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Abstract. The Distributed Constraint Optimization Problem (DCOP)
is an elegant paradigm for modeling and solving multi-agent problems
which are distributed in nature, and where agents cooperate to optimize
a global objective within the confines of localized communication. Since
solving DCOPs optimally is NP-hard, recent effort in the development
of DCOP algorithms has focused on incomplete methods. Unfortunately,
many of such proposals do not provide quality guarantees or provide a
loose quality assessment. Thus, this paper proposes the Distributed Large
Neighborhood Search (DLNS), a novel iterative local search framework
to solve DCOPs, which provides guarantees on solution quality refin-
ing lower and upper bounds in an iterative process. Our experimental
analysis of DCOP benchmarks on several important classes of graphs
illustrates the effectiveness of DLNS in finding good solutions and tight
upper bounds in both problems with and without hard constraints.

Keywords: Multiagent Systems; Distributed Constraint Optimization;
Large Neighborhood Search

1 Introduction

In a cooperative Multi-Agent System (MAS), multiple autonomous agents inter-
act to pursue personal interests and to achieve common objectives. Distributed
Constraint Optimization Problems (DCOPs) [24, 30, 8] have emerged as a promi-
nent agent model to govern the agents’ behavior in cooperative MAS. In this
context, agents control variables of a weighted constrained problem and coordi-
nate their value assignments to maximize the overall sum of resulting constraint
utilities. DCOPs are suitable to model problems that are distributed in nature
and where a collection of agents attempts to optimize a global objective within
the confines of localized communication. They have been employed to model dis-
tributed versions of meeting scheduling problems [22, 39], allocation of targets to
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sensors in a network [5], channel selection in wireless networks [41], coordination
of multi-robot teams [43], optimization in smart grids [19, 23, 13], generation of
coalition structures [37], and device scheduling in smart homes [34, 12, 18].

DCOP algorithms are classified as either complete or incomplete. Complete
DCOP algorithms find optimal solutions at the cost of large runtimes, while in-
complete approaches trade optimality for faster runtimes. Since finding optimal
DCOP solutions is NP-hard [24], incomplete algorithms are often necessary to
solve larger problems’ instances. Unfortunately, several local search algorithms
(e.g., DSA [42] and MGM [21]) and local inference algorithms (e.g., Max-Sum
[5]) do not provide guarantees on the quality of the solutions found. More recent
developments, such as region-optimal algorithms [28, 17, 38], sampling-based al-
gorithms [27, 25, 10] and (Improved) Bounded Max-Sum [32, 33] alleviate this
limitation. Region-optimal algorithms allow the specification of regions with a
maximum size of k agents or t hops from each agent, and they optimally solve
the subproblem within each region. Solution quality bounds are provided as a
function of k [28], t [17], or a combination of both [38]. Sampling-based algo-
rithms such as DUCT [27] and D-Gibbs [25, 10] extend the centralized UCT [1]
and Gibbs [14] sampling algorithms, respectively. They are able to bound the
quality of solutions found as a function of the number of samples used by the
algorithms. Bounded Max-Sum [32] extends Max-Sum by solving an acyclic ver-
sion of the DCOP graph and bounding its solution quality as a function of the
edges removed from the graph. Improved Bounded Max-Sum [33] further pro-
vides tighter upper bounds. Although good quality assessments are essential for
sub-optimal solutions, many incomplete DCOP approaches provide poor quality
assessments and are unable to exploit domain-dependent knowledge and/or hard
constraints present in problems.

We address these limitations by introducing the Distributed Large Neigh-
borhood Search (DLNS) framework.5 DLNS solves DCOPs by building on the
strengths of LNS [35], a centralized meta-heuristic algorithm that iteratively
explores complex neighborhoods of the search space to find better candidate
solutions. LNS has been shown to be very effective in solving a number of op-
timization problems [15]. While typical LNS approaches focus on iteratively re-
fining lower bounds of a solution, we propose a method that refines both lower
and upper bounds, imposing no restriction on the objective and constraints.

Contributions: This paper makes the following contributions: (1) We provide
a novel distributed local search framework for DCOPs, which provides qual-
ity guarantees by refining both lower and upper bounds of the solution found
during the iterative process; (2) We introduce a novel distributed search al-
gorithm called Tree-based DLNS (T-DLNS), which is built within the DLNS
framework and characterized by the ability to exploit the problem structure—
T-DLNS provides also a low computational complexity per agent; and (3) Eval-
uations against state-of-the-art incomplete DCOP algorithms that also return
bounded solutions show that T-DLNS converges to better solutions providing
tighter quality bounds.

5 An extended abstract of this work [6] appeared at AAMAS 2015.
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Fig. 1: Example DCOP.

2 Background

DCOP: A Distributed Constraint Optimization Problem (DCOP) is a tuple
〈X ,D,F ,A, α〉, where: X ={x1, . . . , xn} is a set of variables; D={D1, . . . , Dn}
is a set of finite domains (i.e., xi∈Di); F={f1, . . . , fe} is a set of utility functions
(also called constraints), where fi :

∏
xj∈xfi Di → R+∪{−∞} and xfi⊆X is the

set of the variables (also called the scope) relevant to fi; A={a1, . . . , ap} is a set
of agents; and α : X → A is a function that maps each variable to one agent. fi
specifies the utility of each combination of values assigned to the variables in xfi .
To ease readability, in the following, we assume all constraints are binary, and
all agents control exactly one variable. Thus, we will use the terms “variable”
and “agent” interchangeably and assume that α(xi)=ai. The extensions to the
n-ary constraint and multi-variable agents are straightforward [11].

A partial assignment σ is a value assignment to a set of variables Xσ⊆X that
is consistent with the variables’ domains. The utility F(σ) =

∑
f∈F,xf⊆Xσ f(σ)

is the sum of the utilities of all the applicable utility functions in σ. A solution
is a partial assignment σ for all the variables of the problem, i.e., with Xσ=X .
We will denote with x a solution, while xi is the value of xi in x. The goal is to
find an optimal solution x∗ = argmaxx F(x).

Given a DCOP P , G=(X , E) is the constraint graph of P , where (x, y)∈E
iff ∃fi ∈ F s.t. {x, y} = xfi . A DFS pseudo-tree arrangement for G is a
spanning tree T = 〈X , ET 〉 of G s.t. if fi ∈ F and {x, y} ⊆ xfi , then x and y
appear in the same branch of T . Edges of G that are in (resp. out of) ET are
called tree edges (resp. backedges). Tree edges connect a node with its parent
and its children, while backedges connect a node with its pseudo-parents and its
pseudo-children. We use N(ai) = {aj ∈A | (xi, xj)∈E} to denote the neighbors
of the agent ai. We denote with Gk = 〈Xk, Ek〉, the subgraph of G used in the
execution of our iterative algorithms, where Xk ⊆ X and Ek ⊆ E.

Figure 1 depicts: (a) the constraint graph of a DCOP with agents a1, . . . , a4,
each controlling a variable with domain {0,1}, (b) a pseudo-tree (solid lines iden-
tify tree edges, dotted lines refer to backedges), and (c) the DCOP constraints.
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Algorithm 1: DLNS

1 k ← 0;
2 〈x0

i ,LB
0
i ,UB0

i 〉 ← Value-Initialization();
3 while termination condition is not met do
4 k ← k + 1;

5 zki ← Destroy-Algorithm();

6 if zki = ◦ then xk
i ← NULL; else xk

i ← xk−1
i ;

7 xk
i ← Repair-Algorithm(zki );

8 〈LBk
i ,UBk

i 〉 ← Bound-Algorithm(xk
i );

9 if LBk
i = −∞ then xk

i ← xk−1
i ;

LNS: In (centralized) Large Neighborhood Search (LNS) [35], an initial solution
is iteratively improved by being repeatedly destroyed and repaired. Destroying
a solution means selecting a subset of variables whose current values will be
discarded. The set of such variables is the large neighborhood (LN). Repairing
a solution means finding a new value assignment for the LN variables, given that
the non-destroyed variables maintain their values from the previous iteration.
The peculiarity of LNS, compared to other local search techniques, is the (larger)
size of the neighborhood to explore at each step. It relies on the intuition that
searching over a larger neighborhood allows the process to escape local optima
and find better candidate solutions.

3 The DLNS Framework

In this section, we introduce DLNS, a general distributed LNS framework to solve
DCOPs. It takes into account the restriction that each agent is only aware of its
local subproblem (i.e., its neighbors and constraints) which makes centralized
LNS techniques unsuitable and infeasible for solving DCOPs.

Algorithm 1 shows the general structure of DLNS, as executed by each agent
ai∈A. After initializing its iteration counter k (line 1), its current value assign-
ment x0

i (as a random choice, solving a relaxed problem, or by exploiting domain
knowledge, when available), and its current lower and upper bounds LB0

i and
UB0

i of the optimal utility (line 2), the agent, like in LNS, iterates through the
destroy and repair phases (lines 3–7). Next, the agent executes a bound phase
(line 8) which updates the current lower and upper bounds. If the solution is not
satisfiable (i.e., if it has a negative infinite lower bound utility), the agent re-
stores its value assignment to that of the previous iteration (line 9). The process
repeats until a termination condition occurs (line 3). Possible termination con-
ditions include reaching a maximum value of k, a timeout limit, or a confidence
threshold on the error of the reported best solution.
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Fig. 2: DLNS with T-DBR example trace.

3.1 Destroy Phase

The result of this phase is the generation of a LN, which we refer to as LNk

as the subset of variables in X that will need to be repaired in each iteration
k. This step is executed in a distributed fashion, having each agent ai calling a
Destroy-Algorithm to determine if its local variable xi should be destroyed
(◦) or preserved (?), as indicated by the flag zki (line 5). We say that destroyed
(resp. preserved) variables are (resp. are not) in LNk. In a destroy process, such
decisions can be either random or made by exploiting domain knowledge. DLNS
allows the agents to use any destroy schema to achieve the desired outcome.
Once the destroyed variables are determined, the agents reset their values and
keep the values of the preserved variables from the previous iteration (line 6).

Example 1. Figure 2 illustrates the execution of the DLNS algorithm (whose
details will be discussed later) over the first 3 iterations. The value of each
variable is shown on its right. Gray shaded nodes denote variables that have been
preserved, while white nodes denote those that have been destroyed, and thus
are in the LN of that iteration. The values for the variable x2 in iteration 1 and
x3 in iteration 2 are preserved to their values in iterations 0 and 1, respectively.

3.2 Repair Phase

In the repair phase, the DLNS agents seek to find a new value assignment for
the destroyed variables by calling the Repair-Algorithm function (line 7).
This process is carried out exclusively by the destroyed agents with the goal
of finding an improved solution by searching over the large neighborhood. The
DLNS framework imposes no restriction on the choice of algorithms by agents.
In each iteration k, the agents coordinate the resolution of two problems: P̌ k and
P̂ k, which we call relaxations of the original DCOP problem P . They are used
to compute, respectively, a lower and an upper bound on the optimal utility for
P , and are defined as follows. Let EkLN ={(x, y) | (x, y)∈E;x, y∈LNk} be the
set of constraints involving exclusively destroyed variables (i.e., those in LNk),

• Ĝk=〈LNk, Êk〉 is the relaxation graph of P̂ in iteration k, where Êk⊆EkLN ,

is any subset of EkLN . The decision which edges to include in Êk characterizes
the subproblem to solve in iteration k.



6 K. D. Hoang et al.

• Ǧk = 〈LNk, Ěk〉 is the relaxation graph of P̌ , where Ěk = Êk ∪ {(x, y) |
(x, y)∈E;x∈LNk, y 6∈LNk}. It is the union of Êk and the set of constraints
whose scope has at least one destroyed variable.

Selecting Êk and Ěk is algorithmically dependent, and it is the factor that
affects, in general, the algorithm’s complexity—we show later a simple choice
for Êk which allows our agents to solve each iteration in polynomial time.

In the problem P̌ k, we wish to find a partial assignment:

x̌k=argmax
x

[ ∑
f∈Êk

f(xi,xj) +
∑

f∈F, xf={xi,xj}

xi∈LNk, xj 6∈LNk

f(xi, x̌
k−1
j )

]

where x̌k−1
j is the value assigned to the preserved variable xj for problem P̌ k−1

in the previous iteration. The first summation is over all functions in Êk, while
the second is over all functions between a destroyed and a preserved variable.
Thus, solving P̌ k means optimizing over all the destroyed variables given that
the preserved ones take on their previous value, and ignoring the set of edges
E \ Ěk that are not part of the relaxation graph. This partial assignment is used
to compute lower bounds during the bounding phase.

In the problem P̂ k, we wish to find a partial assignment:

x̂k = argmax
x

∑
f∈Êk

f(xi,xj)

Thus, solving P̂ k means optimizing over all the destroyed variables considering
exclusively the set of edges Êk that are part of the relaxation graph. This partial
assignment is used to compute upper bounds during the bounding phase. Note
that the partial assignments returned while solving these two relaxed problems
involve exclusively the variables in LNk.

Example 2. Consider again the example of Figure 2. The relaxation graphs
Ǧ1 (in red), Ĝ1 (in blue) and Ǧ2, Ĝ2 are illustrated in subfigures (b) and
(c), respectively, with the nodes colored white and edges represented by bold
solid lines. All other constraints (of the original problem P ) are represented
by black dotted lines. In more detail, LN1 = {x1, x3, x4}, Ê1 = {f13, f34},
Ě1 = {f13, f34, f12, f24}, and LN2 = {x1, x2, x4}, Ê2 = {f12, f24}, Ě2 =
{f12, f24, f13, f34}. At each step, the resolution of the relaxed problems involves
the functions represented by bold lines—P̂ is solved optimizing over the blue
colored functions, and P̌ over the red ones. Recall that while solving P̂ focuses
solely on the functions in Gk, solving P̌ further accounts for the functions that
involve a destroyed and a preserved variable.

3.3 Bounding Phase

Once the relaxed problems are solved, all agents start the bounding phase,
which results in computing the lower and upper bounds based on the par-
tial assignments x̌k and x̂k. To do so, both solutions to the problems P̌ k and
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P̂ k are extended to a solution x̌k and x̂k, respectively, for P , where the pre-
served variables xj 6∈ LNk are assigned the values x̌k−1

j from the previous it-

eration. The lower bound is computed by evaluating F(x̌k). The upper bound
is computed by combining the optimal solution costs of two relaxed problems
P̂ k and P̂ `, solved in two different iterations. We focus on the case where
` < k is the iteration with the smallest upper bound found so far. Notice that∑
f∈Êk f(xi,xj) ≥

∑
f∈Êk f(x∗i ,x

∗
j ), where x∗ is the optimal solution of P ;

therefore, reporting the optimal solutions found in two iterations will result in
a larger utility, which is guaranteed to be an upper bound, albeit a conservative
estimate. Thus, if a constraint is optimized in both iterations, we sum up the
two solution qualities and subtract the minimum utility of that constraint. That
will make the upper bound F̂ k(x̂k)=

∑
f∈F f̂

k(x̂ki , x̂
k
j ) smaller while preserving

the correctness of the bound where:

f̂k(xi,xj)=



f̂k(x̂ki , x̂
k
j ), if f ∈ Êk \ Ê`

f̂ `(x̂`i , x̂
`
j), if f ∈ Ê` \ Êk

f̂k(x̂ki , x̂
k
j ) + f̂ `(x̂`i , x̂

`
j)− min
di∈Di,dj∈Dj

f(di, dj), if f ∈ Êk ∩ Ê`

max
di∈Di,dj∈Dj

f(di, dj), otherwise.

In other words, the utility of F̂ k(x̂k) is composed of four parts. The first part
involves the constraints considered while solving P̂ k at iteration k, excluding
those involved at iteration `. The second part includes the constraints consid-
ered at iteration `, excluding those involved at current iteration k. The third
part involves the constraints adopted in both problems’ iterations ` and k, and
the fourth part involves the remaining constraints which where excluded when
constructing both problems P̂ ` and P̂ k at iterations ` and k, respectively. We
illustrate this process with the following example.

Example 3. Consider our example in Figure 2. When k = 0, in subfigure (a),
each agent randomly assigns a value to its variable, which results in a solution
with utility F(x̌0) = f(x̌0

1, x̌
0
2) +f(x̌0

1, x̌
0
3) +f(x̌0

1, x̌
0
4) +f(x̌0

2, x̌
0
4) +f(x̌0

3, x̌
0
4) =

0+10+0+0+0=10 to get the lower bound. Moreover, P̂ 0 chooses the maximum
utility of every constraint at iteration 0 and yields an upper bound as F̂ 0(x̂0)=

max f̂0(x̂0
1, x̂

0
2)+max f̂0(x̂0

1, x̂
0
3)+max f̂0(x̂0

1, x̂
0
4)+max f̂0(x̂0

2, x̂
0
4)+max f̂0(x̂0

3, x̂
0
4)=

10+10+10+10+10=50.
In the first iteration (k=1), the destroy phase preserves x2, thus x̌1

2 = x̌0
2 =1.

In this example, the chosen algorithm builds the spanning tree with the re-
maining variables choosing f13 and f34 as tree edges, so E1 = {f13, f34} ⊂
E1
LN = {f13, f34, f14}. Thus the relaxation graph for P̌ 1 involves the edges

{f13, f34, f12, f24} (in red), and the relaxation graph for P̂ 1 involves the edges
{f13, f34} (in blue). Solving P̌ 1 yields a partial assignment x̌1 with utility
F̌ 1(x̌1)=f(x̌1

1, x̌
1
3)+f(x̌1

3, x̌
1
4)+f(x̌1

1, x̌
1
2)+f(x̌1

2, x̌
1
4)=10 + 6 + 0 + 10=26, which

results in a lower bound F(x̌1) = F̌ 1(x̌1)+f(x̌1
1, x̌

1
4) = 26+6 = 32. Solving P̂ 1

yields a solution x̂1 with utility F̂ 1(x̂1)= f̂1(x̂1
1, x̂

1
3)+f̂1(x̂1

3, x̂
1
4)+max f̂1(x̂1

1, x̂
1
2)+
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max f̂1(x̂1
1, x̂

1
4)+max f̂1(x̂1

2, x̂
1
4) = 10+6+10+10+10 = 46, which is the current

upper bound. After the first iteration, we have ` = 1 as F̂ 1(x̂1) < F̂ 0(x̂0).
Finally, in the second iteration (k=2), the destroy phase retains x3’s value in

the previous iteration x̌2
3 = x̌1

3 =0, and the repair phase builds the new spanning
tree with the remaining variables choosing f12 and f24 as tree edges with E2 =
{f12, f24}. Thus the relaxation graph for P̌ 2 involves the edges {f12, f24, f13, f34},
and the relaxation graph for P̂ 2 involves the edges {f12, f24}. Solving P̌ 2 and
P̂ 2 yields partial assignments x̌2 and x̂2, respectively, with utilities F̌ 2(x̌2) =
10+6+10+6=32, which results in a lower bound F(x̌2)=32+6=38, and an upper

bound F̂ 2(x̂2)= f̂2(x̂2
1, x̂

2
2)+f̂1(x̂2

2, x̂
2
4)+f̂1(x̂1

1, x̂
1
3)+f̂1(x̂1

3, x̂
1
4)+max f̂1(x̂1

1, x̂
1
4)=

10+6+10+6+10=42. After this iteration, ` = 2.

Crucially, this framework enables DLNS to iteratively refine both lower and
upper bounds of the solution, without imposing any restrictions on the form of
the objective function and of the constraints adopted.6

4 Tree-based DLNS (T-DLNS)

Having discussed the general DLNS framework, we now introduce an efficient
(polynomial-time) DLNS algorithm by specifying the construction of the prob-
lem relaxation graphs.

Tree-based DLNS (T-DLNS) defines the relaxed DCOPs P̌ k and P̂ k using a
spanning tree T k = 〈LNk, ETk〉, computed from G and LNk and ignoring back
edges. Solving the problem P̌ k means optimizing over T k and considering edges
connecting destroyed and preserved variables. Thus, Ǧk = 〈LNk, Ěk〉 where
Ěk = ETk ∪ {(x, y) | (x, y) ∈ E;x ∈ LNk, y 6∈ LNk}. Solving the problem P̂ k

means optimizing over the spanning tree Ĝk=T k.
T-DLNS uses a complete inference-based algorithm composed of two phases

operating on a tree-structured network [30]. This algorithm is complete on tree
networks. Thus, while it will solve optimally and efficiently our relaxations, it
will not guarantee to find an optimal solution for the original DCOP problem:

• In the utility propagation phase, each agent, starting from the leaves of the
pseudo-tree, projects out its variable and sends its projected utilities to its
parent. These utilities are propagated up the tree induced from ETk until
they reach the root. The hard constraints of the problem are handled in this
phase by pruning all inconsistent values before sending a message to its parent.

• Once the root agent receives the utilities from all its children, it starts the
value propagation phase by selecting the value that maximizes its utility and
sends it to its children, which repeat the same process. The problem is solved
as soon as the values reach the leaves.

The solving schema of T-DLNS is similar to that of DPOP [30] in that
it uses utility and value propagation phases; however, the different underlying
relaxation graph adopted imposes several important differences. Algorithm 2

6 However, it does not imply that the lower and upper bounds will converge to the
same value.
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Algorithm 2: T-DLNS(zki )

10 Tk
i ← Relaxation(zki )

11 Util-Propagation(Tk
i )

12 〈χ̌k
i , χ̂

k
i 〉 ← Value-Propagation(Tk

i )

13 〈LBk
i ,UBk

i 〉 ← Bound-Propagation(χ̌k
i , χ̂

k
i )

14 return 〈x̌k
i ,LB

k
i ,UBk

i 〉

Procedure UTIL-Propagation(Tk
i )

15 receive Utilac(Ǔc, Ûc) from each ac ∈ Ck
i

16 forall values xi,xPki
do

17 Ǔi(xi,xPki
)← f(xi,xPki

)+
∑

ac∈Cki
Ǔc(xi) +

∑
xj 6∈LNk f(xi, x̌

k−1
j )

18 Ûi(xi,xPki
)← f(xi,xPki

) +
∑

ac∈Cki
Ûc(xi)

19 forall values xPki
do

20 〈Ǔ ′i(xPki
), Û ′i(xPki

)〉←〈max
xi

Ǔi(xi,xPki
),max

xi
Ûi(xi,xPki

)〉

21 send Utilai(Ǔ
′
i , Û

′
i) msg to Pk

i

Function VALUE-Propagation(Tk
i )

22 if Pk
i = NULL then

23 〈x̌k
i , x̂

k
i 〉 ← 〈argmaxxi

Ǔi(xi), argmaxxi
Ûi(xi)〉

24 send Valueai(x̌
k
i , x̂

k
i ) msg to each aj ∈ N(ai)

25 forall aj ∈ N(ai) do

26 receive Valueaj (x̌
k
j , x̂

k
j ) msg from aj

27 Update xj in 〈χ̌k
i , χ̂

k
i 〉 with 〈x̌k

j , x̂k
j 〉

28 else
29 forall aj ∈ N(ai) do

30 receive Valueaj (x̌
k
j , x̂

k
j ) msg from aj

31 Update xj in 〈χ̌k
i , χ̂

k
i 〉 with 〈x̌k

j , x̂k
j 〉

32 if aj = Pk
i then

33 〈x̌k
i , x̂

k
i 〉←〈argmaxxi

Ǔi(xi), argmaxxi
Ûi(xi)〉

34 send Valueai(x̌
k
i , x̂

k
i ) msg to each aj ∈N(ai)

35 return 〈χ̌k
i , χ̂

k
i 〉

shows the pseudocode of T-DLNS. We use the following notations: P ki , Cki , PP ki
denote the parent, the set of children, and pseudo-parents of the agent ai, at
iteration k. The set of these items is referred to as Tk

i , which is ai’s local view
of the pseudo-tree T k. χ̌i and χ̂i denote ai’s context (i.e., the values for each
xj ∈ N(ai)) with respect to problems P̌ and P̂ , respectively. We assume that
by the end of the destroy phase (line 6) each agent knows its current context as
well as which of its neighboring agents has been destroyed or preserved.

In each iteration k, T-DLNS executes these phases:

Repair Phase. It constructs a pseudo-tree T k (line 10), which ignores, from
G, the preserved variables as well as the functions involving these variables in
their scopes. The construction prioritizes tree-edges that have not been chosen in
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Procedure BOUND-Propagation(χ̌ki , χ̂
k
i )

36 receive Boundsac(LB
k
c ,UBk

c ) msg from each ac ∈ Ci

37 LBk
i←f(x̌k

i , x̌
k
Pi

) +
∑

aj∈PPi
f(x̌k

i , x̌
k
j ) +

∑
ac∈Ci LB

k
c

38 UBk
i←f̂k(x̂i, x̂Pi) +

∑
aj∈PPi

f̂k(x̂i, x̂j) +
∑

ac∈Ci UBk
c

39 send Boundsai(LB
k
i ,UBk

i ) msg to Pi

previous pseudo-trees over the others. The T-DLNS solving phase is composed of
two phases operating on the relaxed pseudo-tree T k, and executed synchronously:

1. Utility Propagation: After the pseudo-tree T k is constructed (line 11), each
leaf agent computes the optimal sum of utilities in its subtree considering
exclusively tree edges (i.e., edges in ETk) and edges with destroyed variables.
Each leaf agent computes the utilities Ǔi(xi,xPki

) and Ûi(xi,xPki
) for each

pair of values of its variable xi and its parent’s variable xPki
(lines 16-18), in

preparation for retrieving the solutions of P̌ and P̂ , used during the bounding
phase. The agent projects itself out (lines 19-20) and sends the projected
utilities to its parent in a Util message (line 21). Each agent, upon receiving
the Util message from each child, performs the same operations. Thus, these
utilities will propagate up the pseudo-tree until they reach the root agent.

2. Value Propagation: Once the utility propagation is compleated (line 12) the
root agent computes its optimal values x̌ki and x̂ki for the relaxed DCOPs

P̌ and P̂ , respectively (line 23). Then, it sends its values to all its neigh-
bors in a Value message (line 24). When any of its children receive this
message, they also compute their optimal values and sends them to all their
neighbors (lines 32-34). Thus, these values propagate down the pseudo-tree
until they reach the leaves, at which point every agent has chosen its respec-
tive values. In this phase, in preparation for the bounding phase, when each
agent receives a Value message from its neighbor, it will also update the
corresponding value in its contexts χ̌ki and χ̂ki (lines 25-27 and 30-31).

Bounding Phase. Once the relaxed DCOPs P̌ and P̂ have been solved, the
algorithm starts the bound propagation phase (line 13). Each leaf agent of the
pseudo-tree T computes the lower and upper bounds LBki and UBki (lines 37-
38). These bounds are sent to the agent’s parent in T (line 39). When its parent
receives this message from all its children (line 36), it performs the same opera-
tions. The lower and upper bounds of the whole problem are determined when
the bounds reach the root agent.

5 Theoretical Properties

Theorem 1. For each LNk, F(x̌k) ≤ F(x∗) ≤ F̂ k(x̂k).

Proof. The result F(x̌k) ≤ F(x∗) follows from that x̌k is an optimal solution of
the relaxed problem P̌ whose functions are a subset of F .
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By definition of F̂ k(x), it follows that:

F̂ k(x̂k)=
∑
f∈F

f̂k(x̂k
i , x̂

k
j )

=
∑

f∈Êk\Ê`

f̂k(x̂k
i , x̂

k
j ) +

∑
f∈Ê`\Êk

f̂ `(x̂`
i , x̂

`
j) +

∑
f /∈Êk∪Ê`

max
di∈Di,dj∈Dj

f(di, dj)

+
∑

f∈Êk∩Ê`

(
f̂k(x̂k

i , x̂
k
j ) + f̂ `(x̂`

i , x̂
`
j)− min

di∈Di,dj∈Dj
f(di, dj)

)
=
∑

f∈Êk

f̂k(x̂k
i , x̂

k
j ) +

∑
f∈Ê`

f̂ `(x̂`
i , x̂

`
j)

+
∑

f /∈Êk∪Ê`

max
di∈Di,dj∈Dj

f(di, dj)−
∑

f∈Êk∩Ê`

min
di∈Di,dj∈Dj

f(di, dj)

≥
∑

f∈Êk

f(x̂∗i , x̂
∗
j ) +

∑
f∈Ê`

f(x̂∗i , x̂
∗
j ) +

∑
f /∈Êk∪Ê`

f(x̂∗i , x̂
∗
j )−

∑
f∈Êk∩Ê`

f(x̂∗i , x̂
∗
j )

≥
∑

f∈Êk∪Ê`

f(x̂∗i , x̂
∗
j ) +

∑
f /∈Êk∪Ê`

f(x̂∗i , x̂
∗
j )

≥
∑
f∈F

f(x̂∗i , x̂
∗
j )

≥F(x∗)

and, thus, F(x̌k) ≤ F(x∗) ≤ F̂ k(x̂k) for each LNk.

Corollary 1. An approximation ratio for the problem is

ρ = mink F̂
k(x̂k)

maxk F(x̌k)
≥ F(x∗)

maxk F(x̌k)
.

Theorem 2. In each iteration, T-DLNS requires O(|F|) number of messages of
size in O(d), where d = maxai∈A |Di|.
Proof. In the Value Propagation Phase of Algorithm 2, each agent sends a mes-
sage to its neighbors (lines 24 and 34). Thus, the overall amount of messages
sent in this phase by the agents is 2‖F‖. All other phases use up to |A| mes-
sages (which are reticulated from the leaves to the root of the pseudo-tree and
vice-versa). Therefore, T-DLNS requires O(|F|) messages in each iteration. The
largest messages are sent during the Utility Propagation Phase, where each agent
(excluding the root agent) sends a message containing a value for each element
of its domain (line 21). Thus, the size of the DLNS messages is in O(d).

Theorem 3. In each iteration, the number of constraint checks of each T-DLNS
agent is in O(d2), where d= max

ai∈A
|Di|.

Proof. The largest amount of constraint checks per iteration is performed during
the Util-Propagation Phase. In this phase, each agent (except the root agent)
computes the lower and upper bound utilities for each value of its variable xi
and its parent’s variable xPki (lines 17–18). Therefore, the number of constraint

checks per iteration of each agent is in O(d2).
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6 Related Work

In addition to the algorithms described in the introduction, several extensions to
complete search-based algorithms that trade solution quality for faster runtimes
have been proposed [24, 40]. Another line of work has investigated non-iterative
versions of inference-based incomplete DCOP algorithms, such as ADPOP [29]
and p-OPT [26]. These algorithms operate on relaxations of the original DCOP.
ADPOP is an incomplete version of DPOP that bounds the maximal message
size transmitted over the network, trading off message size for better runtimes.
p-OPT ignores some edges of the induced chordal graph of the DCOP and solves
exactly the problem over such subgraphs to generate an approximate solution.
Both algorithms are different from DLNS in that they operate in a single iteration
only and, thus, do not refine the solution found. The algorithm that shares most
similarities with DLNS is LS-DPOP [31]. LS-DPOP runs several local searches
on pseudo-trees. However, unlike DLNS, it operates in a single iteration, does
not change its neighborhood, and does not provide quality guarantees.

7 Experimental Results

We evaluate the DLNS framework against representative state-of-the-art incom-
plete DCOP algorithms, with and without quality guarantees. We choose T-
DLNS as a representative algorithm of the DLNS framework. We select DSA as
a representative incomplete search-based DCOP algorithm; Max-Sum (MS) and
Bounded MS (BMS) as representative inference-based DCOP algorithms; and
k-optimal algorithms (KOPT2 and KOPT3) as representative region optimal -
based DCOP methods. All algorithms are selected based on their performance
and popularity. We use the FRODO framework [20] to run MS and DSA,7 the
authors’ code of BMS [32], and the DALO framework [17] for KOPT. We also
force T-DLNS first large neighboring exploration to use the same tree as that
used by BMS. We experimentally observed that using this option improves the
effectiveness of T-DLNS in finding high quality solutions.

Random DCOPs. First, we evaluate the algorithms on random DCOPs over
random, grid, and scale-free topologies. The instances for each topology are
generated as follows: For random networks, we create an n-node network, whose
density p1 produces bn (n−1) p1c edges in total. We do not bound the tree-width,
which is based on the underlying graph. For grid networks, we create an n-node
network arranged in a rectangular grid, where internal nodes are connected to
four neighboring nodes and nodes on the edges (resp. corners) are connected to
two (resp. three) neighbors. Finally, for scale-free networks, we create an n-node
network based on the Barabasi-Albert model [2]. Starting from a connected 2-
node network, we repeatedly add a new node, randomly connecting it to two
existing nodes. In turn, these two nodes are selected with probabilities that are

7 We use DSA-B and set p = 0.6.
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|A| HC
T-DLNS BMS KOPT2 KOPT3 MS DSA

ρ LB UB t ρ LB UB t ρ LB UB t ρ LB UB t LB t LB t

25
1.36 0.95 0.97 377 1.75 0.78 0.92 310 9.14 0.88 0.15 293 7.10 0.89 0.20 1204 0.88 253 0.93 84

X 1.86 0.94 0.97 341 2.70 0.65 0.97 321 9.14 0.82 0.22 298 7.10 0.85 0.28 1319 0.84 235 0.91 81

64
1.57 0.94 0.97 2989 1.91 0.82 0.92 2704 21.88 0.87 0.07 3051 16.66 0.76 0.11 4935 0.86 2471 0.96 241

X 2.46 0.92 0.97 1703 3.27 0.69 0.97 2936 21.88 0.77 0.13 3124 16.66 0.64 0.20 4943 0.78 2188 0.95 235

100
1.64 0.94 0.97 7580 1.95 0.84 0.92 6312 33.64 0.82 0.05 5222 25.48 0.80 0.07 8193 0.86 6368 0.97 432

X 2.70 0.92 0.97 5089 3.49 0.71 0.97 7324 33.64 0.68 0.10 5166 25.48 0.64 0.14 7884 0.76 6852 0.96 540

144
1.70 0.94 0.97 26156 1.97 0.86 0.92 19372 48.02 0.82 0.03 14223 36.26 0.83 0.05 17239 0.88 6578 0.97 722

X 2.88 0.91 0.97 16562 3.58 0.73 0.97 20313 48.02 0.68 0.07 15421 36.26 0.68 0.10 16342 0.78 7161 0.96 1517

Table 1: Experimental results on random networks. Times are in ms.

|A| HC
T-DLNS BMS KOPT2 KOPT3 MS DSA

ρ LB UB t ρ LB UB t ρ LB UB t ρ LB UB t LB t LB t

25
1.06 0.96 0.94 270 1.26 0.83 0.92 17 9.14 0.91 0.11 85 7.10 0.93 0.14 108 0.93 31 0.90 38

X 1.16 0.94 0.92 279 1.42 0.75 0.90 19 9.14 0.85 0.12 82 7.10 0.88 0.15 107 0.87 31 0.82 35

64
1.08 0.96 0.97 759 1.29 0.83 0.94 79 21.88 0.91 0.05 199 16.66 0.92 0.06 266 0.82 51 0.91 52

X 1.21 0.95 0.93 716 1.49 0.77 0.92 64 21.88 0.87 0.05 200 16.66 0.88 0.07 264 0.75 55 0.85 53

100
1.09 0.96 0.97 1422 1.30 0.83 0.94 173 33.64 0.91 0.03 319 25.48 0.92 0.04 415 0.84 58 0.91 64

X 1.23 0.96 0.96 1253 1.51 0.77 0.94 151 33.64 0.87 0.03 319 25.48 0.89 0.04 422 0.75 58 0.87 69

144
1.10 0.96 0.97 2900 1.31 0.83 0.94 249 48.02 0.92 0.02 833 36.26 0.93 0.03 1082 0.83 69 0.92 185

X 1.24 0.95 0.96 2489 1.52 0.76 0.95 227 48.02 0.86 0.02 460 36.24 0.89 0.03 655 0.69 44 0.87 165

Table 2: Experimental results on grid networks. Times are in ms.

|A| HC
T-DLNS BMS KOPT2 KOPT3 MS DSA

ρ LB UB t ρ LB UB t ρ LB UB t ρ LB UB t LB t LB t

25
1.22 0.95 0.94 523 1.58 0.78 0.90 137 9.14 0.89 0.13 594 7.10 0.89 0.17 1498 0.85 166 0.91 111

X 1.54 0.93 0.83 299 2.17 0.65 0.82 142 9.14 0.82 0.15 160 7.10 0.81 0.20 535 0.83 162 0.85 60

25
1.28 0.95 0.96 1099 1.62 0.79 0.91 393 21.88 0.90 0.05 641 16.66 0.84 0.08 1901 0.85 414 0.93 150

X 1.64 0.94 0.96 880 2.23 0.69 0.95 423 21.88 0.84 0.08 544 16.66 0.75 0.11 1256 0.78 414 0.89 106

25
1.30 0.96 0.97 1922 1.61 0.80 0.93 712 33.64 0.91 0.03 935 25.48 0.84 0.05 3199 0.85 532 0.94 180

X 1.70 0.95 0.95 1540 2.26 0.71 0.94 832 33.64 0.86 0.05 947 25.48 0.75 0.08 1914 0.75 584 0.93 293

25
1.31 0.96 0.97 4322 1.61 0.82 0.93 1585 48.02 0.92 0.02 1651 36.26 0.84 0.04 3614 0.84 626 0.95 447

X 1.74 0.94 0.97 3294 2.27 0.71 0.96 1681 48.02 0.87 0.03 1714 36.26 0.74 0.05 3211 0.72 647 0.93 447

Table 3: Experimental results on scale-free networks. Times are in ms.

proportional to the numbers of their connected edges. The total number of edges
is 2 (n− 2) + 1.

We generate 50 instances for each topology, ensuring that the underlying
graph is connected. The utility functions are generated using random utilities
in [0, 100]. We set as default parameters, |Di| = 10 for all variables, p1 = 0.5,
and for instances with hard constraints, p2 = 0.5. We use a random destroy
strategy for the T-DLNS algorithms, in which each agent destroies a variable
with probability p = 0.5. The runtime of all the algorithms is measured using the
simulated runtime metric [36], and averaged over all instances. The experiments
are performed on an Intel i7 Quadcore 3.4GHz machine with 16GB of RAM.

Tables 1– 3 report the approximation ratio ρ, simulated runtime t, the nor-
malized lower bound (LB), and the normalized upper bound (UB) values. The
LB (UB) value of each algorithm is normalized over the LBs (UBs) reported by
all algorithms. A normalized lower (upper) bound of 0 means that it is the worst
lower (upper) bound among all lower (upper) bounds. Similarly, a normalized
lower (upper) bound of 1 means that it is the best lower (upper) bound. The best
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approximation ratios, normalized lower (upper) bounds, and runtimes are shown
in bold. All tables report results for problem with and without hard constraints
(HC).

Table 1 tabulates the results for random networks. Among all algorithms
that do provide upper bounds (i.e., T-DLNS, BMS, KOPT2, and KOPT3), T-
DLNS find the highest values. Additionally, T-DLNS also provides the best ap-
proximation ratios among all such algorithms. However, this comes at a cost of
increased runtimes compared to the other algorithms. The quality of the solu-
tions reported by DSA exceeds, albeit slightly, that of T-DLNS. However, DSA
provides no quality guarantees. In general, all algorithms that do provide upper
bounds have larger runtimes than those that do not provide these bounds. This
behavior is not surprising since these algorithms require additional computation
to compute and provide these bounds.

Table 2 tabulates the results for grid networks. These results are similar to the
ones on random networks. Additionally, T-DLNS also outperforms DSA in find-
ing solutions of high qualities (i.e., large LBs). However, this dominance comes
at a price: T-DLNS has the largest runtime, on average, among all algorithms.
Also, whereas DSA is the fastest algorithm for solving random networks, MS is
the fastest for solving grid networks. This is due to that the computational time
for MS is exponential in the arity of each variable and in grid networks each
variable has significantly fewer neighbors than in random networks.

Finally, Table 3 tabulates the results for scale-free networks. The trend in
this topology is similar to those in random and grid networks: T-DLNS provides
better lower and upper bounds and, consequently, better approximation ratios
compared to all other algorithms.

While T-DLNS does have larger runtimes than its competitors, it consistently
outperforms state-of-the-art incomplete DCOP algorithms that do provide error
bounds: It finds both higher solutions’ qualities and tighter upper bounds. In
the majority of the cases, it also outperforms state-of-the-art incomplete DCOP
algorithms that do not provide error bounds.

Distributed Meeting Scheduling. Next, we evaluate the ability of T-DLNS
to exploit the domain knowledge over distributed meeting scheduling problems.
In such problems, one wishes to schedule a set of events within a time range.
We use the event as variable formulation [21], where events are modeled as de-
cision variables. Meeting participants can attend different meetings and have
time preferences that are taken into account in the problem formulation. Each
variable can take on a value from the interval [0, 100]. The problem requires
that no meetings sharing some participants can overlap. We generate the un-
derlying constraint network using the random network model described earlier.
Our analysis focuses on compare T-DLNS using a random (RN) destroy and a
domain-knowledge (DK) destroy strategies. The former randomly selects a set
of variables to destroy, while the latter destroys the set of variables that are in
overlapping meetings. Table 4 reports the percentage of satisfied instances re-
ported (% SAT) and the time needed to find the first satisfiable solution (TF),
averaged over 50 runs. The domain-knowledge destroy has a clear advantage over
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Meetings
20 50 100

% SAT t (ms) % SAT t (ms) % SAT t (ms)

DK destroy 80.05 78 54.11 342 31.20 718
RN destroy 12.45 648 1.00 52207 0.00 –

KOPT3 4.30 110367 0.00 – – –

Table 4: Experimental results on meeting scheduling.

the random one, being able to effectively exploit domain knowledge. All other
local search algorithms tested failed to report satisfiable solutions for any of the
problems—only KOPT3 was able to find some solutions for problem instances
with 20 meetings.

Thus, our experiments suggest that DLNS can bring a decisive advantage on
both general and domain-specific problems, where exploiting structure can be
done explicitly within the destroy phase.

8 Conclusions

In this paper, we proposed a Distributed Large Neighborhood Search (DLNS)
framework to find quality-bounded solutions in DCOPs. DLNS is composed of
a destroy phase, which selects a neighborhood to search, and a repair phase,
which performs the search over such neighborhood. Within DLNS, we proposed
a novel distributed algorithm, T-DLNS, characterized by low network usage and
low computational complexity per agent. Our experimental results showed that
T-DLNS finds better solutions compared to representative search-, inference-,
and region-optimal-based incomplete DCOP algorithms. The proposed results
are significant—the anytime property and the ability to refine online quality
guarantees makes DLNS-based algorithms good candidates to solve a wide class
of DCOP problems. We strongly believe that this framework has the potential
to solve very large distributed constraint optimization problems, with thousands
of agents, variables, and constraints. In the future, we plan to investigate other
schemes to incorporate into the repair phase of DLNS, including constraint prop-
agation techniques [3, 7, 16] to better prune the search space, techniques that
actively exploit the bounds reported during the iterative procedure, as well as
the use of general purpose graphics processing units to parallelize the search for
better speedups [4, 9], especially when agents have large local subproblems.
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