
Solving Uncertain MDPs by Reusing State Information and Plans

Ping Hou
Department of Computer Science

New Mexico State University
Las Cruces, NM 88003
phou@cs.nmsu.edu

William Yeoh
Department of Computer Science

New Mexico State University
Las Cruces, NM 88003
wyeoh@cs.nmsu.edu

Tran Cao Son
Department of Computer Science

New Mexico State University
Las Cruces, NM 88003
tson@cs.nmsu.edu

Abstract

While MDPs are powerful tools for modeling sequential de-
cision making problems under uncertainty, they are sensitive
to the accuracy of their parameters. MDPs with uncertainty
in their parameters are called Uncertain MDPs. In this pa-
per, we introduce a general framework that allows off-the-
shelf MDP algorithms to solve Uncertain MDPs by planning
based on currently available information and replan if and
when the problem changes. We demonstrate the generality of
this approach by showing that it can use the VI, TVI, ILAO*,
LRTDP, and UCT algorithms to solve Uncertain MDPs. We
experimentally show that our approach is typically faster than
replanning from scratch and we also provide a way to esti-
mate the amount of speedup based on the amount of informa-
tion being reused.

Introduction
Markov Decision Processes (MDPs) are very rich models
that can fully capture the stochasticity present in many se-
quential decision making problems. However, the parame-
ters of these models, such as cost and transition functions,
are often derived from domain experts or estimated from
data. In both cases, these parameters can change as more
experts provide input or more data is made available. The
change in these parameters can significantly degrade the
quality of policies found for the previous set of parame-
ters (Mannor et al. 2007). These problems with uncertainty
in the parameters as called Uncertain MDPs.

Generally, researchers have taken proactive approaches
to solve Uncertain MDPs by explicitly representing the
cost and transition functions as fixed but unknown pa-
rameters. Some assume that the parameters are elements
of a known bounded set, called the uncertainty set, and
use robust optimization techniques to solve the Uncer-
tain MDPs (Givan, Leach, and Dean 2000; Iyengar 2005;
Nilim and Ghaoui 2005; Regan and Boutilier 2009; 2011;
Mannor, Mebel, and Xu 2012). Alternatively, some assume
that the parameters are random variables that follow some
distribution and use percentile optimization techniques (De-
lage and Mannor 2010), distributional robustness (Xu and
Mannor 2012), or sampling-based approaches (Ahmed et al.
2013) to solve the Uncertain MDPs.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Another class of approaches are reactive approaches like
incremental search (Stentz 1995; Koenig and Likhachev
2002; Koenig et al. 2004; Likhachev, Gordon, and Thrun
2003; Sun, Koenig, and Yeoh 2008; Sun, Yeoh, and Koenig
2009; 2010a; 2010b), which is thus far restricted to prob-
lems with deterministic transitions. Incremental search al-
gorithms typically use A* (Hart, Nilsson, and Raphael 1968)
to find a plan for the initial problem, and replans each time
the problem changes. It uses different techniques to identify
parts of the previous plan that are unaffected by the change
in the problem and reuses them to replan for the new prob-
lem. Researchers have shown that by reusing parts of the
previous plan, the replanning process can be sped up signif-
icantly especially if the changes are small.

One common theme across most of the existing proactive
approaches is the assumption that it is possible to model the
uncertainty in the parameters of the MDP. However, it can
be difficult to ascertain if the model is accurate with a high
degree of confidence. For example, the parameters of the
distribution might not be known. On the other hand, most of
the reactive approaches are thus far limited to deterministic
problems – mostly agent-based path-planning problems.

Our goal in this paper is to find a balance between both ap-
proaches. We introduce a general Incremental MDP Frame-
work that allows standard off-the-shelf MDP algorithms to
solve Uncertain MDPs by planning based on currently avail-
able information (modeled as an initial MDP) and replan if
and when the problem changes (modeled as a new MDP).
Like incremental search algorithms, this framework endeav-
ors to speed up the planning process by identifying parts of
the previous plan that are reusable in the current planning
process. Therefore, unlike the proactive approaches, we do
not require a model of the uncertainty in the parameters of
the MDP model, and unlike the reactive approaches, we are
not limited to deterministic problems. We demonstrate the
generality of this approach by showing that it can use sev-
eral off-the-shelf algorithms to solve Uncertain MDPs. We
experimentally show that our approach is typically faster
than replanning from scratch and finds better solutions when
given a fixed runtime.

MDP Model
A Stochastic Shortest Path Markov Decision Process
(SSP-MDP) (Bertsekas 2000) is represented as a tuple

〈S, s0,A,T,C,G〉. It consists of a set of states S; a start
state s0 ∈ S; a set of actions A; a transition function
T : S×A×S→ [0, 1] that gives the probability T (s, a, s′)
of transitioning from state s to s′ when action a is executed;
a cost function C : S × A × S → R that gives the cost
C(s, a, s′) of executing action a in state s and arriving in
state s′; and a set of goal states G ⊆ S. The goal states are
terminal, that is, T (g, a, g) = 1 and C(g, a, g) = 0 for all
goal states g ∈ G and actions a ∈ A. An SSP-MDP must
also satisfy the following two conditions: (1) There must ex-
ist a proper policy, which is a mapping from states to actions
with which an agent can reach a goal state from any state
with probability 1. (2) Every improper policy must incur an
accumulated cost of∞ from all states from which it cannot
reach the goal with probability 1. In this paper, we will focus
on SSP-MDPs and will thus use the term MDPs to refer to
SSP-MDPs. However, our techniques also apply to regular
finite-horizon and infinite-horizon discounted-reward MDPs
as well since they are subclasses of SSP-MDPs (Bertsekas
and Tsitsiklis 1996).

The state space of an MDP can be visualized as a directed
hyper-graph called a connectivity graph. Figure 1 shows
an example partial connectivity graph, where states of the
MDP correspond to nodes (denoted by circles) and tran-
sitions between states correspond to hyper-edges (denoted
by arrows). The subgraph rooted at a start state is called
a transition graph. It is possible to partition the connec-
tivity or transition graphs into Strongly Connected Compo-
nents (SCCs) in such a way that they form a Directed Acyclic
Graph (DAG) (Tarjan 1972; Bonet and Geffner 2003a;
Dai et al. 2011). Thus, it is impossible to transition from
a state in a downstream SCC to a state in an upstream SCC.
Each SCC is denoted by a rectangle in Figure 1. We call this
DAG an SCC transition tree.

MDP Algorithms
An MDP policy π : S → A is a mapping from states to ac-
tions. Solving an MDP is to find an optimal policy, that is, a
policy with the smallest expected cost. Generally, there are
two classes of MDP algorithms with different representa-
tions of expected costs and action selections. The first class
of algorithms uses a value function V to represent expected
costs. The expected cost of an optimal policy π∗ is the ex-
pected cost V (s0) for starting state s0, which is calculated
using the Bellman equation (Bellman 1957):

V (s) = min
a∈A

∑
s′∈S

T (s, a, s′)
[
C(s, a, s′) + V (s′)

]
(1)

The action chosen for the policy for each state s is then the
one that minimizes V (s). A single update using this equa-
tion is called a Bellman update. The second class of algo-
rithms uses Q-values Q(s, a) to represent the expected cost
of taking action a in state s. The action chosen for the policy
for each state s is then the one that minimizes Q(s, a).

We now briefly describe five common MDP algorithms,
which we can use as subroutines in our algorithm. The first
four are algorithms of the first class and the last one is an
algorithm of the second class. We refer the reader to the
original papers for more details.

1 2 4

5 3

6

Figure 1: Partial Connectivity Graph

Value Iteration (VI): VI (Bellman 1957) is one of the fun-
damental approaches to find an optimal policy. In each it-
eration, it performs a Bellman update on each state. The
difference between the expected cost of a state in two con-
secutive iterations is called the residual of that state and the
largest residual is called the residual error. The algorithm
terminates when the values converge, that is, the residual er-
ror is less than a user-defined threshold ε. Lastly, VI can
be optimized by only considering the set of states reachable
from the start state.

Topological VI (TVI): VI suffers from a limitation that it
updates each state in every iteration even if the expected cost
of states that it can transition to remain unchanged. TVI (Dai
et al. 2011) addresses this limitation by repeatedly updating
the states in only one SCC until their values converge before
updating the states in another SCC. Since the SCCs form a
directed acyclic graph, states in an SCC only affect the states
in upstream SCCs. Thus, by choosing the SCCs in reverse
topological sort order, it no longer need to consider SCCs
whose states have converged in a previous iteration. Figure 1
shows the indices of the SCCs in reverse topological sort
order on the upper left corner of the squares. Like VI, TVI
can also be optimized by only considering the set of states
reachable from the start state.

Improved LAO* (ILAO*): ILAO* (Hansen and Zilberstein
2001) is another approach that uses heuristics to improve its
search process. It builds an explicit transition graph, where
nodes correspond to states and directed edges correspond
to transitions between states. It starts with the start state
as the sole node in the graph. Then, in each iteration, (1)
it expands all the fringe states in the greedy policy graph,
which is a subgraph that is formed by taking a greedy policy
on the values of the states in the original graph; and (2) it
performs a single Bellman update for each state in the graph
after expanding all the fringe states. The exception is when
it expands a reusable state, in which case it expands all the
states in the subtree rooted at that state before performing
the Bellman updates. This exception is only necessary when
ILAO* is used in conjunction with our framework, which
labels states as reusable or non-reusable. We describe this

framework later. This expansion process continues until the
graph has no more non-terminal fringe states, at which point
ILAO* performs repeated Bellman updates until the values
converge, that is, the residual error is less than a user-defined
threshold ε.

Labeled Real-Time Dynamic Programming (LRTDP):
One of the limitations of VI, TVI, and ILAO* is that they
might take a long time to find a policy. In such situations,
anytime algorithms like LRTDP (Bonet and Geffner 2003b)
are desirable. As long as there is time, LRTDP simulates the
current greedy policy to sample trajectories (called a trial in
LRTDP terminology) through the state space and performs
Bellman updates only on the states along those trajectories.
These updates change the greedy policy and make way for
further improvements on the states’ expected costs. In each
trial, starting from the start state, a greedy action is selected
based on the current expected costs and the resulting state
of this action is sampled stochastically. This process ends
when a goal state or a solved state is reached. A state is
considered solved if the residual is less than a user-defined
threshold ε for every state in the transition graph rooted at
the solved state and is reachable with the greedy policy.

UCB applied to Trees (UCT): Aside from LRTDP, another
anytime algorithm is a sampling-based algorithm called
UCT (Kocsis and Szepesvári 2006). Like LRTDP, it samples
trajectories (called a rollout in UCT terminology) through
the state space as well. However, it uses Q-values instead
of value functions to represent expected costs. It repeatedly
updates Q(s, a) so that the Q-value is the average cost ac-
cumulated in past rollouts when it executes action a in state
s. UCT selects an action a′ using the following equation to
balance exploration and exploitation:

a′ = arg min
a∈A

Q(s, a)−B

√
ln
(∑

a′′ ns,a′′
)

ns,a

 (2)

where B is a constant and ns,a is the number of times the
rollout choose action a in state s.

Incremental MDP Framework
We now describe the high-level ideas of our framework.
This framework capitalizes on a key observation: States in
downstream SCCs can not transition to states in upstream
SCCs because the SCC transition tree is a directed acyclic
graph. As a result, the policy and state information in up-
stream SCCs depend on the policy and state information in
downstream SCCs, but not vice versa. Thus, if there are
changes in the problem that affects the correctness of the
policy and state information of some states (we call such
states affected states or, equivalently, non-reusable states),
then this error propagates only to other states in the same
SCC and upstream SCCs. The error does not propagate to
states in downstream SCCs and, thus, those states are un-
affected states or, equivalently, reusable states. By reusing
the state information in reusable states to find a new policy
for the updated problem, we postulate that (1) when given
a desired solution quality, our approach should be able to

Algorithm 1: INCREMENTAL-MDP(M)
1 I = INITIALIZE(M)
2 (π, I) = MDP-SOLVER(M, I)
3 s = s0

4 while s /∈ G do
5 s = EXECUTE-AN-ACTION(M,π, s)
6 ∆ = DETECT-CHANGES()
7 if ∆ 6= NULL then
8 M = UPDATE-MODEL(M,∆)
9 S∆ = FIND-AFFECTED-SOURCES(M, ∆)

10 Y = FIND-SCCS(M, s)
11 I = FIND-REUSABLE-STATES(I, S∆, Y)
12 I = UPDATE-INFORMATION(M, I, s)
13 (π, I) = MDP-SOLVER(M, I)
14 end
15 end

Algorithm 2: FIND-REUSABLE-STATES(I, S∆, Y)
16 for SCCs yi with indices i = 1 to n do
17 if S∆ ∩ yi = {} then
18 yi.reusable = true
19 else
20 yi.reusable = false
21 end
22 end
23 for SCCs yi with indices i = 1 to n do
24 if ∃ SCC y ∈ Succ(yi) : ¬y.reusable then
25 yi.reusable = false
26 end
27 for states s ∈ yi do
28 s.reusable = yi.reusable
29 end
30 end
31 return I

find such a solution faster than solving the problem from
scratch; and (2) when given the same amount of runtime, our
approach should be able to find better solutions than those
found by solving the problem from scratch.

Pseudocode
Algorithm 1 shows the pseudocode of this framework. To
illustrate the generality of this framework, we describe the
operation of this framework for all the 5 MDP solvers de-
scribed earlier. Given an initial MDP model M , it first ini-
tializes the information of each state with initial heuristic
values (Line 1). The information of each state s consists
of the flag s.reusable (for all algorithms); the value func-
tion V (s) and residual s.residual (for VI, TVI, ILAO*, and
LRTDP); the flag s.solved (for LRTDP); and the Q-values
Q(s, a) and sampling frequency ns,a (for UCT). The flag
s.reusable indicates whether state s is reusable or, equiva-
lently, unaffected by the changes in the problem.

Next, the framework can use any of the 5 MDP solvers
described earlier to solve the MDP and find policy π and

updated state information I (Line 2). The algorithm then re-
peats the following steps until the agent reaches a goal state
(Line 4): It executes an action according to policy π, moves
to a new state s (Line 5), and checks if there are any changes
∆ that need to be made to the model (Line 6). A change in
the model is necessary if domain experts provide updated in-
formation or if the agent detects inconsistencies between the
model and the environment. For example, the agent might
detect an obstacle between states s and s′ that prohibits it
from moving between the two states but there exists an ac-
tion a with transition T (s, a, s′) > 0 in the MDP model.

If there are changes that need to be made (Line 7), then
the agent updates its MDP model based on these changes
(Line 8) and finds the immediate states that are affected by
these changes (Line 9). Then, it partitions the state space of
the new MDP model into SCCs (Line 10); finds the reusable
states (Line 11), which are states that are unaffected by the
changes ∆; and reinitializes the information of non-reusable
states (Line 12). Lastly, it solves the updated MDP modelM
with state information I to find the new policy π (Line 13).
We now describe some of these functions.

Detect-Changes: The possible types of changes are addi-
tion/removal of states in S, changes in the start state s0,
addition/removal of actions in A, changes in the transition
function T, changes in the cost function C, and the addi-
tion/removal of goal states in G. However, an important re-
quirement is that the resulting MDP after the change is still
an SSP-MDP.

Changes in the start state are included in the set of changes
∆ only if the change is a result of exogenous factors and
not a result of action execution. In other words, the new
start state s0 is included only if it is not one of the successor
states of the previous start state s′0 with the previous action
execution a, that is, T (s′0, a, s0) = 0. The exception is if VI
or TVI is used and if the new start state is in the subgraph
rooted at the previous start state since they must have previ-
ously found a policy for all states in this subgraph. It is also
important to note that if the only change in ∆ is the change
in the start state, then there is no need to run Lines 9-12 be-
cause all state information is still reusable.

Some of the changes can be represented by changes in the
transition and cost functions alone. They are the removal of
states s (represented by setting T (s′, a, s) = 0 for all states
s′ and actions a) and the removal of actions a from state
s (represented by setting T (s, a, s′) = 0 for all states s′).
Lastly, the remaining changes must include changes to the
transition and cost functions. They are the addition of states
s (includes adding T (s′, a, s), T (s, a, s′), C(s′, a, s), and
C(s, a, s′) for all states s′ and actions a), the addition of
actions a (includes adding T (s, a, s′) and C(s, a, s′) for all
states s and s′), the addition of goal states g (includes set-
ting T (g, a, g) = 1 and C(g, a, g) = 0 for all actions a) and
removal of goal states g (includes setting T (g, a, g) 6= 1).

Find-Affected-Sources: Given the set of changes ∆, the
function returns the set of affected source states S∆. A
state s is an affected source state iff its transition function
T (s, a, s′) or cost function C(s, a, s′) is newly added or has
changed for any action a and state s′.

Find-SCCs: One can partition the state space into SCCs
with Tarjan’s algorithm (Tarjan 1972), which traverses the
connectivity graph in a depth-first manner and marks the
SCC membership of each state. Tarjan’s algorithm returns
an SCC transition tree Y , where the SCC indices are in re-
verse topological sort order. One can optimize the algorithm
by executing this function only in the first iteration and only
when the underlying transition graph changes in future iter-
ations. The underlying transition graph changes when there
exists at least one transition function that changes from zero
to non-zero or vice versa.

Find-Reusable-States: Given the set of affected source
states S∆ and the SCC transition tree Y , the algorithm deter-
mines whether each state s in the transition graph is affected
by the changes ∆ and sets the flag of those states s.reusable
accordingly. Algorithm 2 shows the pseudocode. It first de-
termines if each SCC contains an affected source state and is
thus not reusable (Lines 16-22). Then, it determines if each
SCC is affected and is thus not reusable. An SCC is affected
if it contains an affected source state or one of its down-
stream SCCs contains an affected source state (Lines 23-26).
Once every SCC is determined to be reusable or not, the
function sets the flag s.reusable of each state s to true if its
SCC is reusable and false otherwise (Lines 27-29). Finally,
the function returns the state information with the updated
reusable flags (Line 31).

Update-Information: Given the state information I with
updated reusable flags, the function re-initializes all the in-
formation of all non-reusable states. More precisely, it reini-
tializes the value function V (s) and residuals s.residual
(for VI, TVI, ILAO*, and LRTDP), the flag s.solved (for
LRTDP) and the Q-value Q(s, a) and sampling frequency
ns,a (for UCT) for each non-reusable state s.1

Theoretical Properties
Definition 1 A state is non-reusable iff its state information
is no longer correct due to changes in the MDP.
Lemma 1 A state is non-reusable iff it belongs to either an
SCC that contains an affected source state or an SCC that is
upstream of an SCC that contains an affected source state.
Proof Sketch: For algorithms that are based on Bellman up-
dates like VI, TVI, ILAO*, and LRTDP, the value function
V (s) of a state s is no longer correct in the following cases:2

Case 1: It is an affected source state. The reason is that the
newly added or changed transition or cost function can
change V (s) according to Equation 1.

Case 2: It belongs to an SCC that contains an affected
source state. The reason is that the change in V (s′) of
the affected source state s′ can change V (s) according to
Equation 1 because states in an SCC form a cyclic sub-
graph.
1One can slightly optimize this function for UCT by only reini-

tializing Q(s, a) and ns,a for all state-action pairs (s, a) with ei-
ther (1) changes in T (s, a, s′) or C(s, a, s′) for some state s′;
or (2) non-reusable successor states, that is, T (s, a, s′) > 0 and
s′.reusable = false for some state s′.

2A similar proof applies for sampling algorithms like UCT.

Case 3: It belongs to an SCC that is upstream of an SCC
c′ that contains an affected source state. The reason is
that the change in V (s′) of a state s′ ∈ c′ can change
V (s′′) of a state s′′ ∈ Pred(c′) with transition function
T (s′′, a, s′) > 0, which can then change the value func-
tion for all states in the SCC Pred(c′), and this effect
propagates up to all SCCs upstream of SCC c′. �

Lemma 2 A state is non-reusable iff it is marked non-
reusable.

Proof Sketch: If a state is non-reusable, then it must fall
into one of the following two cases according to Lemma 1:

Case 1: It belongs to an SCC that contains an affected
source state. In this case, the SCC it belongs to is marked
non-reusable (Line 20) and the state is marked the same
(Lines 27-29).

Case 2: It belongs to an SCC that is upstream of an SCC
that contains an affected source state. In this case, the
SCC it belongs to is marked non-reusable (Lines 23-26
and that the SCC indices are in reverse topological sort
order) and the state is marked the same (Lines 27-29). �

Theorem 1 The Incremental MDP Framework is sound.

Proof Sketch: The framework correctly marks states as
reusable or otherwise according to Lemma 2 and only
reinitializes the state information of non-reusable states in
Line 12. Thus, a sound MDP algorithm that can be boot-
strapped to start with correct state information for some
states remains sound when it uses this framework. �

Property 1 The time and space complexity of Lines 10-12
are both O(|S|2|A|).

The time complexity of FIND-SCCS(), which is Tarjan’s
algorithm, is linear in the number of nodes O(|S|) and
edges O(|S|2|A|) in the graph since it runs a depth-first
search over the transition graph.3 The time complexity of
FIND-REUSABLE-STATES() is dominated by Lines 23-24,
which is linear in the number of SCCs O(|S|) and edges be-
tween SCCs O(|S|2|A|). The time complexity of UPDATE-
INFORMATION() isO(|S|) for algorithms based on Bellman
updates since it needs to update every non-reusable state and
O(|S|2|A|) for algorithms based on sampling since it needs
to update every non-reusable state-action pair. The space
required by all three functions is dominated by the space re-
quired to store the MDP model M , which is O(|S|2|A|) for
the transition and cost functions.

Property 2 Assuming that every SCC has the same num-
ber of states, the estimated savings in runtime for using the
Incremental MDP framework is |Ŷ | · |Y | · T̃

|Ỹ |2 for VI and

|Ŷ | · T̃
|Ỹ | for TVI, where |Ŷ | is the number of reusable SCCs

in the SCC transition tree, |Y | is the number of SCCs in that
tree, T̃ is runtime for solving the initial MDP and |Ỹ | is
the number of SCCs in the SCC transition tree of the initial
MDP.

3There are O(|S|2|A|) edges because there are O(|S||A|)
hyper-edges, and each hyper-edge can connect up to O(|S|) nodes.

We now describe the high-level ideas to derive this property.
Assume that states in every SCC need to be updated before
the algorithm can converge. Then, the runtime T is |Y | ·k · t
without our framework and is (|Y | − |Ŷ |) · k · t with our
framework, where k is the number of iterations necessary
for one SCC to converge and t is the runtime per iteration.
Also, due to the premise of the property, t = O(|Y |) for VI
and t = O(1) for TVI. The number of iterations k is mostly
unchanged if the problem does not change significantly. Af-
ter solving the initial MDP, it can be estimated to beO

(
T̃
|Ỹ |2

)
for VI and O

(
T̃
|Ỹ |

)
for TVI.

Experimental Results
We evaluate the Incremental MDP Framework with the 5
MDP algorithms described earlier. We run the algorithms
on two sets of domains: (i) a multi-layer navigation domain
similar to that in the literature (Dai et al. 2011), and (ii)
the domains in the ICAPS 2011 International Probabilistic
Planning Competition (IPPC).4 We conducted our experi-
ments on a dual-core 2.53 GHz machine with 4GB of RAM.
All data points are averaged over 10 runs and runtimes are
in milliseconds. We provide runtime results for when the al-
gorithms use the zero heuristic as well as the deterministic
heuristic. The runtimes do not include the pre-processing
time to compute the deterministic heuristic.

Multi-Layer Navigation Domain
In this domain, an agent needs to get from one side of a river
to the other. We model this problem as an X×Y grid, where
states are cells in the grid and the number of rows Y in the
grid is the width of the river. The agent can transition to any
cell in its row or any of the 50 rows in front of it. We set the
number of actions per state and the number of successors
per action from 1 to 7 randomly and we set the transition
and cost functions randomly. The agent has a sensor with
range R. Thus, it can check for inconsistencies between its
model and the environment for R rows ahead of it.

We set X to 50, Y to 500, and R to 50. The agent will
continue to move according to its policy until it reaches its
goal or detects an inconsistency and replans with our frame-
work or from scratch. For each problem, we change the tran-
sition function of one random state. We set the coordinate
(x, y) of this state by randomly choosing x such that that
state is in the subgraph rooted at the start state and varying
y from R to Y .

Tables 1(a) and 1(b) show the convergence runtimes when
the algorithms use the zero and deterministic heuristics, re-
spectively. Algorithms using our Incremental MDP frame-
work have prefix “I” (which stands for “incremental”) in
their acronyms. We do not include the runtimes of UCT
since it is an anytime algorithm that is designed without a
test for convergence (Kolobov, Mausam, and Weld 2012).
We show actual savings in runtime in parentheses and esti-
mated savings (Property 2) in square brackets. The runtimes

4http://users.cecs.anu.edu.au/˜ssanner/
IPPC_2011

(a) with zero heuristic

y-coordinate VI I-VI TVI I-TVI ILAO* I-ILAO* LRTDP I-LRTDP
50 500 22 (478) [488] 35 20 (15) [34] 1565 19 (1546) 848 33 (815)

140 358 18 (340) [350] 29 17 (12) [27] 1196 16 (1180) 565 16 (548)
230 199 17 (182) [191] 24 14 (10) [23] 829 12 (816) 323 12 (311)
320 128 12 (116) [119] 16 9 (7) [15] 336 9 (327) 173 9 (164)
410 81 7 (74) [73] 9 6 (3) [8] 41 5 (36) 37 5 (32)
500 13 13 (0) [0] 3 3 (0) [0] 3 3 (0) 5 4 (1)

(b) with deterministic heuristic

y-coordinate VI I-VI TVI I-TVI ILAO* I-ILAO* LRTDP I-LRTDP
50 435 21 (414) [425] 34 19 (15) [33] 1548 18 (1530) 836 33 (803)

140 310 17 (293) [303] 29 16 (13) [28] 1156 16 (1141) 545 16 (529)
230 162 14 (149) [156] 22 12 (9) [20] 704 11 (693) 321 12 (310)
320 117 11 (106) [110] 17 9 (7) [15] 323 9 (314) 195 9 (186)
410 80 7 (73) [72] 10 6 (4) [8] 37 5 (32) 37 5 (32)
500 14 15 (-1) [0] 3 4 (0) [0] 2 3 (0) 5 4 (1)

Table 1: Multi-Layer Navigation Domain: Runtimes. Actual savings are in parentheses and estimated savings are in square
brackets.

of all algorithms decrease with increasing y-coordinate be-
cause the problem size (= number of reachable states) de-
creases with increasing y-coordinate. The runtimes of all the
algorithms are generally smaller if they use our framework.
The savings in runtime decrease with decreasing problem
size because the number of reusable states decreases with the
problem size but the number of non-reusable states (states in
theR rows ahead of the agent) remain the same. When there
is only a small number of reusable states, the algorithms that
use our framework converge slower due to additional over-
head.

Next, we conducted an experiment to compare the qual-
ity of solutions found by LRTDP and UCT when they are
both given the same amount of runtime to replan. Both al-
gorithms are given about 30 seconds to find the first policy.
We use the same parameters as earlier except for Y , which
we set to 3000 so that the algorithms take longer to converge
and their anytime behavior is more apparent, and R, which
we set to 1000.

Table 2 shows the results. When given the same amount
of time, (I-)LRTDP finds better solutions (= smaller costs)
than (I-)UCT, consistent with recent results in the litera-
ture (Kolobov, Mausam, and Weld 2012). As expected, both
LRTDP and UCT also finds better solutions when they use
our framework to reuse information. This difference de-
creases as more time is given until both algorithms find the
same plan when they both converge within the time limit.

ICAPS 2011 IPPC Domains
All eight IPPC domains are represented as finite-horizon
MDPs. Out of these eight domains, four domains (cross-
ing traffic, navigation, reconnaissance, and skill teaching)
can be represented as general SSP-MDPs as it is relatively
straightforward to define goal states in these domains. We
thus use these domains in our experiments. We do not use
the remaining four domains as they are repeated scheduling

Runtimes LRTDP I-LRTDP UCT I-UCT
256 2233 1719 (514) 2732 2075 (657)
512 2148 1744 (404) 2664 2050 (614)

1024 2074 1801 (273) 2579 2014 (565)
2048 2038 1716 (321) 2496 1987 (509)
4096 1999 1500 (499) 2411 1964 (448)
8192 1878 1507 (371) 2275 1927 (348)
16384 1539 1470 (69) 2139 1877 (262)
32768 1425 1425 (0) 1994 1827 (167)

Table 2: Multi-Layer Navigation Domain: Expected Costs.
Cost differences are in parentheses.

problems without clearly defined goal states. For the cross-
ing traffic and skill teaching domains, we report the results
of two largest instance that fit in memory. For the naviga-
tion domain, all the instances were too small and could not
sufficiently illustrate the difference in runtimes of the vari-
ous algorithms, and for the reconnaissance domain, all the
instances were too large and could not fit in memory. As
such, we created two larger instances for the navigation do-
main and two smaller instances for the reconnaissance do-
main using the same domain logic and report the results of
those instances.

In these experiments, we change the transition function of
one random state, which the agent is able to detect only if it
is at the predecessor state of this random state. Additionally,
we also run a pre-processing step to eliminate provably sub-
optimal actions like reversible actions to increase the num-
ber of SCCs (Dai et al. 2011).

Tables 3(a) and 3(b) show the convergence runtimes when
the algorithms use the zero and deterministic heuristics, re-
spectively. Both VI and TVI converged faster in all domains
and both heuristics when they use our Incremental MDP
framework. Additionally, the estimated savings are more

(a) with zero heuristic

Domains VI I-VI TVI I-TVI ILAO* I-ILAO* LRTDP I-LRTDP
crossing traffic 611 171 (440) [610] 192 178 (14) [191] 550 184 (366) 174 142 (32)

navigation 10833 22 (10811) [10821] 330 20 (310) [329] 28 23 (5) 42 23 (19)
reconnaissance 11 3 (8) [10] 7 5 (2) [6] 6 4 (2) 13 4 (9)
skill teaching 88 6 (82) [71] 44 6 (38) [34] 87 6 (81) 239 14 (225)

(b) with deterministic heuristic

Domains VI I-VI TVI I-TVI ILAO* I-ILAO* LRTDP I-LRTDP
crossing traffic 593 168 (425) [592] 187 176 (11) [186] 511 176 (335) 126 125 (1)

navigation 1052 19 (1033) [1051] 177 19 (158) [176] 1 19 (-18) 1 20 (-19)
reconnaissance 6 2 (4) [5] 4 3 (1) [3] 2 3 (-1) 2 3 (-1)
skill teaching 97 7 (90) [77] 50 8 (42) [39] 87 8 (79) 237 18 (219)

Table 3: ICAPS 2011 IPPC Domains: Runtimes. Actual savings are in parentheses and estimated savings are in square
brackets.

Domains VI I-VI TVI I-TVI
crossing traffic 38 20 (18) [37] 23 21 (2) [22]

navigation 35 19 (16) [34] 26 19 (7) [25]
reconnaissance 3 3 (0) [2] 5 4 (1) [4]
skill teaching 6 4 (2) [5] 7 4 (3) [5]

Table 4: ICAPS 2011 IPPC Domains: Runtimes with Old-
Value Heuristic. Actual savings are in parentheses and esti-
mated savings are in square brackets.

Weights ILAO* I-ILAO* LRTDP I-LRTDP
0.00 28 23 (5) 42 23 (19)
0.25 26 23 (3) 43 24 (19)
0.50 21 24 (-3) 35 25 (10)
0.75 11 22 (-11) 16 23 (-7)
1.00 1 19 (-18) 1 20 (-19)

Table 5: ICAPS 2011 IPPC’s Navigation Domain: Run-
times. Actual savings are in parentheses.

accurate in the multi-layer navigation domain than in these
IPPC domains. The reason is that Property 2 assumes that
every SCC has the same number of states, and the variance
in the number of states in each SCC is smaller in the former
domain than in the latter domains.

Finally, instead of reinitializing the value function V (s)
of non-reusable states s in VI and TVI to their heuristic val-
ues, one can keep their old values as they will not affect the
correctness of both algorithms. Table 4 shows the results for
this “old-value heuristic”. As this heuristic is more informed
than the precomputing heuristic, the runtimes of all the al-
gorithms are smaller and, consequently, the runtime savings
are also smaller. The results are similar in the multi-layer
navigation domain.

Tables 3(a) and 3(b) also show that when ILAO* and
LRTDP use the zero heuristic, they converged faster in all
domains when they use our Incremental MDP framework.
When they use the deterministic framework, they converged
faster only in the crossing traffic and skill teaching domains.

Based on this observation, we wanted to investigate the im-
pact of the informedness of heuristic values on the runtime
savings of our approach. We thus re-ran the experiments on
the navigation domain using different weights on the deter-
ministic heuristics. Table 5 shows the runtime results. When
the heuristics are sufficiently informed, it is faster to not use
the Incremental MDP framework. The reason is that the
overhead incurred by the framework is larger than the sav-
ings gained by it.

Discussions and Conclusions

In this paper, we investigate the feasibility of a new ap-
proach to solve Uncertain MDPs by repeatedly solving the
current MDP when a change is detected. Unlike previous
approaches, this approach does not require a model of the
uncertainty in the parameters of the MDP model. Using
this approach, we introduced a general framework that al-
lows off-the-shelf MDP algorithms to reuse state informa-
tion that are unaffected by the change in the MDP. Our ex-
perimental results show that our approach is typically faster
than replanning from scratch and finds better solutions when
given a fixed runtime. The savings in runtime decreases with
the increase in informedness of heuristics used. Thus, it is
well-suited in domains where good heuristics are difficult
to compute, which is the case in many complex application
domains. Future work includes characterizing changes to
the problem that violate or retain the SSP-MDP property as
well as comparing this approach with previous proactive ap-
proaches.

Acknowledgment

This research is partially supported by the National Science
Foundation under grant number HRD-1345232. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the of-
ficial policies, either expressed or implied, of the sponsoring
organizations, agencies, or the U.S. government.

References
Ahmed, A.; Varakantham, P.; Adulyasak, Y.; and Jaillet, P.
2013. Regret based robust solutions for uncertain Markov
decision processes. In Advances in Neural Information Pro-
cessing Systems (NIPS), 881–889.
Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.
Bertsekas, D., and Tsitsiklis, J. 1996. Neuro-Dynamic Pro-
gramming. Athena Scientific.
Bertsekas, D. 2000. Dynamic Programming and Optimal
Control. Athena Scientific.
Bonet, B., and Geffner, H. 2003a. Faster heuristic search
algorithms for planning with uncertainty and full feedback.
In Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), 1233–1238.
Bonet, B., and Geffner, H. 2003b. Labeled RTDP: Improv-
ing the convergence of real-time dynamic programming. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 12–21.
Dai, P.; Mausam; Weld, D.; and Goldsmith, J. 2011. Topo-
logical value iteration algorithms. Journal of Artificial Intel-
ligence 42(1):181–209.
Delage, E., and Mannor, S. 2010. Percentile optimization
for Markov decision processes with parameter uncertainty.
Operations Research 58(1):203–213.
Givan, R.; Leach, S.; and Dean, T. 2000. Bounded-
parameter Markov decision processes. Artificial Intelligence
122(1–2):71–109.
Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129(1–2):35–62.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics SSC4(2):100–107.
Iyengar, G. 2005. Robust dynamic programming. Mathe-
matics of Operations Research 30:257–280.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In Proceedings of the European Conference
on Machine Learning (ECML), 282–293.
Koenig, S., and Likhachev, M. 2002. D* Lite. In Proceed-
ings of the National Conference on Artificial Intelligence
(AAAI), 476–483.
Koenig, S.; Likhachev, M.; Liu, Y.; and Furcy, D. 2004.
Incremental heuristic search in AI. AI Magazine 25(2):99–
112.
Kolobov, A.; Mausam; and Weld, D. 2012. LRTDP vs. UCT
for online probabilistic planning. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 1786–1792.

Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*:
Anytime A* with provable bounds on sub-optimality. In Ad-
vances in Neural Information Processing Systems (NIPS).

Mannor, S.; Simester, D.; Sun, P.; and Tsitsiklis, J. 2007.
Bias and variance approximation in value function esti-
mates. Management Science 53:308–322.
Mannor, S.; Mebel, O.; and Xu, H. 2012. Lightning does
not strike twice: Robust MDPs with coupled uncertainty.
In Proceedings of the International Conference on Machine
Learning (ICML).

Nilim, A., and Ghaoui, L. E. 2005. Robust Markov decision
processes with uncertain transition matrices. Operations Re-
search 53(5):780–798.

Regan, K., and Boutilier, C. 2009. Regret-based reward
elicitation for Markov decision processes. In Proceedings
of the Conference on Uncertainty in Artificial Intelligence
(UAI), 444–451.

Regan, K., and Boutilier, C. 2011. Robust online optimiza-
tion of reward-uncertain MDPs. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
2165–2171.

Stentz, A. 1995. The focussed D* algorithm for real-time
replanning. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI), 1652–1659.

Sun, X.; Koenig, S.; and Yeoh, W. 2008. Generalized Adap-
tive A*. In Proceedings of the International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS), 469–476.

Sun, X.; Yeoh, W.; and Koenig, S. 2009. Efficient incre-
mental search for moving target search. In Proceedings of
the International Joint Conference on Artificial Intelligence
(IJCAI), 615–620.

Sun, X.; Yeoh, W.; and Koenig, S. 2010a. Generalized
Fringe-Retriving A*: Faster moving target search on state
lattices. In Proceedings of the International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS), 1081–1087.

Sun, X.; Yeoh, W.; and Koenig, S. 2010b. Moving Target D*
Lite. In Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
67–74.

Tarjan, R. 1972. Depth-first search and linear graph algo-
rithms. SIAM Journal on Computing 1(2):146–160.

Xu, H., and Mannor, S. 2012. Distributionally robust
Markov decision processes. Mathematics of Operations Re-
search 37(2):288–300.

