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Abstract. Congestion occurs when there is competition for resources
by selfish agents. In this paper, we are concerned with smoothing out
congestion in a network of resources by using personalized well-timed in-
centives that are subject to budget constraints. To that end, we provide:
(i) a mathematical formulation that computes equilibrium for the re-
source sharing congestion game with incentives and budget constraints;
(i) an integrated approach that scales to larger problems by exploiting
the factored network structure and approximating the attained equilib-
rium; (41) an iterative best response algorithm for solving the uncon-
strained version (no budget) of the resource sharing congestion game;
and (7v) theoretical and empirical results (on an illustrative theme park
problem) that demonstrate the usefulness of our approach.

1 Introduction

Competition for resources by autonomous agents typically leads to congestion
if the agents access these resources in an uncoordinated fashion [1]. It is hence
common for a network to experience congestion even when the average demand
for a resource is much less than its capacity. Researchers have generally taken
three approaches to address this issue. The first approach is to use the theory
of mechanism design, where a central authority designs rules of agent interac-
tions [2-4] by taking agent incentives into account . By designing appropriate
rules, the central authority can obtain desirable goals such as maximizing social
welfare. This assumes that the central authority defines and controls the rules
of interaction. However, in this paper, we consider scenarios where the basic set-
tings (rules) of the environment cannot be modified (like preferences of people
going to a theme park or theme park configuration or communication protocols
in a computer network).

Secondly, researchers have investigated the use of penalties or incentives on
certain resources to discourage or encourage interactions that will lead to de-
sirable goals. A central authority can alter the demand for certain resources by
tweaking the amount of penalty or incentive for those resources. Much of the
initial work in this area, especially in transportation applications [5, 6], assumes



that every agent using the same resource will get the same penalty or incentive.
A good example is the use of toll gates on roads. [7] and [8] provide further ex-
amples of settings where using external penalties or incentives affect the utilities
involved. More recently, researchers have relaxed this assumption and imple-
mented penalties or incentives that are probabilistic in nature [9]. For example,
a public radio listener will be entered in a draw for a free iPad if he/she donates
to the radio station.

Finally, Monderer and Tennenholtz have studied the problem of minimizing
incentive needed to sufficiently incentivize agents to take desirable strategies
(that are inputs to the problem) [10]. While there are similarities, we differ from
this work in multiple ways: (1) Our focus is on finding an equilibrium strategy
that is closest to the set of desired strategies given a budget; (2) we assume that
the total amount of incentives that can be used must be within a given budget;
and (3) our desirable strategies are specified at an aggregate level with respect
to a set of agents. For instance, “no more than 10 agents can consume resource
3” as opposed to “agent 2 should take strategy 3”. These differences preclude the
applicability of their approach on problems with budget constraints and large
number of agents.

These differences are motivated by a crowd congestion control problem in an
actual theme park. Through interviews with park operators, we learnt that they
can provide well-timed incentives to specific patrons through mobile devices
to change their behavior and thereby ease congestion (long queues at certain
attractions). Naturally, the (monetary) incentives must be within a given budget.
Lastly, the park operators are interested in specifying aggregated desirable levels
of congestion instead of individualized desirable strategies.

More precisely, we are interested in the problem on how best to distribute
incentives among different agents at different time points so that certain re-
source congestion thresholds are satisfied at equilibrium and that the incentives
distributed are within a given budget. We make the following contributions:

(1) We introduce a non-linear mathematical programming formulation and show
how it can be linearized into a mixed-integer linear program (MILP) to com-
pute the equilibrium for a networked congestion game with incentives and
budget constraints.

(2) We exploit the factored network structure to drastically reduce the complex-
ity of enumerating the space of agent strategies and provide an enhancement
to compute approximation equilibria to scale up the MILP.

(3) We provide a scalable iterative best response algorithm to solve a version of
the game without budgets while minimizing the overall incentive required.

(4) Lastly, we provide theoretical and empirical results showing that congestion
is reduced at equilibrium on an illustrative theme park problem.

2 Model: NRSG

We provide the Network Resource-Sharing Game (NRSG), which builds on the
Resource Sharing (RS) model [11] and network cost-sharing games [12]. A NRSG



is similar to a network cost-sharing game except for positive rewards in NRSGs
compared to positive penalties in cost-sharing games. An NRSG is the tuple:

<Na V7 87 {Ug}iEN,UE\N {Si}ieN7 H>
N ={1,2,...,n} represents the set of agents.

V represents the resources and also the vertices in a graph that are connected by
the edges in €. This graph constrains certain orders of consuming resources
or connections between resources.

S

represents the utility obtained by agent i when it consumes one unit of re-
source v. For a joint strategy a = <al7 a?,---,al, - a">, where a' is the action

of agent 4, the utility obtained by agent ¢ is given by
U,
> (1)
oa(a’)
where o(,)(a’) = >, I(a¥ = a'), with I(a* = a’) = 1 if a* = a’ and 0
otherwise. While we focus on this definition of utility, our approaches can be

trivially modified to work with any non-increasing function over number of
agents consuming a resource.

ui(al,... ’ai7... ’an):

s’ represents the starting vertex for agent 1.
H represents the time horizon of the problem.

The goal in an NRSG is to find Nash equilibrium strategies for all individ-
ual agents, that is, no agent has an incentive to deviate from its strategy. It
should be noted that this repeated game cannot be represented by a single-shot
decision-making problem [12] because a resource selection path (of length H)
cannot be considered as an independent resource. Also, it should be noted that
this is not a single stage game repeated multiple times due to the following rea-
son: (a) Utility can change over time (e.g., preferences for rollercoasters before
and after lunch are different). (b) There exists a network structure on how re-
sources can be utilised. (¢) There can be domain-specific constraints (e.g., each
resource/attraction can only be visited once or should visit at least 3 of my 5
preferred attractions). Note that these constraints are all linear.

A pure strategy for an agent ¢ is the sequence of resources selected at each
time step, and the set of all pure strategies is given by II' = {7® | 7! =
<a§,a§, e ,a}l> ,Vt : al € V}. We do not have edges as part of the strategy,
because, given a source and destination vertex, the edge is uniquely determined.
A mized strategy can be defined as a probability distribution over all possible
pure strategies A(II').To provide better understanding of the concepts, we will
use the following toy example throughout the paper.

Example 1 We consider a theme park with four attractions (resources) A =
{A1, A2, A3, A4} that is being visited by eight patrons (agents) P = {P1,--- , P8}.
For ease of explanation, we assume that the service rate of each attraction d; is 1
for all attractions. Let the utility for all patrons in getting serviced at an attrac-
tion is the same, which is as follows: U = {2,3,5,7}. The horizon H for decision
making is 1 and the ideal minimum queue length ~y} desired by the theme park
operator is 2 for all attractions i.



3 Incentivized Budget Constrained Equilibrium

In this section, we represent the problem of finding a Nash equilibrium in an
NRSG with incentives and budget constraints as an optimization problem. Tra-
ditionally, iterative best response mechanisms such as fictitious play [13] have
been used to compute equilibrium solutions in congestion game models. The
presence of budget constraints and desired congestion levels preclude the appli-
cation of such methods.

Our approach provides personalized incentives constrained by a budget so as
to achieve certain properties of resource congestion like ensuring that all queue
lengths at attractions are no less than a minimum queue length or no greater
than a maximum queue length. Examples of personalized incentives are freebies
at an attraction if it is visited at a certain time. The key assumption in our
approach is that such incentives increase the utility for individual agents.

We use the following notation to describe the optimization problem, where
lower case letters such as x represent variables, bold letters such as x represent
vectors, bold and upper case letters such as X represent sets of vectors:

U ; is the utility at resource j for agent i. U; is the utility at resource j (if it is
the same for all agents 7).

x;t is a binary variable indicating whether agent i has selected (= 1) resource j
at time ¢.

x' is the strategy of agent i:

i, e o Ty
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where |V| and H are number of resources and horizon, respectively.
X is the strategy profile of all players over all resources and the entire horizon:
x = (x},x%,...,x")
X' is the set of all possible strategies for agent i:
X' ={x"[>,2}, <1, €{0,1},Vt < H}
A is the matrix of incentives of all agents,A = (A, ... .A"),
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where 47, is a decision variable representing the incentive agent i obtained
at resource j time ¢.

B is a constant representing the total amount of budget available for incentives.
m is index of a policy of an agent in the set X".
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Fig. 1. Non-Linear Optimization Problem

m,t

z;, is a value representing if agent ¢ chooses resource j and at time ¢ under

agent i’s mt" policy.
7; 1s a constant representing the preferred number of agents selecting resource
7 at any time step.

Figure 1 shows the optimization problem formulated as a non-linear mixed-
integer program. For ease of explanation, we assume that all agents consuming
a resource get the same utility U;. However, the optimization problem and the
proceeding linearization can be trivially adapted to have a different utility for
each agent U ; The key aspects of the optimization problem are:

e No Incentive to Deviate: Constraint 4 ensures that when all agents follow
their equilibrium strategies, the overall utility (including the allocated incen-
tive) u;t of agent ¢ obtained by following its equilibrium strategy is no less
than the utility u;”tl obtained by any other strategy m for all resources j and
time steps t.

e Budgeted Incentives: Constraint 5 ensures that the total amount of all
incentives is bounded by the budget B. One key assumption here is that the
function f; is a linear function and §™** = 3, 07" is a constant computed
from the following expression: >, f;(67%%) = B.

e Desired Resource Congestion Properties: These properties are inputs
to the problem and can be constraints on the minimum or maximum number
of agents consuming a resources. Constraint 6 represents the constraint for
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Fig. 2. Linearization Constraints for Constraint 2

the minimum number of agents 7} at any resource j, where I" represents the
maximum deviation from the desired consumption.

e Deviation Minimization: The maximum deviation from the desired con-
gestion properties I' is minimized in the objective.

e Network Structure: Consraint 8 enforces the network structure.

While this optimization problem can model incentives accurately, there are two
key issues: (1) Non-linear constraints in constraints 2 and 3 prevent scalability
to larger problems, and (2) enforcing the equilibrium for each agent requires
enumerating over all possible pure strategies possible for each agent, which can
be exponential in the horizon and the number of resources. To address these
issues, we propose three methods that increase the scalability considerably.

3.1 Linearizing the Non-Linear Constraints

As indicated earlier, the utility function can be any non-increasing piecewise con-
stant or piecewise linear function over number of agents for us to employ similar
linearization tricks on the utility function that will be explained in this section.
Figure 2 shows the equivalent linear constraints to the non-linear constraints
in constraint 2. The same techniques can be applied to linearize constraint 3.
Using these linearized constraints, the optimization problem in Figure 1 can be
represented as a mixed-integer linear program (MILP). Furthermore, for each
agent, we introduce new variables w;t and 6;'# to represent the unincentivized
utility and incentive, respectively. Thus they sum up to the overall utility u;t
(constraint 10). The intuitions for the linearization constraints are as follows:

e Constraints 11, 12: If an agent ¢ is not consuming resource j at time ¢ (xét =0),
then the unincentivized utility w} , and incentive §? ; are zero.

e Constraints 13, 14: If an agent ¢ is consuming resource j at time step ¢ (x;t =
1), then its unincentivized utility w;,t is equal to the unincentivized utility



w;-“’t of any other agent k that consumes the same resource at the same time
(%, =1).

gt
e Constraints 15-17 account for the “max” in the denominator of constraint 2.

Example 2 At equilibrium, the number of agents at attractions A1,A2,A3 and
A4 is 1, 1, 2 and /4, respectively for Example 1. That is to say, attraction A4 is
more crowded than any other attractions. We can use the optimization problem
above to help reduce the congestion at A4. Suppose the theme park operator
provided the minimum queue length v,, which is 2 for all attractions a, and the
budget B, which is 5. Then, the resulting equilibrium (along with the incentives
in terms of utility that is same for all agents selecting the same attraction) is

Al = {P2, P3},8%% | = 1.33;43 = {P6, PT}, 514317
A2 = {P4, P5}, 654 = 0.83;44 = {P1, P8}, 601, =

The number of agents at each attraction now is 2, which satisfies the minimum
queue length, and so is the criterion for equilibrium.

3.2 Exploiting Factored Structure

We exploit the factored structure of the NRSG graph to solve the MILP faster.
This efficiency comes about due to the reduction in the number of elements in
the set X* for every agent 7 and thus the number of equilibrium constraints
(Constraint 4). The basic definition for X* is given by:

={x'|> a},<1,a%,€{0,1},Vt < H}
J

We can update the expression to exploit the graph structure:

={x' \ijt<1 xjt < Z Tho gy @ %E{O,l},VtSH}

k|(k,j)€E

Furthermore, if the graph is fully connected, that is, agents can consume any re-
source at any time step (a reasonable assumption for theme parks, where patrons
can go to any attraction at any time step), then the equilibrium constraints on
constraint 4 can be replaced with 3 ujt >3 ujy* for all m,i and t. The key
difference is that the new constraints sums over resources j only as opposed to
over resources j and time steps ¢. This difference yields a reduction in number
of equilibrium constraints from |V|¥ to V|- H

3.3 Finding €-Nash Equilibrium Solutions

The MILP representation provides the flexibility to compute an approximate
Nash Equilibrium. If we modify the equilibrium constraints on Line 4 to € +
Dt ul, > PIFFEN, u”" for all m and 4. Then, the resulting Nash equilibrium is an
e-Nash equilibrium, where each agent has an incentive of at most € to deviate
from the equilibrium strategy.



Example 3 An e-equilibrium strategy with € = 0.1 to the problem in Example 2
s given by

Al = {P2},ul; | = 2;43 = {P6, P7, P8}, uy§ | = 1.66
A2 = {P3},ul3 | = 3;44 = {P1, P4, P5},ul;, = 2.33

This solution is not a true equilibrium because patron P8 can switch to attraction
A4 to gain an additional 0.09 units of utility but it is an e-Nash Equilibrium
because the gain by changing strategy for each agent is less than € = 0.1.

4 Incentivized Unconstrained Equilibrium

In this section, we provide a technique for solving the problem where: (1) there
is no constraint on the budget; (2) there are hard constraints on the desired
consumption of resources; and (3) the goal is to minimize the total amount of
incentive required to achieve the equilibrium. This problem is similar to the
problem solved by the k-implementation approach [10]. However, the main dif-
ferences are that we assume that agents can be individually incentivized and
desired strategies are specified at an aggregate level in our work (e.g., “no more
than 200 agents can consume resource 3”) as opposed to specific strategies in [10]
(e.g., “agent 2 should take strategy 5”).

The optimization problem mentioned in Figure 1 with the linearized con-
straints can be easily modified to solve the unconstrained problem. Here, we
provide another approach that is more scalable and based on the more typical
iterative best response mechanism that also allows for mixed strategies in the
equilibrium. Figure 3 shows the best response linear program for each agent i.
We use the following additional variables:

p;:’t is the probability of agent i choosing resource j at time t.

p’ is the mixed strategy of agent 3 similar to how x? is the pure strategy of agent
i in the previous MILP.

u* is the utility of best response strategy of agent i given strategies of other
agents.
u’ is the utility of a strategy of agent i given the strategies of other agents.

In this approach, at each iteration and for each agent ¢, we fix the policies of
all other agents and compute the best response strategy p* that satisfies the con-
straint on desired resource consumption (constraint 21) and the required incen-
tive §* to incentivize agent 4 to take that strategy. The incentives are computed
in constraint 18 as the difference in utility for the best strategy u** (without the
constraint on desired resource consumption) and the current utility (with the
constraint on desired resource consumption) u’. We continue this process until
convergence. We do not yet have a proof for guaranteed convergence. However,
if the iterative best response process converges, then we obtain an equilibrium
strategy.
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Fig. 3. Best Response Linear Program for Agent ¢

5 Theoretical Results

We now show that the welfare of any equilibrium solution is at least one half of
the optimal social welfare in an NRSG in two steps: (1) We show that the social
utility function in NRSGs is sub-modular, and (2) we show that the NRSG game
is a utility system [14] and, hence, the Price of Anarchy, PoA (Ratio of social
welfare for the worst equilibrium solution to the optimal social welfare) is at
least % Note that an NRSG with incentives is an NRSG and hence the bounds
hold even when we are providing incentives.

Proposition 1. Social utility for a joint strategy x in NRSG is sub-modular.

Proof Sketch: Let Q be the set of all agents and F : 22 — R be the social
utility function. The social utility for a joint policy x given a set Q of agents is:

>k Uj
Flo =Y Zetla I
iEZQ Zkeg,g‘,t 372]
For A C B, we show that F(AU {p}) — F(A) > F(BU{p}) — F(B). &
Definition 1 A utility system represents a game where:

e Social and private utilities are in the same standard unit;
o Social utility function is sub-modular; and

e Private utility of an agent > change in social utility if the agent declined to
participate in the game.

Proposition 2. PoA for NRSGs is at least %

Proof Sketch. We show that NRSG is a utility system and hence from Vetta
et al. [14], PoA for utility systems is at least 5. H
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Fig. 4. Results for Incentivized Budget Constrained Problems

6 Experimental Results

We now describe our experimental results for the problem with incentives on the
theme park problem described in Example 1. We performed two sets of exper-
iments: one on problems with incentive budgets and one on problems without.
For problems with incentive budgets, we only have the linearized optimization
problem of Figure 1 (referred to as BC-MILP). For problems without incen-
tive budgets and desired congestion levels, we have the iterative best response
(referred to as IBR) and we compare it to a modified BC-MILP-Mod .

There are a number of different parameters that we experimented with,
namely the number of agents n, the horizon H, the number of resources |V|,
budget B, desired maximum or minimum consumption of any attraction v* and
finally the approximation parameter €. If not explicitly stated, the default values
for some of the parameters are as follows: H =1, |V| =4, B=2,v* = |”7‘ +p-n
(depending on whether we have constraints on maximum or minimum consump-
tion) with a default value of 10% for p and ¢ = 0. Due to space constraints, we
only show representative results. We conducted our experiments on a machine
with a 2.40GHz CPU and 6GB of RAM.

6.1 Incentivized Budget Constrained Problems

In this set of problems, we demonstrate some of the key results with the BC-
MILP. Figure 4(a) shows the runtimes, where we vary n and e. We only show
the runtimes for one combination of budget and v* parameter as the trends here
are similar for other parameters. We make two observations:

(1) As the number of agents increases, the runtime increases as expected. With
the increase in the number of agents, the number of variables and constraints
in the MILP increases and hence the increase in runtime. However, we are
able to solve problems with up to 100 agents with the BC-MILP approach.
By exploiting homogeneity in agents (future work), we hope to increase this
significantly.



No. of BC-MILP-Mod IBR
agents (7v*)||runtime (sec)||incentive|social welfare|runtime (sec)|incentive|social welfare

10 (3) 8.42 2.25 19.25 0.41 6.80 19.14
12 (3) 44.01 5.75 22.75 0.42 9.79 22.54
14 (4) 123.64 4.00 21.00 0.70 7.55 20.90
16 (4) 1105.45 6.80 23.80 0.48 10.07 23.67
18 (5) 4001.52 5.16 22.16 0.67 8.10 22.10
20 (5) 8312.05 7.50 24.50 0.54 10.26 24.42

Table 1. BC-MILP-Mod vs. IBR

(2) As € increases, even by a small value, the runtime decreases significantly.?
With the increase in €, the problem becomes simpler as the MILP can re-
turn solutions with larger deviations from the Nash equilibrium. Thus, these
results show the tradeoff between computation time and solution quality in
terms of distance from the optimal solution.

Figure 4(b) shows the runtimes, where we vary n and H with e = 0.3. As
expected, the runtime increases with increasing horizon. We are able to solve
problems with 20 agents and horizon 5 in less than 4 minutes.

Figure 4(c) shows the variance in resource consumption of each agent (as a
percentage of n), where we vary n from 10 to 30, and B from 2 to 7. The nice
observation from this result is that the average variance decreases as the budget
increases. In other words, we have a better load balance, even at equilibrium
strategies, when the budget B increases.

6.2 Incentivized Unconstrained Problems

We first show the performance comparison of the IBR algorithm with the BC-
MILP algorithm modified to suit the unconstrained budget and incentive mini-
mization setting (referred as BC-MILP-Mod). The BC-MILP-Mod thus finds a
solution with the least required incentive. Table 1 shows the results. IBR con-
verged and that implies that an equilibrium solution is found in both cases. The
results show that IBR is at least one order of magnitude faster than BC-MILP-
Mod but finds solutions that requires much higher incentive and slightly lower
social welfare, thus highlighting the tradeoff between the two approaches.

To demonstrate the scalability of the IBR algorithm, we increased the num-
ber of agents up to 500 and we were still able to solve the problem within 20
seconds. We also computed runtimes for the IBR approach while varying re-
sources, however, there was no significant change in runtime when the number
of resources was less than or equal to 10. Finally, we computed the the overall
incentive required as a mapping of the ideal resource consumption (v*) param-
eter p. We varied p from 5%-15% and computed the overall incentive required
with n varying between 100 to 300. As expected, the incentive decreased as the
constraint on resource consumption was relaxed.

3 Note that € is an absolute error on utility and not a percentage error.



7 Conclusion

Congestion is common in resource networks that exist in domains as varied as
transportation, computer networks and theme parks. In this paper, we aim to
smooth out the congestion by using well-timed incentives that are constrained by
a budget and are personalized to resource consumers. To that end, we provided
an efficient mixed-integer linear formulation that can exploit network structure
and is amenable to bounded approximation schemes. We also provide a scalable
alternative to solve the incentives problem when there is no constraint on the
budget and the goal is to find an equilibrium strategy with the least incentive.
Our experimental results demonstrate the scalability of our approaches and on an
illustrative problem, we also show that there is less congestion when the budget
increases and the incentive required increases as the constraints on resource
congestion become tighter.
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