250

Zivan et al. proposed the use of a backtrack cost tree (BCT) [28]. It allows one to trace, for each251

belief, the entries in the cost tables held by function-nodes that were used to compose this belief. That252

is, what were the components of the assignment’s cost. Their analysis included insights regarding253

the constructions of beliefs from costs incurred by constraints. Thus, for every pair of constrained254

variables, Xi and Xj , for each x ∈ Di, x′ ∈ Dj , the cost incurred by the constraint for assigning x255

to Xi and x′ to Xj was denoted as R(Xi = x, Xj = x′). Formally, a BCT is definde as follows:256

▶ Definition 1. A Backtracking Cost Tree (BCT) is defined for a belief that appears either in a257

message sent from variable Xi at time t, to a function node connecting it to a variable Xj or to a258

message sent from that function node to variable Xi. The belief is regarding the cost of assigning259

some x ∈ Di to Xi. Without loss of generality, we will elaborate on the first among these two and260

denote it as BCT t
i=x→j .261

The belief, as constructed by the Max-sum algorithm, is a sum of various components, and the262

tree is composed from them. At the root is the belief, i.e., a cost for assigning some x ∈ Di to Xi,263

and it is connected to all nodes it received a message from at time t − 1, with the edges containing264

the beliefs it was passed that ended up in the calculation of the belief it sent. Each of those nodes is265

connected itself to the nodes that send it messages at time t − 2, with the edges containing the beliefs266

that passed to it that ended up in its message. The tree leaves are all at time 0 (see Figure 2 (b)).267

For a single-cycle factor graph, the BCT for every belief is a chain. Factor graphs with multiple268

cycles include variable-nodes with more than two neighbors, and thus, the BCTs of their beliefs269

include nodes with multiple children.270

A BCT starts from the end point (i.e., the root of the BCT as presented in Figure 2 (b)), which is271

the belief (cost) of assigning to Xi some value x from its domain Di, as sent to a neighboring node.272

CP 2021

15:8 The Effect of Asynchronous Execution and Message Latency on Max-sum

The values from which that belief was calculated can then be backtracked to the messages and costs273

due to all the individual constraints that were summed up to create that belief. An example of such a274

tree for a belief generated when Max-sum solves the factor-graph depicted in Figure 2(a) is depicted275

in Figure 2(b).276

For each BCT, there is an implied assignment tree that consists of the value assignments that the277

variables at each time-point of the tree would need to be assigned in order to incur the costs included278

in the BCT. The value assignment selected by a variable at time t is the one with the minimal sum279

of beliefs sent to the corresponding variable-node at iteration t − 1. The tree for this minimal sum280

of beliefs will be denoted by BCT t
i , as it does not depend on any specific belief that appears in a281

message to another variable.282

2.5 Convergence Properties283

Belief propagation converges in linear time to an optimal solution when the problem’s corresponding284

factor graph is acyclic [16]. For a single-cycle factor graph, we know that if belief propagation285

converges, then it is to an optimal solution [8, 24]. Moreover, when the algorithm does not converge,286

it periodically changes its set of assignments. In order to explain this behavior, Forney et al. show the287

similarity of the performance of the algorithm on a cycle to its performance on a chain, whose nodes288

are similar to the nodes in the cycle, but whose length is equal to the number of iterations performed289

by the algorithm. One can consider a sequence of messages starting at the first node of the chain290

and heading towards its other end. Each message carries beliefs accumulated from costs added by291

function-nodes. Each function-node adds a cost to each belief, which is the constraint value of a pair292

of value assignments to its neighboring variable-nodes. Each such sequence of cost accumulation293

(route) must at some point become periodic, and the minimal belief would be generated by the294

minimal periodic route. If this periodic route is consistent (i.e., the set of assignments implied by the295

costs contain a single value assignment for each variable), then the algorithm converges. Otherwise, it296

does not [8].297

Recently, these insights were generalized such that similar statements can be made when the298

algorithm is solving factor graphs with multiple cycles. Specifically (using BCTs), Zivan et al. proved299

that, as in the single cycle case, on every finite factor graph, Max-sum at some point in time starts300

to repeatedly follow a path that minimizes its beliefs. When a large enough damping factor is used,301

this minimal path is indeed a minimal path in the factor graph, and thus, if it is consistent, then the302

algorithm converges to an optimal solution [28].303

3 The Effect of Asynchronous Execution304

In order to analyze the differences in the performance of Syn_Max-sum and Asy_Max-sum, one must305

investigate the differences in the structure of the BCTs of beliefs sent by the algorithms’ nodes. In306

Syn_Max-sum, the height of a BCT for a belief included in a message sent at iteration t is t and, for307

each node in the tree, the heights of the sub-trees rooted by each of its children nodes are equal. On308

the other hand, in Asy_Max-sum, messages can have different delays and, thus, each sub-tree in a309

BCT can have a different height.310

Our first theoretical property addresses the results proved in [28] regarding the convergence of311

the synchronous version of Max-sum (Syn_Max-sum). More specifically, we prove that the property312

that was proved in Lemma 1 in [28], and was used to prove the main theorem of this study (i.e.,313

the main theorem in [28]), is not guaranteed when the algorithm is performed asynchronously in an314

environment that includes message latency.315

R. Zivan, O. Perry, B. Rachmut and W. Yeoh 15:9

▶ Proposition 1. In the presence of message delays, unlike Syn_Max-sum, Asy_Max-sum is not316

guaranteed to converge to a minimal repeated route.317

Proof: The structure of the BCTs of the beliefs that are exchanged by agents, depend on the timing of318

the arrival of messages from which they are composed. Each BCT (and as a result, the corresponding319

belief that it demonstrates its construction), is an outcome of a specific combination of message320

delays, resulting in different orders of message arrivals and the number of such combinations is321

exponential in the maximal number of messages that the beliefs they carry can be included in the322

BCT. Moreover, the combination of message delays that resulted in a specific minimal route of beliefs323

is not guaranteed to repeat itself. Thus, even if the algorithm reaches a minimal route, it may not324

repeat it. □325

The proposition above seems to put an end to the natural wish that the convergence property of326

Syn_Max-sum can be established for Asy_Max-sum as well. However, the differences between the327

executions of the two versions of the algorithm can be minimized. More specifically, the effect caused328

by sub-trees of the BCTs having different heights in Asy_Max-sum can be significantly reduced329

through the use of damping.330

Denote by layerk the set of nodes of a BCT with depth k (distance from the root), and by BCTk331

the layers of the BCT with depth k or less. We will say that a layerk is effective if and only if there332

exists a belief calculated using BCTk that is different than the belief calculated when taking into333

consideration the complete BCT. For each BCT B, we say that its effective BCT B′ is BCTk′ such334

that layerk′ is effective and for any layerk that is effective in B, k′ ≥ k.335

▶ Lemma 1. When asynchronous DMS (Asy_DMS) is performed with a large enough damping336

factor2, in an environment including bounded message delays, there exists a finite number of non-337

concurrent steps3 of the algorithm ns1, such that in the steps following it, for every two beliefs338

included in the same message, if layerk in each of the corresponding BCTs is effective, then the339

number of nodes in layerk of both BCTs are equal.340

Proof: Since delays are bounded, there exists a number of non-concurrent steps ns0 < ns1 in which341

the roots of the BCTs of all beliefs received in messages for every step following ns0 have the same342

number of children. This will be true for all non-concurrent steps ns > ns0 and, thus, layers of BCTs343

of beliefs that are sent in the same message with depth k following ns ≥ ns0 + δk (where δ is the344

maximal size of a message delay, in terms of non-concurrent steps) must have the same number of345

nodes. Damping with a large enough damping factor, causes the bottom layers of BCTs to have less346

influence on the calculation made by the nodes in the algorithm following each computation step347

(see [28] for details). Let ϵ denote the smallest cost that can affect the nodes’ actions in the algorithm.348

If we wait for a sufficiently large enough number of steps, the maximal sum of costs in the BCTs,349

of steps performed before ns0 will be smaller than ϵ. We use ns1 to denote that sufficiently large350

enough number of steps. □351

An immediate corollary from Lemma 1 is that in Asy_DMS (which is using a large enough352

damping factor), following ns1, the effective BCTs of all beliefs included in each message have the353

same number of nodes. This reduces the possible differences between beliefs that can be generated by354

each node. Moreover, for the case that the algorithm does converge, the effect of the asynchronous355

performance vanishes, as we prove below.356

2 For an analysis of the size of the damping factor required, with respect to the largest number of neighbors (degree)
that a node in the factor graph has, see [28].

3 We consider a step to be an action that starts when a node in the graph received some messages (at least one),
performed computation and ends when it sent some messages (at least one).

CP 2021

15:10 The Effect of Asynchronous Execution and Message Latency on Max-sum

▶ Proposition 2. When Asy_DMS using a large enough damping factor, is performed in an357

environment with bounded message delays, if after performing ns2 > ns1 (ns1 as described in358

Lemma 1) non-concurrent steps, it reaches a minimal consistent route (i.e., all nodes perform k359

sequential asynchronous steps in which the value assignments corresponding to the minimal route360

are selected), then it will repeatedly follow this route (i.e., it has converged).361

Proof: As established above, following ns1, the effective BCTs for beliefs included in the same362

message have the same number of nodes (in each layer and altogether) regardless of message delays.363

When the algorithm reaches a minimal consistent route, the beliefs corresponding to this minimal364

route involve only one value in each domain, and the belief corresponding to it is minimal in each365

message. Additional nodes added to the BCTs of the beliefs corresponding to the assignments in the366

minimal route represent costs in the entries of the cost tables of function-nodes that are part of the367

minimal route. Hence, they will not change its minimal property or the choice of the minimal route368

assignments, i.e., for every ns > ns2 the effective BCT ns
i will be identical. Similarly, the addition369

of nodes to BCTs of beliefs corresponding to assignments that are not included in the minimal route370

represent costs that belong to routes with larger overall costs. □371

Proposition 2 has a major importance to our discussion. Both the asynchronous and the synchron-372

ous versions of DMS will converge when they reach a consistent minimal path (i.e., the differences373

between them can exist only when the minimal path is inconsistent. In such a case, the synchronous374

execution version will repeat the minimal non consistent route while the asynchronous execution375

version may leave it and explore other routes).376

4 Experimental Evaluation377

In order to evaluate the implications of asynchronous execution (compared to synchronous execution)378

and message latency on the different versions of Max-sum, we used an asynchronous simulator, in379

which agents are implemented by Java threads. It includes a mailing agent that simulates the delays380

of messages as suggested by [29]. Using this type of simulator allows us to implement any type of381

message delay pattern. Other simulators, such as ns-3 [12, 1], offer a number of communication382

patterns from which one can select. However, we prefer the use of the simulator proposed in [29],383

which allows complete flexibility in the design of the message delay pattern and it allows to measure384

run-time in implementation independent units. Thus, the results are presented as a function of the385

number of non-concurrent logic operations (NCLOs). The atomic logic operations in these algorithms386

are the evaluation of the cost of a combination of two assignments (i.e., an access to the cost table of a387

function-node). Each agent performed the computation for the function-nodes that were assigned to it.388

We used a greedy heuristic to evenly assign function-nodes to agents and, thus, increase concurrency.389

In order to simulate message delays, for each message sent between nodes that their roles were390

performed by different agents, a delay in terms of NCLOs was selected, and the message was391

delivered to the receiving agent after that agent had the opportunity to perform this number of logic392

operations.393

We evaluated the algorithms on problems including 50 agents, which are too large for complete394

DCOP algorithms to solve. These included random graph problems, graph coloring problems, scale-395

free network problems, and overlapped solar systems problems (details below).396

In each experiment, we randomly generated 50 different problem instances. The results presented397

in the graphs are an average of those 50 runs. In order to demonstrate the convergence of the398

algorithms, we present the sum of costs of the constraints involved in the assignment that would399

have been selected by each algorithm every 100K NCLOs. We also performed t-tests to evaluate the400

significance of differences between all presented results.401

R. Zivan, O. Perry, B. Rachmut and W. Yeoh 15:11

As mentioned above, the experiments were performed on four types of distributed constraint402

optimization problems. Each type of problem exhibits a different level of structure in the constraint403

graph topology and in the constraint functions. All problems were formulated as minimization404

problems.405

Random Graph Problems: These problems are random constraint graph topologies with density406

p1 = {0.1, 0.6}. They include variables with 10 values in each domain. The cost tables held407

by function-nodes include costs that were selected uniformly between 100 and 200. Both the408

constraint graph and the constraint functions are unstructured.409

Graph Coloring Problems: These problems are random constraint graph topologies in which410

each variable has three values (i.e., colors), and all constraints are “not-equal” cost functions,411

where an equal assignment of neighbors in the graph incurs a random cost between 100 and412

200 and non equal value assignments incur zero cost. Such random graph coloring problems are413

commonly used in DCOP formulations of resource allocation problems. We set the density to414

p1 = 0.05 and had three values (i.e., colors) in each domain [27, 6, 4].415

Scale-free Network Problems: Problems generated using the model by [2]. An initial set of416

10 agents was randomly selected and connected. Additional agents were added sequentially417

and connected to 3 other agents with a probability proportional to the number of links that the418

existing agents already had. The cost of each joint assignment between constrained variables was419

independently drawn from the discrete uniform distribution from 100 to 199. Each variable had420

10 values in its domain. Similar problems were previously used to evaluate DCOP algorithms by421

Kiekintveld et al. [9]. The constraint graph is somewhat structured but the constraint functions422

are unstructured.423

Overlapped Solar Systems Problems: The overlapped solar system is a realistic problem,424

inspired by the Constant Speed Propagation Delay Model implemented in the ns-3 simulator [12,425

1]. The graph topology is inspired by scale-free networks. An initial set of 5 agents are randomly426

selected to be the centers of the solar systems, and they are connected. Each of these agents Ac
i is427

assigned two coordinates that are drawn from a continuous uniform distribution: xc
i ∼ U(0, 1)428

and yc
i ∼ U(0, 1). All other agents (i.e., stars in the solar systems) are randomly assigned to one429

of the solar systems. The index c represents the solar system in which the agent is assigned too,430

and it is equal to the index of the center agent of the solar system (i.e., if Ac
i is the center of a431

solar system, then i = c). The coordinates for an assigned agent (Ac
j where j ̸= c) are drawn from432

a Normal distribution as follows: xc
j ∼ N(µ = xc

i , σ = 0.05) and yc
j ∼ N(µ = yc

i , σ = 0.05)433

based on the location of the center of the solar system that it was attached to.434

The probability that two arbitrary agents Ai and Aj will be neighbors is defined by pij =435

(1 − distanceij

maxDistance)β where distanceij is the Euclidean distance between agents Ai and Aj ,436

maxDistance is the Euclidean distance between agent Ai to the farthest agent, and β expresses437

the changes in the probability that both agents will be neighbors as a function of their distance438

(in our experiments we used β = 3). For each pair agents, a random probability pr ∈ [0, 1] was439

generated, and two agents are considered as neighbors if pr < pij . Costs between connected agents440

were selected uniformly between 100 and 200.441

While the structure of these problems is similar to scale-free networks, the addition of the442

geographic locations of nodes allows one to calculate the size of message delays with respect to443

physical distance as specified below.444

For random uniform problems, graph coloring problems, and scale-free network problems, all445

algorithms were run in a setup with no message delays and a setup with random message delays446

selected uniformly from the range (0, 10K) NCLOs. For overlapped solar systems problems, in447

addition to the no message delay setup, the delay for each sent message between agents Ai and Aj448

CP 2021

15:12 The Effect of Asynchronous Execution and Message Latency on Max-sum

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

14000

15000

16000

17000

18000

14000

15000

16000

17000

18000

NCLO x 107

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

14000

15000

16000

17000

18000

0 1 2 3 4 5

NCLO x 105

Cost

Setting

Asynchronous + Delay
Asynchronous + No Delay
Synchronous + Delay
Synchronous + No Delay

(a) (b)

Figure 3 (a) Solution quality as a function of NCLOs, of Max-sum versions solving sparse random
problems (p1 = 0.1). (b) A closer look at the solution quality of DMS-SCFG versions on these problems.

was drawn from a Poisson distribution Poisson(Γ ·distanceij) NCLOs where Γ is the average delay.449

This is in contrast to the Constant Speed Propagation Delay Model implemented in ns-3 where the450

delays that were calculated as a function of the distance between the geographic location of the nodes451

in the communication graph, were fixed and not sampled [12, 1].452

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

100000

102500

105000

107500

100000

102500

105000

107500

NCLO x 107

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

No Delay Delay

S
ynchronous

A
synchronous

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0

1000

2000

3000

0

1000

2000

3000

NCLO x 107

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

(a) (b)

Figure 4 Solution quality as a function of NCLOs, of Max-sum versions solving dense random problems
(p = 0.6) (a) and graph coloring problems (b)).

4.1 Results453

Figure 3(a) presents the quality of solutions produced by the different versions of Max-sum when454

solving sparse random graph problems with p1 = 0.1. Each figure presented in this sections includes455

four graphs, presenting results of the algorithms when performing synchronously, asynchronously,456

R. Zivan, O. Perry, B. Rachmut and W. Yeoh 15:13

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

20000

21000

22000

23000

24000

20000

21000

22000

23000

24000

NCLO x 107

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

56000

58000

60000

62000

56000

58000

60000

62000

NCLO x 107

Cost

Algorithm

Max−sum
DMS
DMS−SCFG

(a) (b)

Figure 5 Solution quality as a function of NCLOs, of Max-sum versions solving scale-free network
problems (a) and overlapped solar systems problems (b)).

with message delays and without. The versions include Max-sum, DMS with λ = 0.9, DMS-SCFG.4457

Asy_Max-sum (with and without message delays) traversed solutions with higher costs on average458

than Syn_Max-sum. The results of the different runs of the algorithms were scattered and, thus, the459

differences from the synchronous versions were not found to be statistically significant. Asy_DMS,460

on the other hand, performed similarly to Syn_DMS, with and without message delays (as expected461

following Proposition 1).462

Another observation is that all versions of DMS-SCFG converged very fast compared to the other463

versions of the algorithm. Figure 3(b) provides a closer look that allows one to better compare their464

convergence rates. Both the synchronous and the asynchronous versions converge at the same rate in465

environments that do not include message delays. Clearly, message delays affect the synchronous466

version more than the asynchronous version of the algorithm. Nevertheless, in all execution modes,467

the algorithm converges very fast to solutions with the same quality.468

Figure 4(a) presents the results for the same algorithms solving dense random graph problems469

with p1 = 0.6. While the results seem similar to the results presented in Figure 3(a), there are fewer470

differences between the Max-sum versions. On the other hand, on these problems, the DMS versions471

in scenarios that do not include message delays find high quality solutions faster and converge.472

Figure 4(b) presents the results of the algorithms solving graph coloring problems. It is apparent473

that the exploration performed by Max-sum and DMS is less effective on these problems, and thus,474

the advantage of DMS-SCFG is prominent. Moreover, in the presence of message delays, standard475

Max-sum improves its performance. We assume that delays break the very structured execution on this476

type of problems, and has a positive exploration affect. This affect is diminished when damping for477

the same properties that we established in the section titled “The Effect of Asynchronous Execution.”478

The results of the algorithms when solving scale free network and the overlapping solar system479

problem are presented in in Figure 5. They were found to be similar to the results presented in480

Figure 4(a) for the dense random problems. The differences in the performance of Asy_Max-sum481

from Syn_Max-sum was found to be significant when solving scale-free networks, with and without482

message delays. No significant difference was found between the synchronous and asynchronous483

4 DMS-SCFG is the damped Max-sum (DMS) algorithm with split constraint factor graphs (SCFGs). We used the
0.4-0.6 version of DMS-SCFG, which was found to perform best by [4].

CP 2021

15:14 The Effect of Asynchronous Execution and Message Latency on Max-sum

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

14000

14500

15000

15500

16000

14000

14500

15000

15500

16000

NCLO x 107

Cost

λ

0.5
0.7
0.9

No Delay Delay

S
ynchronous

A
synchronous

0 1 2 3 0 1 2 3

100000

102500

105000

107500

100000

102500

105000

107500

NCLO x 107

Cost

λ

0.5
0.7
0.9

(a) (b)

Figure 6 Solution quality as a function of NCLOs, of DMS with different λ values, solving random
uniform problems with p1 = 0.1 (a) and p1 = 0.6 (b)).

versions when solving overlapped solar system problems. It seems for these problems that the similar484

structure has a more major effect on the behavior of the algorithms than the pattern of the message485

delays.486

In our second set of experiments we evaluated the influence of the selection of the damping487

factor on the effect that asynchronous execution and message latency have on DMS’s performance.488

Figure 6 presents the results of the algorithm with three different values of the damping parameter,489

i.e., λ = 0.5, λ = 0.7 and λ = 0.9, solving sparse (a) and dense (b) random uniform problems. As490

expected from the properties established in Propositions 1 and 2, asynchronous execution affects491

the performance of all versions of DMS when it does not converge. However, it is apparent that492

the λ = 0.9 version is less affected by message delays in the asynchronous execution, as expected.493

Similar results were obtained for all types of problems and were omitted to avoid redundancy.494

In order to compare the effect that message delays have on the agents performing synchronously495

and asynchronously, we measured the average number of NCLOs in which agents were idle in each496

mode of execution of the algorithm. The results are presented in Figure 7. It includes for each al-497

gorithm, in each mode of execution, the average ratio of the number of NCLOs in which the agent was498

idle (i.e., waiting for message to arrive) and the total number of NCLOs the algorithm was executed.499

It is apparent that when solving all problem types, the agents performing asynchronously spend less500

time idle than the agents performing synchronously. This difference between the performance of the501

synchronous and the asynchronous versions was most apparent in DMS_SCFG. Nevertheless, while502

the difference in the time the agents spent idle when performing this type of the Max-sum algorithm,503

the synchronous and the asynchronous versions were most similar in their convergence time and the504

solution quality.505

4.2 Discussion506

The advantage of DMS over standard Max-sum, when solving graphs with multiple cycles, was507

reported empirically in a number of studies (e.g., [4]) and explained theoretically by [28]. In Max-sum,508

costs that are aggregated in the beginning of the run are duplicated in every node of the graph that509

has more than two neighbors and, thus, they are taken into consideration an exponential number of510

times in the calculation of beliefs and in the assignment selection. Damping reduces the weight of511

these costs in the belief calculation until it becomes negligible. A similar phenomenon reduces the512

R. Zivan, O. Perry, B. Rachmut and W. Yeoh 15:15

No Delay Delay

G
raph C

olor
S

cale−
F

ree
S

olar S
ystem

U
niform

 01
U

niform
 06

Max−sum DMS DMS−SCFG Max−sum DMS DMS−SCFG

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Algorithm

Id
le

 N
C

LO
 R

at
io

Version

Synchronous
Asynchronous

Figure 7 Ratio between the number of NCLOs in which the agents were idle and the total number of
NCLOs for all algorithms and all execution modes.

differences between the performance of Syn_DMS and Asy_DMS. As we established in the corollary513

of Lemma 1, when using a large enough damping factor, the effect of BCTs with different heights is514

eliminated in DMS and, thus, after enough NCLOs are performed, the effective BCTs of the beliefs515

in each message have the same number of nodes. The results comparing DMS with different damping516

factor values, demonstrate the need to use a high damping factor in order to achieve robustness to517

message delays. This empirical evidence, strengthens the property established in Lemma 1 and its518

corollary, that if the damping factor used in not high enough, the effect of the lower layers of the519

BCTs, which may have different structure and a different number of nodes, on the generation of520

beliefs by the nodes, is not eliminated. Thus, message delays have a greater effect on the algorithm’s521

performance when the damping factor used is not low. Finally, Asy_DMS-SCFG maintains the fast522

convergence properties and the quality of the solutions of the synchronous version. It is also robust to523

message latency.524

5 Conclusions525

In this paper, we filled the gap in the Max-sum literature on the difference of synchronous and526

asynchronous executions of the algorithm in distributed environments. Our theoretical analyses527

revealed that, unlike its synchronous counterpart, the asynchronous version of Max-sum in the528

presence of message latency can cause the propagation of inconsistent beliefs, resulting in the loss of529

guaranteed properties (Proposition 1). However, not all is lost as one can use damping to minimize530

this effect and, subsequently, ensure that when asynchronous DMS finds a minimal route, it will531

converge, as does the synchronous version (Proposition 2). Finally, experimental results show that532

when the algorithm is further optimized through split constraint factor graphs, it converges very533

fast to high-quality solutions even in the presence of message delays. Taken together, these results534

extend significantly our understanding of Max-sum in distributed environments with more realistic535

messaging assumptions, propose algorithmic tools that are theoretically grounded to alleviate the536

issues raised, and enable a more effective use of Max-sum by real-world practitioners.537

CP 2021

15:16 The Effect of Asynchronous Execution and Message Latency on Max-sum

References538

1 Andy Bubune Amewuda, Ferdinand Apietu Katsriku, and Jamal-Deen Abdulai. Implementation and539

evaluation of wlan 802.11ac for residential networks in ns-3. Journal of Computer Networks and540

Communications, 2018, 2018.541

2 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,542

286(5439):509–512, 1999.543

3 Ziyu Chen, Yanchen Deng, Tengfei Wu, and Zhongshi He. A class of iterative refined max-sum algorithms544

via non-consecutive value propagation strategies. Auton. Agents Multi Agent Syst., 32(6):822–860, 2018.545

4 Liel Cohen, Rotem Galiki, and Roie Zivan. Governing convergence of max-sum on dcops through546

damping and splitting. Artificial Intelligence Journal (AIJ), 279, 2020.547

5 Yanchen Deng and Bo An. Speeding up incomplete gdl-based algorithms for multi-agent optimization with548

dense local utilities. In Proceedings of the 29th International Joint Conference on Artificial Intelligence,549

(IJCAI), pages 31–38, 2020.550

6 A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. Decentralised coordination of low-power embedded551

devices using the max-sum algorithm. In Proceeding of the 7th International Conference on Autonomous552

Agents and Multi-Agent Systems (AAMAS), pages 639–646, 2008.553

7 Alessandro Farinelli, Alex Rogers, and Nick R. Jennings. Agent-based decentralised coordination for554

sensor networks using the max-sum algorithm. Journal of Autonomous Agents and Multi-Agent Systems555

(JAAMAS), 28(3):337–380, 2014.556

8 G David Forney, Frank R Kschischang, Brian Marcus, and Selim Tuncel. Iterative decoding of tail-biting557

trellises and connections with symbolic dynamics. In Brian Marcus and Joachim Rosenthal, editors,558

Codes, Systems, and Graphical Models, pages 239–264. Springer, 2001.559

9 C. Kiekintveld, Z. Yin, A. Kumar, and M. Tambe. Asynchronous algorithms for approximate distributed560

constraint optimization with quality bounds. In AAMAS, pages 133–140, 2010.561

10 F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and the sum-product algorithm. IEEE562

Transactions on Information Theory, 47:2:181–208, 2001.563

11 Radu Marinescu and Rina Dechter. AND/OR branch-and-bound search for combinatorial optimization in564

graphical models. Artif. Intell., 173(16-17):1457–1491, 2009.565

12 Lesly Mayuga-Marcillo, Luis Urquiza-Aguiar, and Martha Paredes-Paredes. Wireless channel 802.11 in566

ns-3, 2018.567

13 P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: asynchronous distributed constraints optimization-568

with quality guarantees. Artificial Intelligence Journal (AIJ), 161:1-2:149–180, 2005.569

14 Arnon Netzer, Alon Grubshtein, and Amnon Meisels. Concurrent forward bounding for distributed570

constraint optimization problems. Artificial Intelligence Journal (AIJ), 193:186–216, 2012.571

15 Duc Thien Nguyen, William Yeoh, Hoong Chuin Lau, and Roie Zivan. Distributed Gibbs: A linear-space572

sampling-based DCOP algorithm. Journal of Artificial Intelligence Resesrch, 64:705–748, 2019.573

16 J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan574

Kaufmann, San Francisco, California, 1988.575

17 A. Petcu and B. Faltings. A scalable method for multiagent constraint optimization. In Proceedings of the576

21st International Joint Conference on Artificial Intelligence, (IJCAI), pages 266–271, 2005.577

18 Ben Rachmut, Roie Zivan, and William Yeoh. Latency-aware local search for distributed constraint578

optimization. In Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent579

Systems, pages 1019–1027, 2021.580

19 S. D. Ramchurn, A. Farinelli, K. S. Macarthur, and N. R. Jennings. Decentralized coordination in robocup581

rescue. Computer J., 53(9):1447–1461, 2010.582

20 Nicholas Ruozzi and Sekhar Tatikonda. Message-passing algorithms: Reparameterizations and splittings.583

IEEE Trans. Information Theory, 59(9):5860–5881, 2013.584

21 Pierre Rust, Gauthier Picard, and Fano Ramparany. Using message-passing DCOP algorithms to solve585

energy-efficient smart environment configuration problems. In Proceedings of the 25th International Joint586

Conference on Artificial Intelligence, (IJCAI), pages 468–474, 2016.587

R. Zivan, O. Perry, B. Rachmut and W. Yeoh 15:17

22 R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings. Decentralised coordination of mobile sensors588

using the max-sum algorithm. In Proceedings of the 21st International Joint Conference on Artificial589

Intelligence, (IJCAI), pages 299–304, 2009.590

23 W. T. Luke Teacy, Alessandro Farinelli, N. J. Grabham, Paritosh Padhy, Alex Rogers, and Nicholas R.591

Jennings. Max-sum decentralized coordination for sensor systems. In Proceeding of the 7th International592

Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 1697–1698, 2008.593

24 Yair Weiss. Correctness of local probability propagation in graphical models with loops. Neural594

Computation, 12(1):1–41, 2000.595

25 Chen Yanover, Talya Meltzer, and Yair Weiss. Linear programming relaxations and belief propagation -596

an empirical study. Journal of Machine Learning Research, 7:1887–1907, 2006.597

26 William Yeoh, Ariel Felner, and Sven Koenig. BnB-ADOPT: An asynchronous branch-and-bound DCOP598

algorithm. Journal of Artificial Intelligence Research, 38:85–133, 2010.599

27 W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. Distributed stochastic search and distributed break-600

out: properties, comparishon and applications to constraints optimization problems in sensor networks.601

Artificial Intelligence, 161:1-2:55–88, January 2005.602

28 Roie Zivan, Omer Lev, and Rotem Galiki. Beyond trees: Analysis and convergence of belief propagation603

in graphs with multiple cycles. In Proceedings of the 34th International Conference of the Association for604

the Advancement of Artificial Intelligence (AAAI), pages 7333–7340, 2020.605

29 Roie Zivan and Amnon Meisels. Message delay and discsp search algorithms. Annals of Mathematics606

and Artificial Intelligence (AMAI), 46:415–439, 2006.607

30 Roie Zivan, Tomer Parash, Liel Cohen, Hilla Peled, and Steven Okamoto. Balancing exploration and608

exploitation in incomplete min/max-sum inference for distributed constraint optimization. Journal of609

Autonomous Agents and Multi-Agent Systems (JAAMAS), 31(5):1165–1207, 2017.610

31 Roie Zivan, Tomer Parash, Liel Cohen-Lavi, and Yarden Naveh. Applying max-sum to asymmetric611

distributed constraint optimization problems. Journal of Autonomous Agents and Multi Agent Systems612

(JAAMAS), 34(1):13, 2020.613

32 Roie Zivan, Tomer Parash, and Yarden Naveh. Applying max-sum to asymmetric distributed constraint614

optimization. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,615

IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 432–439, 2015.616

CP 2021

	1 Introduction
	2 Background
	2.1 Graphical Models
	2.2 Distributed Constraint Optimization Problems
	2.3 The Max-Sum Algorithm
	2.3.1 Damped Max-sum (DMS)
	2.3.2 Asynchronous Execution
	2.3.3 Max-sum with Split Constraint Factor Graphs
	2.3.4 Non-Concurrent Logic Operations

	2.4 Backtrack Cost Trees
	2.5 Convergence Properties

	3 The Effect of Asynchronous Execution
	4 Experimental Evaluation
	4.1 Results
	4.2 Discussion

	5 Conclusions

